Stochastic Online Convex Optimization. Application to probabilistic time series forecasting - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Stochastic Online Convex Optimization. Application to probabilistic time series forecasting

Résumé

We introduce a general framework of stochastic online convex optimization to obtain fast-rate stochastic regret bounds. We prove that algorithms such as online newton steps and a scale-free 10 version of Bernstein online aggregation achieve best-known rates in unbounded stochastic settings. We apply our approach to calibrate parametric probabilistic forecasters of non-stationary sub-gaussian time series. Our fast-rate stochastic regret bounds are any-time valid. Our proofs combine self-bounded and Poissonnian inequalities for martingales and sub-gaussian random variables, respectively, under a stochastic exp-concavity assumption.
Fichier principal
Vignette du fichier
SOCO.pdf (631.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03125863 , version 1 (29-01-2021)
hal-03125863 , version 2 (26-04-2021)
hal-03125863 , version 3 (25-02-2022)
hal-03125863 , version 4 (31-03-2023)

Identifiants

Citer

Olivier Wintenberger. Stochastic Online Convex Optimization. Application to probabilistic time series forecasting. 2023. ⟨hal-03125863v4⟩
166 Consultations
237 Téléchargements

Altmetric

Partager

More