Bijective proofs for Eulerian numbers of types B and D - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2023

Bijective proofs for Eulerian numbers of types B and D

Résumé

Let $< n,k> $, $< B_n k> $, and $< D_n, k >$ be the Eulerian numbers in the types A, B, and D, respectively---that is, the number of permutations of n elements with k descents, the number of signed permutations (of n elements) with k type B descents, the number of even signed permutations (of n elements) with k type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} < n,k> t^k$, $B_n(t) = \sum_{k = 0}^{n}< B_n,k >t^k$, and $D_n(t) = \sum_{k = 0}^{n}< D_n,k> t^k$. We give bijective proofs of the identity $B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2^{n}tS_n(t^2)$ and of Stembridge's identity $D_n(t) = B_n (t) - n2^{n−1}tS_{n−1}(t)$. These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.
Fichier principal
Vignette du fichier
0.pdf (475.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03204493 , version 1 (22-04-2021)
hal-03204493 , version 2 (27-07-2022)
hal-03204493 , version 3 (23-12-2022)
hal-03204493 , version 4 (03-03-2023)

Identifiants

Citer

Luigi Santocanale. Bijective proofs for Eulerian numbers of types B and D. Discrete Mathematics and Theoretical Computer Science, 2023. ⟨hal-03204493v4⟩
151 Consultations
103 Téléchargements

Altmetric

Partager

More