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ABSTRACT

We introduce a general framework of stochastic online convex optimization to obtain fast-rate
stochastic regret bounds. We prove that algorithms such as online newton steps and a scale-free 10
version of Bernstein online aggregation achieve best-known rates in unbounded stochastic settings.
We apply our approach to calibrate parametric probabilistic forecasters of non-stationary sub-gaussian
time series. Our fast-rate stochastic regret bounds are any-time valid. Our proofs combine self-
bounded and Poissonnian inequalities for martingales and sub-gaussian random variables, respectively,
under a stochastic exp-concavity assumption.

Keywords Sequential learning; Stochastic online optimization; Time series prediction; Probabilistic forecasting.

1 Introduction

We introduce a stochastic version of the Online Convex Optimization (OCO) analysis of Zinkevich (2003) to calibrate
sequential parametric forecasters and measure their performances in stochastic environments. Let K be a convex body
of Rd, i.e. a convex, compact set with a non-empty interior, and `t, t ≥ 1, be loss functions from K to R. In Stochastic
Online Convex Optimization (SOCO) analysis the loss functions `t are random elements. We consider a filtration (Ft)
of non-decreasing σ-algebras such that the sequential learning algorithm predictions (xt+1) and the losses (`t) are
Ft-adapted. We measure the performances of the sequentialalgorithm with the stochastic regret

RegretT = sup
x∈K

{ T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x)
}
, T ≥ 1 , (1)

where Lt(xt) is the conditional risk Lt(xt) = E[`t(xt) | Ft−1], t ≥ 1. Since the stochastic regret is random, we focus
on any-time valid deviation rates such that, with high probability, it holds

RegretT ≤ O(
√
T ) or O(log T ) or O((log log T )2) , for all T ≥ 1 .

The stochastic regret coincides with the one of OCO

sup
x∈K

{ T∑
t=1

`t(xt)−
T∑
t=1

`t(x)
}

if the distributions of the loss functions `t are Dirac masses for every t ≥ 0. Thus SOCO analysis encompasses the
classical deterministic OCO analysis.

However, the two analyses differ in various ways. First, the stochastic environment can improve the convex properties
of the optimization problem; The conditional risk functions often have better convex properties than the loss functions.
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Second, the competitors in stochastic and deterministic regret bounds are not the same; The conditional risks can
measure the calibration of parametric probabilistic forecasters to the conditional distributions of the environment. Third,
it is likely that the maximum of the deviations of the random loss functions around the conditional risks increase with
the number of iterations. The sequential algorithms should be robust to these deviations.

We use the SOCO analysis to prove that some parametric forecasters are robust to sub-gaussian stochastic environments
when calibrated sequentially. Our first main result in Section 3 states that the calibration using the Online Newton Step
(ONS) algorithm achieves a O(log T ) stochastic regret bound for any conditionally sub-gaussian sequence of random
losses. The fundamental assumption is a stochastic exp-concavity condition (H2) that holds for non-convex losses
and unbounded gradients. The proof uses a self-normalized martingale inequality, and a Poissonnian inequality valid
for conditional sub-gaussian gradients as in Condition (H3). Our study gives insights why the use of second-order
gradient algorithms such as ONS yields a fast-rate calibration; ONS implicitly minimizes a surrogate loss involving
second-order terms.

Then we extend the deterministic expert aggregation analysis introducing the Stochastic Online Aggregation (SOA)
analysis. In SOA, the experts are stochastic predictors adapted to the filtration Ft−1, and the aggregation algorithm
competes with the best predictor. The best existing regret bounds achieve optimal rates O(log log T + E) in any
stochastic environment bounded by E > 0. However, E being the maximum of stochastic deviations, it usually
increases as O(

√
log(T )) and deteriorates the rate in a sub-gaussian environment.

Our second result is a stochastic regret bound with rateO((log log T )2) achieved by a scale-free version of the algorithm
Bernstein Online Aggregation (BOA); We tune the multiple learning rates such that the weights are insensitive to the
multiplication of the losses by a scalar. This property is crucial in the proof to deal with stochastic losses and the
obtained regret bound improves the existing ones in some unbounded stochastic settings.

In Section 5 we show that we can use the SOCO analysis to calibrate parametric probabilistic forecasters. We consider
gaussian probabilistic forecasters of time series and logarithmic losses such that the conditional risk functions coincide
with the Kullback-Leibler (KL) divergence. We interpret the stochastic regrets bounds as cumulative KL bounds relative
to a static optimal forecaster.

We verify the condition (H2) on parametric gaussian forecasters of a time series (yt). Then we apply SOCO to
parametric forecasters using AR-ARCH modeling to predict the conditional expectations and variances. Even though
the corresponding logarithmic loss functions are not convex, the conditional risk functions are still locally stochastically
exp-concave. Thus we can combine ONS and BOA algorithms to sequentially calibrate the parameters of the gaussian
probabilsitic forecasters. We provide fast-rate non-asymptotic theoretical guarantees for such parametric probabilistic
forecasters.

The stochastic regret bound (1) is obtained using Ville (1939)’s inequality and is any-time valid. Any-time valid
sequential inference have been recently applied with success in Henzi and Ziegel (2022); Shafer et al. (2021); Waudby-
Smith and Ramdas (2020) to many statistical problems such as testing, comparing forecasters and designing confidence
sequences. We refer to the textbook Shafer and Vovk (2019) and the survey paper Ramdas et al. (2022) for an exhaustive
overview. Sequentially calibrated non-parametric probabilistic forecasters are developed in Chapter 12 of Shafer and
Vovk (2019) with a O(

√
T ) regret bound in any bounded stochastic environment. Faster O(log T ) regret bounds for

parametric prediction of deterministic individual sequences are presented in Cesa-Bianchi and Lugosi (2006); Hazan
(2016) under exp-concavity assumptions.

For independent and identically distributed (iid) loss functions `t, Hazan (2016); Mahdavi et al. (2015) proved that
Online Gradient Descent (OGD) and ONS algorithms satisfy stochastic regret bounds of order O(

√
T ) and O(log T ),

respectively. Expert aggregation calibrated by Squint and BOA achieves a O(log log T ) stochastic regret bound under
the so-called Bernstein condition in the stationary bounded setting, see Koolen et al. (2016) and Wintenberger (2017),
respectively. These results have been improved by a careful tuning of the learning rate in Mhammedi et al. (2019);
Orseau and Hutter (2021). All existing stochastic regret bounds have a linear dependence in the maximum of the
deviations of the loss functions. They all use a fast-rate "online to batch" conversion to turn deterministic regret bounds
into stochastic ones, see Mehta (2017). We adopt a different approach introducing surrogate losses and achieving results
far beyond the iid environment.

Sequential learning naturally applies to time series as recursive algorithms update their predictions when observing
new data over time. However, regret bounds with high probability are rare due to the data’s temporal dependence that
prevents the use of standard exponential inequalities. For stationary β− or φ−mixing time series, Agarwal and Duchi
(2012) obtained fast-rate regret bounds for the unconditional risk function E[`t]. Anava et al. (2013) obtained fast-rate
regret bounds for the ONS algorithm risk for ARMA (Auto-Regressive Moving-Average) models. Their notion of
stochastic regret does not coincide with ours.

2
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We obtain fast-rate sequential calibration combining optimization (ONS) and aggregation (BOA). Our strategy shares
similarities with existing algorithms developed by Giraud et al. (2015); ?. Such algorithms achive fast-rate of stochastic
regret bound in some stationary environments (Koolen et al., 2016). The algorithm developed by Adjakossa et al.
(2020) aggregates Kalman recursions in non-stationary well-specified settings only. Finally, sequential algorithms
for estimating the volatilities or aggregating probability forecasters have been recently developed by Werge and
Wintenberger (2022) and Thorey et al. (2017), V’yugin and Trunov (2019), respectively.

2 Preliminaries and assumptions

We use the notation 0 = (0, . . . , 0)T , I1 = (1, . . . , 1)T , and the operations implying vectors are thought componentwise.
In the sequel ‖ · ‖ is the Euclidian norm ‖ · ‖2. We consider a filtration (Ft), t ≥ 0, and F0 = {∅,Ω} by convention.
The proofs of the main results are deferred to Appendix A.

Definition 1 (Stochastic online convex optimization). Consider a convex body K ⊂ Rd and an Ft-adapted sequence
of random loss functions (`t) defined over K. An algorithm predicts xt ∈ K that is Ft−1-measurable and incurs the
random conditional risk Lt(xt) = Et−1[`t(xt)] at each step t ≥ 1. SOCO analyses the rate of the stochastic regret (1)
as a function of T ≥ 1 assuming the risk functions Lt being convex for all t ≥ 1.

The main difference with the classical OCO analysis is the use of the conditional risk functions Lt instead of the loss
functions `t in the regret and the convex assumption. The SOCO setting extends the OCO setting.

Proposition 1. Any OCO problem is a degenerate SOCO problem.

Proof. We consider that `t has a degenerate distribution δ{`t}, the Dirac mass at `t. It is a SOCO problem equipped
with the natural filtration is Ft = {∅,Ω}, t ≥ 1, and Lt = `t.

The conditional distribution of the random loss function `t may depend adversarially on xt, . . . , x1 ∈ Ft−1, and, as in
OCO, a boundedness assumption on K is necessary to obtain regret bounds.

(H1) The diameter of K is D < ∞ so that ‖x − y‖ ≤ D, x, y ∈ K, and the loss functions `t are continuously
differentiable over K a.s. with integrable gradients.

Under (H1) and if the loss functions (`t) are convex the optimal rate is O(
√
T ) for OCO and thus for SOCO problems

by an application of Proposition 1. This optimal rate is satisfied in SOCO problems even if the loss functions (`t)
are not convex but the risk functions (Lt) are. See Appendix B.2 for the case of the OGD when the gradients
∇`t are a.s. bounded byG > 0. To obtain fast-rate o(

√
T ) stochastic regret bounds, we assume stochastic exp-concavity.

(H2) The random loss functions `t, t ≥ 1, are stochastically exp-concave if for some α ≥ 0:

Lt(y) ≤ Lt(x) +∇Lt(y)T (y − x)− α

2
Et−1[(∇`t(y)T (y − x))2] , x, y ∈ K , a.s., t ≥ 1 .

Condition (H2) with α = 0 coincides with the convexity assumption on Lt, t ≥ 1. Also (H2) with α ≥ 0 does not
imply the convexity of `t, t ≥ 1. In the iid setting, stochastic exp-concavity has been studied by Koolen et al. (2016),
making explicit a condition introduced in Rigollet et al. (2008). Condition (H2) was used by Gaillard and Wintenberger
(2018) over the unit `1-ball and it implies the Bernstein condition of ? introduced for convex losses. In the deterministic
setting, an application of Lemma 4.3 of Hazan (2016) shows that Condition (H2) with α = 1/2(µ ∧ 1/(GD)) follows
from the µ-exp-concavity of the loss functions.

Proposition 2. Assume the loss functions are twice continuously differentiable. Then Condition (H2) implies

αEt−1[∇`t(x)∇`t(x)T ] � ∇2Lt(x), x ∈ K , a.s., t ≥ 1 . (2)

On the opposite, if Lt is µ-strongly convex and there exists g > 0 such that

Et−1[∇`t(x)∇`t(x)T ] � g2Id , x ∈ K , a.s., t ≥ 1 , (3)

then Condition (H2) holds with α = µ/g2.

Proof. Inequalities (2) and (3) follow easily from a second-order Taylor expansion of Lt.

3
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We verify Condition (H2) when calibrating parametric gaussian probabilistic forecasters in Section 5. Under exp-
concavity assumptions, the optimal rate is O(log T ) in OCO (Hazan, 2016) and thus in SOCO. In stochastic environ-
ments the constant α > 0 depends on the conditional distributions of the losses and is unknown in practice.

We consider unbounded sug-gaussian gradients introducing the Orlicz function ψ2(x) = exp(x2) − 1 , x ∈ R.
Conditional sub-gaussian random variables are such as the Orlicz norm

‖Yt‖ψ2,t = inf{c > 0 ; Et−1[ψ2(Yt/c)] ≤ 1 a.s.}

is bounded by a constant for every t ≥ 1. This norm is not precise enough for our purpose. We require a slightly more
explicit condition involving two constants. Our assumption is a conditional version of the Bernstein condition, also
related to the notion of Bernstein-Orlicz norm of van de Geer and Lederer (2013).

(H3) The gradients ∇`t(xt), t ≥ 1, satisfy for Gψ2
, G2 > 0, and all k ≥ 1, t ≥ 1, x ∈ K,

Et−1[(∇`t(xt)T (xt − x))2k] ≤ k!(Gψ2D)2(k−1)Et−1[(∇`t(xt)T (xt − x))2] a.s.,

Et−1[‖∇`t(xt)‖2k] ≤ k!G
2(k−1)
ψ2

Et−1[‖∇`t(xt)‖2] a.s.,

Et−1[‖∇`t(xt)‖2] ≤ G2
2 a.s.

If the gradients∇`t(xt), t ≥ 1, verify the condition (H3) then they are conditionally sub-gaussian.

Proposition 3. Assume that the gradient ∇`t(xt) satisfies Condition (H3): then ‖∇`t(xt)‖ is conditionally sub-
gaussian with

max
t≥1
‖∇`t(xt)‖ψ2,t ≤ 2(Gψ2

∨G2)2 , t ≥ 1 , a.s.

Proof. Denote Y = ‖∇`t(xt)‖. We have

E[exp(Y 2/K)] ≤ 1 +

∞∑
k=1

E[Y 2k]

k!Kk
≤ 1 +

∞∑
k=1

G
2(k−1)
ψ2

G2
2

Kk
≤ 2

for K = 2(Gψ2
∨G2)2. We conclude by definition of the Orlicz’ norm.

Condition (H3) is satisfied in every bounded cases ‖∇`t(xt)‖2 ≤ G2, t ≥ 1, with Gψ2
= G2 = G, Thus our

sub-gaussian stochastic setting encompasses the classical bounded deterministic one. Condition (H3) is also verified for
unbounded gaussian gradients with second-order conditional moments bounded by the constant G2 > 0. Condition
(H3) is independent of the conditional risks∇Lt(xt) = Et−1[∇`t(xt)], t ≥ 1, and it does not interfere with Condition
(H2).
Proposition 4. Assume that the gradient∇`t(xt) is normally distributed given Ft−1. Then Condition (H3) is satisfied
if Et−1[‖∇`t(xt)‖2] ≤ G2

2 a.s., t ≥ 1, and then Gψ2
= 8.5G2 .

3 ONS achieves fast-rate stochastic regrets

3.1 Surrogate losses

We base our approach on an observed surrogate loss that upper-bounds the stochastic regret using an exponential
inequality for martingales from Bercu and Touati (2008) on unbounded gradients∇`t, t ≥ 1.

Proposition 5. Under (H1) and (H2), for any predictable sequence (xt) and deterministic x in K, it holds with
probability 1− δ, 0 < δ ≤ 1,

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
T∑
t=1

∇`t(xt)T (xt − x) +
λ

2

T∑
t=1

(∇`t(xt)T (xt − x))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2] +
2

λ
log(δ−1) λ > 0, T ≥ 1.

4
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When the distributions of `t are degenerate the upper bound in Proposition 1 becomes

T∑
t=1

∇`t(xt)T (xt − x) +
2λ− α

2

T∑
t=1

(∇`t(xt)T (xt − x))2 +
2

λ
log(δ−1) .

Since the result is valid with probability 1, the last term disappears letting δ ↑ 1. Forthcoming results, any-time valid
with a high probability in a stochastic environment, are surely valid in deterministic environments when suppressing the
dependence in δ.

Following ?, we interpret

˜̀
t(xt) = ∇`t(xt)T (xt − x) +

λ

2
(∇`t(xt)T (xt − x))2 , t ≥ 1 ,

as a surrogate loss. The quadratic term in addition to the gradient term is necessary to upper-bound the unobserved
conditional risk with high probability. In stochastic environments, algorithms should minimize the cumulative surrogate
loss

∑T
t=1
˜̀
t rather than the cumulative loss

∑T
t=1 `t. Under Condition (H2) with α > 0, this additional quadratic term

is counterbalanced by the compensator
∑T
t=1 Et−1[(· · · )2] when λ < α/2. The Poissonnian inequality of Proposition

6 relates both quadratic terms.

3.2 The stochastic regret analysis of ONS

The cumulative surrogate losses
∑T
t=1
˜̀
t is implicitly minimized in the ONS’s regret analysis of Hazan (2016). Then

the ONS algorithm achieves a fast stochastic regret bound.

Algorithm 1: Online Newton Step (Hazan and Kale, 2011)
Parameter: γ > 0.
Initialization: Initial prediction x1 ∈ K and A0 = 1

(γD)2 Id.
Predict: xt
Incur: Lt(xt)
Observe: ∇`t(xt) ∈ Rd
Recursion: Update

At = At−1 +∇`t(xt)∇`t(xt)T ,
yt+1 = xt − γ−1A−1

t ∇`t(xt) ,
xt+1 = arg min

x∈K
(x− yt+1)TAt(x− yt+1) , projection step.

Using the Sherman-Morrison formula, each step of ONS has a O(d2 + P )-cost, where P is the cost of the projection
step. If the gradients ∇`t(xt), t ≥ 1, verify the condition (H3) then the square of their Euclidian norm ‖∇`t(xt)‖2
satisfies a Poissonian exponential inequality.
Proposition 6. Under Condition (H3) the gradients ∇`t(xt) satisfy

Et−1[exp(η(‖∇`t(xt)‖2 − E[‖∇`t(xt)‖2]/(1− ηG2
ψ2

))] ≤ 1 , ∀η2 < 1/Gψ2
, t ≥ 1 , a.s.

Proof. Expanding the exponential and using Condition (H3) we obtain

E[exp(ηY 2)] =
∑
k=0

ηkE[Y 2k]

k!
≤ 1 + ηE[Y 2]

(
1 +

∑
k≥2

ηk−1G
2(k−1)
ψ2

)
= 1 +

ηE[Y 2]

1− ηG2
ψ2

≤ exp(ηE[Y 2]/(1− ηG2
ψ2

))

for every ηG2
ψ2
< 1 and the desired result follows.

To control the second-order terms in Proposition 5, we combine the self-bounded martingale and Poissonian inequalities.
We obtain a fast-rate stochastic regret bound for the ONS tuned choosing γ = α/3.

5
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Theorem 7. Under (H1), (H2) and (H3), the ONS algorithm 1 for γ = α/3 satisfies with probability 1 − 3δ the
stochastic regret bound

RegretT ≤
3

2α

(
1 + d log

(
1 +

2α2D2(TG2
2 +G2

ψ2
log(δ−1))

9

))
+
(4α(Gψ2

D)2

9
+

18

α

)
log(δ−1)

valid for every T ≥ 1.

Our result extends fast-rate stochastic regret bounds for ONS far beyond existing results in the iid bounded setting.

4 BOA achieves fast-rate regret bounds in Stochastic Online Aggregation

4.1 Stochastic Online Aggregation

We consider xt = [x
(1)
t , . . . , x

(K)
t ] a d×K matrix whose columns are K different Ft−1-adapted predictors x(i)

t . We
denote x̂t = xtπt =

∑K
i=1 πix

(i)
t their aggregation, with πt in the simplex ΛK = {π ∈ RK ; π > 0,

∑K
i=1 πi = 1}.

Aggregation algorithms combine the predictors with weights πt minimizing the stochastic regret

RegretagT = max
1≤i≤K

{ T∑
t=1

Lt
(
x̂t
)
−

T∑
t=1

Lt
(
x(i)
)}
, T ≥ 1 .

We have under Condition (H2) the relation

Lt(x̂t)− Lt(xtπ) ≤ ∇Lt(xtπt)Txt(πt − π)− α

2
Et−1[(∇`t(xtπt)Txt(π − πt))2] .

We consider the loss functions π → `t(xtπ) over K = ΛK that is stochastically exp-concave with the same constant α
as the original loss functions `t. Applying Proposition 5 under Condition (H2) we obtain

T∑
t=1

Lt(x̂t)− Lt(xtπ) ≤
T∑
t=1

∇`t(xtπt)Txt(πt − π) +
λ

2

T∑
t=1

(∇`t(xtπt)Txt(πt − π))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xtπt)Txt(πt − π))2] +
2

λ
log(δ−1) . (4)

We identify the surrogate losses
(πt − π)T `t + λ/2((πt − π)T `t)

2

with gradients denoted by `t = xTt ∇`t(xtπt). We analyze algorithms minimizing the sum of the surrogate losses in
stochastic environments. We compare the aggregation strategy x̂t to π ∈ {ei, 1 ≤ i ≤ K}, i.e., with the best predictor
x

(i)
t , using the linear losses (πt − π)T `t over K = ΛK . We call this problem, encompassing the deterministic expert

aggregation problem, the Stochastic Online Aggregation (SOA).

4.2 The stochastic regret for the scale-free version of BOA

The version of BOA described in Algorithm 2 is different than the original BOA algorithm in Wintenberger (2017),
because of the specific tuning of the multiple learning rates ηt. The specific ηt provides a self-normalization and the
algorithm is scale-free, i.e., insensitive to a multiplicative factor of the losses.

The factor 2.2 is not arbitrary and is chosen such as a small numeric constant satisfying

exp
(
− y√

1 + 2.2y2
− y2

1 + 2.2y2

)
≤ 1− y√

1 + 2.2y2
, y ∈ R .

This relation is crucial in the proof of Theorem 5 to propagate the self-normalization in a recursive argument. The
coordinate-wise learning rate ηt,i is only well defined after the first non-null observation mi := (`t,i − πTt `t) 6= 0,
1 ≤ i ≤ K. Before that time L̃t,i = L̃t−1,i = · · · = 0 by convention. Contrary to the ONS, and thanks to the adaptive
learning rates, the algorithm BOA is parameter-free as it does not require the knowledge of α, and each step has a
O(K)-cost. We provide a deterministic regret bound valid for any deterministic sequence.

6
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Algorithm 2: Bernstein Online Aggregation (Wintenberger, 2017), scale-free version

Initialization: Initial weights π1 ∈ ΛK and η−2
0 = L̃0 = 0 (∈ RK).

For each step t ≥ 1: the predictors incur the losses `t ∈ RK .
Recursion: Update

η−2
t = η−2

t−1 + 2.2(`t − πTt `t I1)2 ,

L̃t = L̃t−1 + (`t − πTt `t I1) + ηt(`t − πTt `t I1)2 ,

πt+1 =
ηt exp(−ηtL̃t)π1

πT1 (ηt exp(−ηtL̃t))
.

Theorem 8. For every 1 ≤ i ≤ K, the BOA algorithm 2 achieves the deterministic regret bound

T∑
t=1

πTt `t −
T∑
t=1

πTt `t,i ≤

√√√√2.2

T∑
t=1

(πTt `t − `t,i)2
( 1

1.1
+ log(π−1

1,i )

+

K∑
i=1

1{ max
2≤t≤T

xt,i > 1/4
}

log(1 + (MT,i/mi)
2) + log

(
e +

1

2
πT1 log

(
1 + (MT /m)2T

))))
(5)

where xT = ηT−1(`T − πTT `T I1), MT = max2≤t≤T |`t − πTt `t I1| ∈ RK and mi is the first non null observation of
`t,i − πTt `t.

The term
K∑
i=1

1{ max
2≤t≤T

xt,i > 1/4
}

log(1 + (MT,i/mi)
2)

in the regret bound (5) replaces the term ‖MT ‖∞ in the regret bounds of Mhammedi et al. (2019); Orseau and Hutter
(2021). In some unbounded stochastic settings, our regret bound (5) is better for T large. For instance, if we consider
that the first predictor is iid standard gaussian and the other ones are bounded then ‖MT ‖∞ ∼ MT,1 ∼

√
2 log T is

much larger than
∑K
i=1 log(1 + (MT,i/mi)

2) ∼ log log T for T large.

The deterministic regret bound in Theorem 8 is assumption-free. Its first term is the square root of the sum of the
additional quadratic terms in the surrogate losses (4). It may increase at the rate O(

√
T ) but, under condition (H2), it

becomes negligible. We provide a stochastic regret bound for sequential aggregation using BOA.

Theorem 9. Assume Conditions (H1), (H2) and (H3) hold on xTt ∇`t(xtπt) a.s. for all t ≥ 1, 1 ≤ i ≤ K. The
scale-free BOA algorithm 2 with πi ≥ e−K for all 1 ≤ i ≤ K satisfies, with probability 1− 3δ,

RegretagT ≤
3(K + 1)2

α

(
log
(

1 +
2G2

ψ2
log T

m2

))2

+O((log log log T )2) +
(2α

3
(Gψ2D)2 +

6

α

)
log(δ−1) .

for every T ≥ 1, and m > 0 such that P(min1≤i≤K mi ≥ m) ≤ 1− δ.

Aggregation problems are easier than optimization ones and BOA achieves a faster stochastic regret bound than ONS.
This rate O((log log T )2) is suboptimal in the deterministic expert aggregation setting. Condition (H3) implies that the
deterministic gradients are bounded by a constant G > 0, and Condition (H2) implies exp-concavity. Optimal strategies
achieve O(G logK) deterministic regret (Cesa-Bianchi and Lugosi, 2006). Among them Exponentially Weighted
Aggregation, but this algorithm achieves only a O(

√
T ) stochastic regret as shown by Audibert (2007). Best-known

aggregation algorithms in deterministic and unbounded stochastic settings are different. It is an open question to find an
aggregation algorithm optimal in both settings whereas squint and the original version of BOA achieve optimal rates in
bounded deterministic and stochastic settings. The choice of the initial weights π1 being not crucial in the latter setting
we choose implicitely uniform initial weights in the sequel.

7
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4.3 The SOCO analysis to adapt to unknown stochastic exp-concavity constant α > 0

We study an example of BOA-ONS dealing with the adaptation to the best stochastic exp-concavity constant α.
It is crucial for improving the ONS performances in any stochastic environment where, contrary to deterministic
ones, there is no way to determine the optimal α as it depends on the conditional distributions of `t. Consider
x̂t = xtπ =

∑K
i=1 πix

(i)
t the BOA aggregation of K ≥ 1 ONS predictions with different parameters γ(i) with

γ(i) = {2−1, . . . , 2−K}. The resulting BOA-ONS algorithm adapts to the optimal value of α that depends on the
unknown stochastic environment. The algorithm Metagrad of ? is also able to adapt to different rates of convergence.
Corollary 10. Under (H1), (H2) and (H3) with α ≥ 2−K−2, BOA-ONS algorithm satisfies with probability 1− 4δ the
stochastic regret bound

T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x) ≤ 1

α
O(d log(T ) +K2 log log(T )2) +O

(
α(Gψ2

D)2 +
1

α

)
log(δ−1) .

Proof. We combine the stochastic regret bound of Theorem 9 with the inequality (11) choosing − log2(γ) + 1 ≤ i ≤
− log2(γ) + 2 so that α/4 ≤ γ ≤ α/2 for α ≤ 1.

5 BOA-ONS for sequential prediction and probabilistic forecast of time series

5.1 Probabilistic forecasting

Observing a time series (yt), we use the SOCO analysis to calibrate some parametric probabilistic forecasters in the
sense of Chapter 12 of Shafer and Vovk (2019). In our setting sequential algorithms predict xt and parametrize a
probabilistic forecaster Pxt

. Given a scoring rule S, the loss at step t is `t(xt) = S(Pxt
, yt) . The expected score, also

denoted by S in Gneiting and Raftery (2007), is a discrepancy measure between probabilities

S(Pxt
, Pt) = Lt(xt) = Et−1[S(Pxt

, yt)] ,

where Pt denotes the distribution of yt given Ft−1. Condition (H2) holds on the scoring rule S, the parametrization
x 7→ Px and the distribution Pt of the variable of interest yt given Ft−1

S(Py, Pt) ≤ S(Px, Pt) +∇yS(Py, Pt)
T (y − x)− α

2
Et−1[(∇yS(Py, yt)

T (y − x))2] , x, y ∈ K .

If Condition (H2) is satisfied in well-specified settings Pt = Px∗
t
, for any x∗t ∈ K, then S is a proper scoring rule for

the class {Px;x ∈ K} in the sense of Gneiting and Raftery (2007); S(Py, Pt) is minimum when Py = Pt by convexity.
The scoring rule is not necessarily strictly proper since this maximum is not unique when ∇yS(Py, Pt) is null in some
directions y in the neighborhood of x∗t .

We provide examples of time series probabilistic forecasting calibrated using the SOCO analysis by verifying Condition
(H2). We focus on the logarithmic score assuming that Px, Pt admit densities px, pt, x ∈ K, t ≥ 1. We have

Lt(xt) = S(Pxt
, Pt) = −Et−1[log(pxt

(yt))] = KL(Pt, Pxt
)− Et−1[log(pt(yt))]

where KL is the Kullback-Leibler divergence. This scoring rule is strictly proper because S is minimized when
Py = Pt only. It is likely to satisfy the stochastic exp-concavity condition (H2) locally in well-specified settings.

Proposition 11. If Pt is in the exponential family so that its conditional density pt(y) is proportional to eT (y)T x∗
t−`t(x

∗
t )

with sufficient statistic T (y) and some x∗t ∈ K then for the logarithmic score

Et−1[∇`t(x∗t )∇`t(x∗t )T ] = Et−1[∇x∗
t
S(Px∗

t
, yt)

T∇x∗
t
S(Px∗

t
, yt)

T ]

= ∇2
x∗
t
S(Px∗

t
, Px∗

t
) = ∇2Lt(x

∗
t ) ,

and necessarily α ≤ 1 if condition (H2) holds.

Proof. We apply Proposition 2, noticing that the Fisher information identity holds in the well-specified setting.

We use the logarithmic score for calibrating the first and second moments of gaussian forecasters as recommended in
Section 4.4 of Gneiting and Raftery (2007). Giraud et al. (2015) focus on the estimation of mt = Et−1[yt], establishing
fast-rate stochastic regret bounds in expectation.
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Example 1 (Estimation of the conditional expectation). Let Px = N (x, σ2) so that `t(x) = (x − yt)2/(2σ2) (plus
constant). In the OCO analysis, `t is σ2/D2-exp-concave only if yt ∈ K satisfying (H1). This setting requires implicitly
that the distributions Pt areK supported. Unbounded cases yt /∈ K are analyzed by SOCO assuming that the conditional
distribution Pt has mean mt = Et−1[yt] ∈ K and finite conditional variance σ2

t = Var t−1(yt) ≤ σ2 a.s., for some
σ2 > 0 and all t ≥ 1. The losses `t are not exp-concave but still satisfy Condition (H2) with α = σ2/(σ2 + D2);
See Proposition 12 for more details. The well-specified unbounded case Pt = N (x, σ2

t ) satisfied Condition (H2) with
α = σ2/(σ2 +D2) when mt ∈ K and σ2

t ≤ σ2.

We also focus on the estimation of the conditional variance or volatility σ2
t = Var t−1(yt) for gaussian probabilistic

forecasters. Up to our knowledge, stochastic regret bounds for sequential algorithms calibrating the volatility have not
been established yet. However, the concept of volatility is important and required in many applications such as risk
assessment and probabilistic forecasting in finance (McNeil et al., 2015; Shafer and Vovk, 2019). The logarithmic score
is well-suited to measure the performances of volatility estimators as it is robust to extreme values (Patton, 2011).
Example 2 (Estimation of the volatility). Let Px = N (mt, x) then `t(x) = (log(x)+(yt−mt)

2/x)/2 (plus constant)
is convex only if 0 < x ≤ 2(yt −mt)

2. This assumption is unrealistic when yt is concentrated around its conditional
mean mt. Using SOCO, if the conditional distribution Pt has mean mt and volatility σ2

t ∈ K = [cσ2/2, σ2], σ2 > 0,
1 < c < 2, then the risk Lt(x) = (log(x) + σ2

t /x)/2 is strongly convex with µ = (c− 1)/(2σ4). Condition (H2) is
satisfied with α = (c− 1)c42−6 if Et−1[(y2

t − σ2
t )2] ≤ 3σ4; See Proposition 13 for more details.

The stochastic exp-concavity condition is well-preserved for linear multivariate parametrization. Thus the conditional
expectation and the volatility can be expressed as a linear combination of the past observations yt−1, . . . , y1 or their
squares y2

t−1, . . . , y
2
1 . We obtain naturally AR and ARCH estimations for the conditional expectation and the volatility

in Sections 5.2 and 5.3, respectively. Combining both, we obtain the AR-ARCH gaussian forecaster studied in Section
5.4. The parametrization does not preserve the strictly proper property of the logarithmic loss function. Despite the
logarithmic score being strictly proper overall probability measures, it is not for the AR-ARCH models because different
linear combinations of past observations provide the same probabilistic forecaster. Stochastic exp-concavity condition
(H2), more general than strict properness, is crucial.

5.2 Sequential ARMA prediction by BOA-ONS

AutoRegressive Moving Average (ARMA) modeling of the conditional mean is standard in time series analysis. See
Brockwell and Davis (2009) for a reference textbook. We calibrate sequentially, using the SOCO analysis with the
natural filtration Ft = σ(yt, . . . , y1), and the gaussian forecaster N (m̂

(p)
t (x), σ2) for arbitrary σ2 > 0, with clipped

mean
m̂

(p)
t (x) = xT ((yt−1 ∧M/2) ∨ (−M/2), . . . , (yt−p ∧M/2) ∨ (−M/2)), M > 0 ,

and K = B1(1), the `1 unit-ball of dimension p.
Proposition 12. We assume that the distributions Pt of yt given yt−1, . . . , y1, admit densities with means mt satisfying
2|mt| ≤M , volatilities σ2

t ≤ σ2 a.s., M > 0, σ2 > 0, for every t ≥ 1, and satisfy (H3). Then the gaussian forecaster
N (m

(p)
t (x), σ2) calibrated by the ONS algorithm with γ = σ2/(3(σ2 +M2)) achieves the stochastic regret

T∑
t=1

KLt(Pt,N (m̂
(p)
t (xt), σ

2))−
T∑
t=1

KL(Pt,N (m
(p)
t (x), σ2))

≤ O
(σ2 +M2

σ2
p log T +

(σ2 +M2

σ2
+

σ2

σ2 +M2
pG2

ψ2

)
log(δ−1))

)
,

for every T ≥ 1, x ∈ B1(1), and with high probability 1− δ.

To tackle the case of ARMA models with a moving average component, we consider increasing orders p since any
invertible ARMA model admits an AR(∞) representation. For the orders p ∈ {1, . . . ,

√
log T/ log log T}, the ONS

predictors m̂(p)
t (xt) are aggregated with BOA in m̂t. The obtained BOA-ONS algorithm achieves the cumulative

KL-divergence bound

T∑
t=1

KL(Pt,N (m̂t, σ
2)) ≤ min

1≤p≤
√

log T/ log log T
min

x∈B1(1)

{ T∑
t=1

KL(Pt,N (m
(p)
t (x), σ2))

+O
(σ2 +M2

σ2
p log T

)
+O

(σ2 +M2

σ2
+

σ2

σ2 +M2
pG2

ψ2

)
log(δ−1)

)}
, (6)
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refining the bound obtained by Anava et al. (2013). Our bound is valid in every sub-gaussian stochastic adversarial
settings where 2|mt| ≤ D, and the time series (yt) does not have to be bounded as in Anava et al. (2013). Moreover,
our bounds are any-time valid with high probability.

The parameters (M,σ2) should be tuned to find the best compromise in the regret bound (6). However, the task is not
feasible using the SOA analysis because the loss functions depend on these parameters. The solution comes from the
econometrics litterature that provides better loss and risk functions introducing the concept of volatility.

5.3 Sequential ARCH prediction by BOA-ONS

In mathematical finance, the log-ratios (yt) are commonly modeled using Generalized AutoRegressive Conditionally
Heteroscedastic (GARCH) model. Classical inference uses the Quasi-Likelihood approach (Francq and Zakoian, 2019)
as if the conditional distributions were gaussian. If the conditional means mt := E[yt | yt−1, . . . , y1] are null, the
volatilities σ2

t := Var (yt | yt−1, . . . , y1) are finite, t ≥ 1, then the Quasi-Likelihood estimator σ̂2
t of the volatility

minimizes the cumulative KL divergence KL(Pt,N (0, σ̂2
t )) = (log(2πσ̂2

t ) + σ2
t /σ̂

2
t )/2 (plus constant).

We assume that σ2
t ∈ [cσ2/3, σ2], 1 < c < 2, σ2 > 0, and we use a clipped-ARCH(q) model

σ̂
2,(q)
t (x) = cσ2/2 + x1(y2

t−1 ∧ σ2) + · · ·+ xq(y
2
t−q ∧ σ2) , (7)

with x ∈ K = {x ∈ Rq : x ≥ 0 and ‖x‖1 ≤ 1− c/2}.
Proposition 13. We assume that the distributions Pt of yt given yt−1, . . . , y1, admit densities with means mt = 0,
volatilities σ2

t ∈ [cσ2/2, σ2], Et−1[(y2
t − σt)2] ≤ 3σ4, a.s., 1 < c < 2, σ2 > 0 for every t ≥ 1, and satisfy (H3).

Then the gaussian forecaster N (0, σ̂
2,(q)
t (x)) calibrated by the ONS algorithm with γ = 26/(3(c− 1)c4) achieves the

stochastic regret
T∑
t=1

KL(Pt,N (0, σ̂
2,(q)
t (xt)))−

T∑
t=1

KL(Pt,N (0, σ̂
2,(q)
t (x))) ≤ O(q(log T +G2

ψ2
log(δ−1))) ,

for every T ≥ 1, x ∈ K with high probability 1− δ.

Any invertible GARCH model admits an ARCH(∞) representation. Thus we consider ARCH(q) models with increasing
order q. We consider BOA-ONS σ̂2

t aggregating σ̂2,(q)
t (xt), q = 1, . . . ,

√
log T/ log log T so that with high probability

T∑
t=1

KL(Pt,N (0, σ̂2
t )) ≤ min

1≤q≤
√

log T/ log log T
min
x∈K

{ T∑
t=1

KL(Pt,N (0, σ2,(q)(x)))

+ +O(q(log T +G2
ψ2

log(δ−1)))
}
.

We solve positively the question raised in the conclusion of Anava et al. (2013) about the optimization of GARCH
forecasters. The main restriction of our approach is the small range of the volatilities [cσ2/2, σ2], 1 < c < 2. Otherwise,
the risk functions arer not even convex when the volatility σ2

t can be over-estimated by a factor of 2. It is not surprising
since Francq and Zakoïan (2010) showed that the Quasi-Likelihood approach is inconsistent with no lower boundedness
assumption on the volatilities.

5.4 Online gaussian probabilistic forecasting using BOA-ONS

We combine the ARMA and volatility prediction methods. We consider gaussian probabilistic forecaster
N (m̂

(p)
t (x1:p), σ̂

2,(q)
t (xp+1:p+q)) with M2 = σ2 and

x = (x1:p, xp+1:p+q) ∈ K = {x ∈ Rp+q : ‖x1:p‖1 ≤ 1, xp+1:p+q ≥ 0, ‖xp+1:p+q‖1 ≤ 1− c/2}.
Proposition 14. We assume that the distributions Pt of yt given yt−1, . . . , y1, admit densities with means 2|mt| ≤ σ,
volatilities σ2

t ∈ [cσ2/2, σ2], Et−1[(yt−mt)
4] ≤ 3σ4, a.s., 1 < c < 2, σ2 > 0 for every t ≥ 1, and satisfy (H3). Then

the gaussian forecasterN (m̂
(p)
t (x), σ̂

2,(q)
t (x)) calibrated by the ONS algorithm with γ = 3× 25/((c− 1)c4) achieves

the stochastic regret

T∑
t=1

KL(Pt,N (m̂
(p)
t (x1:p), σ̂

2,(q)
t (xp+1:p+q)))−

T∑
t=1

KL(Pt,N (m̂
(p)
t (x1:p), σ̂

2,(q)
t (xp+1:p+q)))

≤ O((p+ q)(log T +G2
ψ2

) log(δ−1))) ,

for every T ≥ 1, x ∈ K with high probability 1− δ.

10
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Aggregating such predictors for 1 ≤ p, q ≤
√

log T/ log log T with BOA, we obtain a gaussian probabilistic forecast
N (m̂t, σ̂

2
t ) satisfying the cumulative KL-divergence bound

T∑
t=1

KL(Pt,N (m̂t, σ̂
2
t )) ≤ min

1≤q,p≤
√

log T/ log log T
min
x∈K

{ T∑
t=1

KL(Pt,N (m̂
(p)
t (x1:p), σ̂

2,(q)
t (xp+1:p+q)))

+O((p+ q)(log T +G2
ψ2

log(δ−1)))
}

with high probability. The sequential algorithms adapt to the random environment even in misspecified settings; It
approximates the parametric gaussian forecaster that is the closest to the unknown conditional distributions for the
cumulative KL divergences and a penalty which increases such as (p+ q) log(T ). Thus the BOA-ONS forecaster regret
minimizes automatically a Bayesian information type criterion at any-time and with high probability. It is comparable
to a model selection procedure that would require to minimize a penalized log-likelihood at each step 1 ≤ t ≤ T . The
computational cost of our recursive method is O(T ((p+ q)2 + P )) with explicit formulae except for the projection
step of computational cost P , whereas the batch model selection has a computational cost O(T (p+ q)M) where M is
the computational cost of the optimization of the likelihood in AR(p)-ARCH(q) models. This cost M is prohibitive
when p+ q is large and the computational gain of our recursive procedure is important.

5.5 Sequential probabilistic forecasting using BOA-ONS

The main drawback of our BOA-ONS approach on gaussian forecasters is the restriction σ2
t ∈ [cσ2/2, σ2], 1 ≤ t ≤ T .

However, because the loss and risk functions depend on this hyperparameter, it is not possible to directly aggregate
volatility estimators with different σ2 > 0 in a gaussian forecaster to extend the range of the volatilities.

To circumvent the issue, we can aggregate the gaussian probabilistic forecasters to obtain a probabilistic forecaster which
is mixed gaussian. Consider P̂t = (P̂

(i)
t )1≤i≤K , K weak probabilistic forecasters with densities p̂t = (p̂

(i)
t )1≤i≤K such

as P̂ (i)
t = N (m̂

(j)
t , σ̂2,`

t ) with different localization, jD +D/
√

2 ≤ m̂(j)
t ≤ (j + 1)D +D/

√
2, for −K1 ≤ j ≤ K2

and σ̂2,`
t ∈ [(c/2)`+1σ2/2, (c/2)`σ2] for 0 ≤ ` ≤ K3. Consider the SOCO analysis of mixtures xT P̂ with K = ΛK

and `t(x) = − log(xT p̂t(yt)). We assume that m ≤ Et−1[1/p̂
(i)
t (yt)

2] ≤ M a.s. for 1 ≤ i ≤ K, t ≥ 1. The risk
function is m-strongly convex and Condition (H2) is satisfied with α = m/M .

Under Condition (H3), we can use the ONS algorithm on the simplex K = ΛK , and we obtain

T∑
t=1

KL(Pt, π
T
t p̂) ≤ min

π∈ΛK

T∑
t=1

KL(Pt, π
T p̂) +O(MK/m(log T + log(δ−1))) .

Similar fast-rate regret bounds were obtained by Thorey et al. (2017) for the CRPS score instead of the KL divergence.
They used the Recursive Least Square algorithm without projection that does not constrain πt to be in ΛK . Contrary to
our procedure, it is difficult to interpret their ensemble probabilistic forecast because they do not satisfy the axioms of a
density function.

6 Numerical illustrations

6.1 Aggregations in stochastic environments

We study the impact of stochastic deviations on the aggregation of predictors for quadratic losses. We consider 100

predictors of yt = 0, t ≥ 1, the first one being negatively biased −
√
t+ σN

(1)
t , the other ones being positively biased√

t + σN
(i)
t , 1 ≤ t ≤ 1000, 2 ≤ i ≤ 100. Here N (i)

t are iid standard gaussian random variables. Any aggregation
half-weighting the first predictor does not suffer from the bias. We run 100 Monte-Carlo experiments of three different
aggregation algorithms; The original version of BOA of Wintenberger (2017)1, the scale-free version of BOA of
Algorithm 2, and the squint algorithm of Koolen et al. (2016). The latter algorithm is not comparable as it uses
beforehand the maximum of the deviations for initializing the algorithm. As expected, its performances compared with
the scale-free version of BOA highly depend on the level of the stochastic deviations, outperforming it when σ = .1;
See Figure 1. The original version of BOA does not manage to learn efficiently the range of small deviations and does

1The multiple tuning of the deviation bounds in the original version of BOA is flawed and replaced by the univariate doubling
trick of ?.
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Figure 1: Boxplots of original BOA (1), scale-free version of BOA (2), and squint (3) for σ = 1 (left), σ = .1 (middle)
and σ = 10 (right).

not outperform the scale-free version of BOA in this case because it also suffer from a small observed minimal loss m.
On the opposite, for large deviations, both BOA versions achieve performances competitive with squint, the scale-freee
BOA outperforming the two other algorithms when σ = 10.

6.2 Quantile prediction of electricity loads

Figure 2: 90%-prediction intervals of the electricity load based on EWA (left) and BOA (right) and the same 5
forecasters.

We illustrate the impact of the SOCO anlysis on quantile predictions for weekly electricity load, data available in the
Opera package developed by Gaillard et al. (2021). The 3 forecasters (GAM, AR, GBM) provided in Opera package
plus 2 constant forecasters, 0 and 1.5 times the maximum of weekly loads, are aggregated to predict the upper and
lower quantile of levels .5 and .95. We use the quantile loss funcion in 2 different sequential aggregation algorithms,
Exponentially Weighted Algorithm (EWA) and BOA, and for the two levels .5 and .95. BOA aggregations provide
accurate quantile predictions because it minimizes cumulative risks in the SOA analysis. It confirms the theoretical
guarantees obtained in the paper since it is likely that the pinball risk is strongly convex (Steinwart and Christmann,
2011). On the contrary EWA aggregations fail to provide accurate quantile predictions because EWA algorithm
minimizes the cumulative losses which are not exp-concave. Such visual validation of the predictions interval is enough
to show the benefit of BOA but does not constitute any evidence of its good calibration. ? analyze the asymptotic
guarantees of a different sequential algorithm predicting quantiles.

6.3 Volatility estimation during the COVID crisis

We apply BOA-ONS for designing 90%-prediction intervals for the S&P500 index during 2020, including the COVID
crisis in March. We use the iid N (0, x) and ARCH(p) gaussian probabilistic forecasters for p = 1, . . . , 5. The
forecasters are tuned sequentially with the ONS algorithm with γ = 1, and K = [c,∞]×B1(1), c = 0 in the iid case,
and c = 10−16 in the ARCH cases. These 6 predictors of the volatility are then aggregated with BOA; See Figure 6.3. We
notice that the iid forecast prediction interval is constant after some training period. The ARCH forecasts are required to
predict intervals accurately during the crisis. BOA aggregations converge to weights (0.01, 0.17, 0.09, 0.37, 0.21, 0.15)
and improve the calibration of ARCH forecasters. A slightly more advanced sequentially calibrated volatility estimator

12
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developed by Werge and Wintenberger (2022) has been used in the forecast task of the M6 financial competition by ?.
Its RPS performances rank 5th out of 163 competitors, showing that such sequential calibration o is competitive in
probabilistic forecasting.

Figure 3: 90%-prediction intervals from 6 forecasters (left) and their BOA aggregation (right).

7 Conclusion and future works

In this paper, we derive fast-rate stochastic regret bounds for the ONS and BOA algorithms under stochastic exp-
concavity. We alleviate the convexity assumption on the loss functions to calibrate sequentially parametric probabilistic
forecasting using the logarithmic score. We achieve fast-rate stochastic regret bounds. Thus, BOA-ONS can adaptively
and efficiently calibrate gaussian probabilistic forecasters for any conditionally sub-gaussian non-stationary time series.
Our stochastic regret bounds are relative to a static prediction parametrized by x ∈ K for every t ≥ 1. When forecasting
non-stationary time series, we should also consider competitors that evolve through time. Key Propositions 5 and 6
extend readily to such settings called tracking optimization problems. Thus, one would like to develop SOCO and
algorithms in more dynamic settings. A first step in that direction is made in Haddouche et al. (2023) using optimistic
sequential algorithms.
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A Proofs of the main results

A.1 Proof of Proposition 4

We first show that ∥∥∥ ∇`t(xt)T (xt − x)√
Et−1[(∇`t(xt)T (xt − x))2]

∥∥∥
ψ2

≤
√

8/3 + (1/ log 2)2 = Kψ2 ≈ 2.179 .

Then we derive

Et−1[(∇`t(xt)T (xt − x))2k]

Et−1[K2
ψ2

(∇`t(xt)T (xt − x))2]k
≤ k!Et−1

[
ψ2

( ∇`t(xt)T (xt − x)√
Et−1[K2

ψ2
(∇`t(xt)T (xt − x))2]

)]
≤ 2k! .

Using Cauchy-Svhwarz inequality we derive that Et−1[(∇`t(xt)T (xt − x))2] ≤ Et−1[‖∇`t(xt)‖2]D2 ≤ G2
2D

2 and

Et−1[(∇`t(xt)T (xt − x))2k] ≤ k!2K2k
ψ2
Et−1[(∇`t(xt)T (xt − x))2]k

≤ k!2K2k
ψ2

(G2D)2(k−1)Et−1[(∇`t(xt)T (xt − x))2] .

Then we fix Gψ2
= 2K2

ψ2
G2 so that Condition (H3) follows. Let us denote µt and σt the mean and the variance of the

conditionally gaussian random variable. Then, N being standard gaussian distributed, we use the homogeneity and
triangular inequality on the norm ‖ · ‖ψ2 to derive∥∥∥ ∇`t(xt)T (xt − x)√

Et−1[(∇`t(xt)T (xt − x))2]

∥∥∥
ψ2

=
∥∥∥ σtN + µt√

Et−1[(σtN + µt)2]

∥∥∥
ψ2

≤ σt‖N‖ψ2
+ ‖µt‖ψ2√

σ2
t + µ2

t

=
σt
√

8/3 + µt/ log 2√
σ2
t + µ2

t

and the desired results follows from Cauchy-Schwartz inequality.

A.2 Proof of Proposition 5

Denoting Yt = ∇`t(xt)T (xt − x), we observe that under (H2) it holds

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
T∑
t=1

Et−1[Yt]−
α

2
Et−1[Y 2

t ]. (8)

Moreover, from Lemma B.1 of Bercu and Touati (2008) for any random variable Yt and any η ∈ R we have

Et−1

[
exp(η(Yt − Et−1[Yt])−

η2

2
(Et−1[Y 2

t ]− Et−1[Yt]
2 + (Yt − Et−1[Yt])

2))
]
≤ 1 .

Developing the square, we obtain

Et−1

[
exp(η(Yt − Et−1[Yt])−

η2

2
(Et−1[Y 2

t ] + Y 2
t ) + η2Et−1[Yt]Yt

]
≤ 1 .
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Using Young’s inequality together with Jensen’s one, we derive

Et−1[Yt]Yt ≥ −(Et−1[Yt]
2 + Y 2

t )/2 ≥ −(Et−1[Y 2
t ] + Y 2

t )/2

and the exponential inequality

Et−1[exp(η(Yt − Et−1[Yt])− η2(Et−1[Y 2
t ] + Y 2

t )] ≤ 1 .

We obtain the desired result applying a classical martingale argument due to Ville (1939) and Freedman (1975) and
recalled in Appendix B.1. Indeed, using the notation of Appendix B.1 with Zt = η(Yt−Et−1[Yt])−η2(Et−1[Y 2

t ]+Y 2
t ),

we have
P(∃T ≥ 1 : MT > δ−1) ≤ δ , 0 < δ < 1 ,

where MT = exp(
∑T
t=1 Zt). Considering η = −λ/2 for any λ > 0, it holds with probability 1− δ for any T ≥ 1

T∑
t=1

(
− λ

2
(Yt − Et−1[Yt])−

λ2

4
(Et−1[Y 2

t ] + Y 2
t )
)
≤ log(δ−1)

⇔
T∑
t=1

Et−1[Yt] ≤
T∑
t=1

Yt +
λ

2
(Et−1[Y 2

t ] + Y 2
t ) +

2

λ
log(δ−1)

which, combines with (8), yields the desired result.

A.3 Proof of Theorem 7

From the proof of the ONS regret bound in Hazan (2016), we obtain from the expression of the recursive steps (and not
using the convexity of the loss)

T∑
t=1

∇`t(xt)T (xt − x) ≤ γ

2

T∑
t=1

(∇`t(xt)T (xt − x))2 +
1

2γ
log(det(AT )/ det(A0)) +

1

2γ
.

Plugging this inequality into the previous bound we obtain
T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤λ+ γ

2

T∑
t=1

(∇`t(xt)T (xt − x))2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2]

+
1

2γ
log(det(AT )/det(A0)) +

1

2γ
+

2

λ
log(δ−1) .

Then we apply the Poissonian exponential inequality from Proposition 6 on the second-order terms. More precisely,
denoting 0 ≤ Yt = (∇`t(xt)T (xt − x))2/(2(Gψ2D)2), we obtain

Et−1[exp(Yt − 2Et−1[Yt])] ≤ 1 . (9)

Combined with the argument due to Freedman (1975) recalled in Appendix B.1 we derive

P
(
∃T ≥ 1 :

T∑
t=1

Yt − 2

T∑
t=1

Et−1[Yt] > log(δ−1)
)
≤ δ , 0 < δ < 1. (10)

Thus an union bound provides
T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤3λ+ 2γ − α
2

T∑
t=1

Et−1[(∇`t(xt)T (xt − x))2]

+
1

2γ
log(det(AT )/det(A0)) +

1

2γ
+ ((λ+ γ)(Gψ2

D)2 +
2

λ
) log(δ−1) .

Choosing 3λ = α− 2γ > 0 since γ < α/2 we conclude
T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ 1

2γ
log(det(AT )/det(A0)) +

1

2γ
+
(α+ γ

3
(Gψ2

D)2 +
6

α− 2γ

)
log(δ−1) . (11)
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From the initialization A0 =
1

(γD)2
Id, we obtain bound

log(det(AT )/ det(A0)) ≤ d log
(

1 + (γD)2
T∑
t=1

‖∇`t(xt)‖2
)
.

We apply the Poissonian exponential inequality from Propostion 6 on the second-order terms 0 ≤ Yt =
‖∇`t(xt)‖2/(2G2

ψ2
) and, combined with the argument due to Freedman (1975) and Condition (H3) ensuring

Et−1[Yt] ≤ G2
2/(2G

2
ψ2

), we obtain

P
(
∃T ≥ 1 :

T∑
t=1

Yt − TG2
2/G

2
ψ2
> log(δ−1)

)
≤ δ , 0 < δ < 1.

We derive that, with probability 1− δ, it holds

log(det(AT )/ det(A0)) ≤ d log
(
1 + 2(γD)2(TG2

2 +Gψ2
log(δ−1))

)
, T ≥ 1 .

The desired result follows from the specific choice of γ and a union bound.

A.4 Proof of Theorem 8

We keep the same notation and convention as in Section 4.2. In particular, inequalities involving vectors are coordinate-
wise. With no loss of generality we assume that η1,i 6= 0 for all 1 ≤ i ≤ K. To prove the regret bound (5) we will show
that

πT1 exp(−ηT L̃T ) ≤ exp
( K∑
i=1

1{ max
2≤t≤T

xt,i > 1/4
}

log(1 + (η1,iMT,i)
2)
)(

e +
1

2
πT1 log

(
I1 + (η1MT )2T

))
︸ ︷︷ ︸

=:AT

.

(12)
From (12) we derive

−ηT L̃T = ηT

( T∑
t=1

(πTt `t I1− `t)−
T∑
t=1

ηt−1(πTt `t I1− `t)
2
)
≤ log(π−1

1 AT )

so that
T∑
t=1

πTt `t I1 ≤
T∑
t=1

`t +

T∑
t=1

ηt−1(πTt `t I1− `t)
2 +

log(π−1
1 )

ηT
+

log(AT )

ηT
.

Since η−2
t = η−2

t−1 + 2.2(`t − πTt `t I1)2 we obtain by rearranging the sum

T∑
t=1

ηt−1(πTt `t I1− `t)
2 =

1

2.2

T∑
t=1

ηt−1(η−2
t − η−2

t−1) ≤ 1

2.2

( T∑
t=1

ηt−1 − ηt
η2
t

+
1

ηT

)
.

Thus we derive from a comparison sum-integral

T∑
t=1

ηt−1 − ηt
η2
t

≤ 1

ηT
=⇒

T∑
t=1

ηt−1(πTt `t I1− `t)
2 ≤ 1

1.1ηT
.

The learning rate satisfying the relation

1/1.1 + log(π−1
1 ) + log(AT )

ηT
≤ (1/1.1 + log(π−1

1 ) + log(AT ))

√√√√2.2

T∑
t=1

(πTt `t I1− `t)2 ,

and the regret bound (5) follows from the expression of log(AT ).

It remains to prove the exponential inequality (12). We use the identity

exp(−ηT L̃T ) = exp(ηT (πTT `T I1− `T )− η2
T (`T − πTT `T I1)2) exp(−ηT L̃T−1) .
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To initiate the recursion, we use the basic inequality x ≤ xα + e−1(α − 1)/α for x ≥ 0 and α ≥ 1 with x =

exp(−ηT L̃T−1) and α = ηT−1/ηT so that

exp(−ηT L̃T−1) ≤ exp(−ηT−1L̃T−1) + e−1 ηT−1 − ηT
ηT−1

.

We obtain

exp(−ηT L̃T ) ≤ exp(ηT (πTT `T I1− `T )− η2
T (`T − πTT `T I1)2)

(
exp(−ηT−1L̃T−1) + e−1 ηT−1 − ηT

ηT−1

)
, .

Then we use the expression
ηT =

ηT−1√
1 + 2.2η2

T−1(`T − πTT `T I1)2

and the notation xT = ηT−1(`T − πTT `T I1) to derive

exp(−ηT L̃T ) ≤ exp
(
− xT√

1 + 2.2x2
T

− x2
T

1 + 2.2x2
T

)(
exp(−ηT−1L̃T−1) +

ηT−1 − ηT
ηT−1

)
.

We use different bounds over the function ϕ : y ∈ R 7→ exp
(
− y√

1 + 2.2y2
− y2

1 + 2.2y2

)
:

ϕ(y) ≤ e/2, ϕ(y) ≤ 1 − y√
1 + 2.2y2

for any y ∈ R and ϕ(y) ≤ 1 − y if y ≤ 1/4. Distinguishing whether xT is

larger or not than 1/4, we deduce

exp(−ηT L̃T ) ≤( I1− ηT−1(`T − πTT `T I1)) exp(−ηT−1L̃T−1) I1{xT ≤ 1/4}

+ ( I1− ηT (`T − πTT `T I1)) exp(−ηT−1L̃T−1) I1{xT > 1/4}+ 1/2
ηT−1 − ηT
ηT−1

.

Using the relations ηT−1/ηT ≥ I1 and 1− y√
1 + y2

> 0, y ∈ R we upper bound the second term by

ηT−1

ηT
( I1− ηT (`T − πTT `T I1)) exp(−ηT−1L̃T−1) I1{xT > 1/4}

=
(ηT−1

ηT
− ηT−1(`T − πTT `T I1)) exp(−ηT−1L̃T−1) I1{xT > 1/4} .

Combining it with the previous bound we achieve

exp(−ηT L̃T ) ≤
(ηT−1

ηT

) I1{xT>1/4}
exp(−ηT−1L̃T−1)

− ηT−1(`T − πTT `T I1) exp(−ηT−1L̃T−1) + 1/2
ηT−1 − ηT
ηT−1

.

The second inequality is obtained . We have

πT1 exp(−ηT L̃T ) ≤
∥∥∥(ηT−1

ηT

) I1{xT>1/4}∥∥∥
∞
πT1 exp(−ηT−1L̃T−1)

−
(
π1ηT−1 exp(−ηT−1L̃T−1)

)T
(`T − πTT `T I1) + 1/2πT1

ηT−1 − ηT
ηT−1

.

We recognize the weights

π1ηT−1 exp(−ηT−1L̃T−1) = πT
(
πT1 ηT−1 exp(−ηT−1L̃T−1)

)
and the second term in the upper bound is proportional to πTT (`T − πTT `T I1) = 0 and thus vanishes. We obtain

πT1 exp(−ηT L̃T ) ≤
∥∥∥(ηT−1

ηT

) I1{xT>1/4}∥∥∥
∞
πT1 exp(−ηT−1L̃T−1) + 1/2πT1

ηT−1 − ηT
ηT

and a recursive argument yields

πT1 exp(−ηT L̃T ) ≤ exp
( T∑
t=2

∥∥∥ log
(ηt−1

ηt

)
I1{xt > 1/4}

∥∥∥
∞

)(
πT1 exp

(
− η1L̃1

)
+ 1/2

T∑
t=2

πT1
ηT−1 − ηT
ηT−1

)
.
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We bound the exponent term such as
T∑
t=2

∥∥∥ log
(ηt−1

ηt

)
I1{xt > 1/4}

∥∥∥
∞
≤

K∑
i=1

T∑
t=2

log
(ηt−1,i

ηt,i

)
I1{xt,i > 1/4}

≤
K∑
i=1

1
{

max
2≤t≤T

xt,i > 1/4
}( T∑

t=2

log
(ηt−1,i

ηt,i

)
I1{xt,i > 1/4}

)
≤

K∑
i=1

1
{

max
2≤t≤T

xt,i > 1/4
}(

log
( η1,i

ηT−1,i

)
+ log

(ηT−1,i

ηT,i

))
assuming with no loss of generality that if max2≤t≤T xt,i > 1/4 then it happens for the last iterate xT,i = ηT−1,i`T,i >

1/4. Notice also that xT,i > 1/4 implies that η−1
T−1,i ≤MT,i/4. Combined with

ηT−1,i

ηT,i
=
√

1 + 2.2η2
T−1,i(`T,i − πTT `T )2 ≤

√
1 + 2.2η2

1,iM
2
T,i ,

we obtain
T∑
t=2

∥∥∥ log
(ηt−1

ηt

)
I1{xt > 1/4}

∥∥∥
∞
≤

K∑
i=1

1
{

max
2≤t≤T

xt,i > 1/4
}(

log(η1,iMT,i/4) +
1

2
log
(
1 + 2.2η2

1,iM
2
T,i

))
≤

K∑
i=1

1
{

max
2≤t≤T

xt,i > 1/4
}

log
(

1 + η2
1,iM

2
T,i

)
.

We have exp(−η1L̃1) ≤ exp( I1) using the relation |η1L̃1| = I1 and the comparison sum-integral
T∑
t=2

ηt−1 − ηt
ηt−1

≤ log(η1/ηT ) =
1

2
log
(

I1 + (η1MT )2T
)

we achieve (12).

A.5 Proof of Theorem 9

From the regret bound (5), keeping the notation of (12) and applying Young’s inequality, we infer that for any η > 0
T∑
t=1

πTt `t −
T∑
t=1

`t,i ≤
η

2

T∑
t=1

(πTt `t − `t,i)
2 +

(1/1.1 + log(π−1
1 ) + log(AT ))2

2η
.

Plugging this bound into (4) and identifying `t = xTt ∇`t(xtπt) and x̂t = xtπt we obtain
T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤λ+ η

2

T∑
t=1

∇`t(x̂t)T (x̂t − x(i)
t )2

+
λ− α

2

T∑
t=1

Et−1[(∇`t(x̂t)T (x̂t − x(i)
t )2]

+
(1/1.1 + log(π−1

1 ) + log(AT ))2

2η
+

2

λ
log(δ−1) .

Applying once again the Poissonian inequality (10), using that the diameter of the simplex satisfies is less than 1, we
derive that with probability 1− δ

T∑
t=1

(∇`t(x̂t)T (x̂t − x(i)
t )2 ≤ 2

T∑
t=1

Et−1[(∇`t(x̂t)T (x̂t − x(i)
t )2] + 2(Gψ2

D)2 log(δ−1) .

Then we obtain
T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤3λ+ 2η − α

2

T∑
t=1

Et−1[(∇`t(x̂t)T (x̂t − x(i)
t )2]

+
(1/1.1 + log(π−1

1 ) + log(AT ))2

2η
+
(

(λ+ η)(Gψ2
D)2 +

2

λ

)
log(δ−1) .
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Thus choosing λ = η = α/3 and introducing ∇`t(x̂t) for bounding roughly log(AT ), we obtain

T∑
t=1

Lt(x̂t)−
T∑
t=1

Lt(x
(i)
t ) ≤ 3

α

(
K log

(
1 +

max1≤t≤T ‖∇`t(x̂t)‖2

m2

)
+ log

(
e + log

(
1 +

max1≤t≤T ‖∇`t(x̂t)‖2

m2
T
))

+ 1/1.1 + log(π−1
1 )
)2

+
(2α

3
(Gψ2

D)2 +
6

α

)
log(δ−1) .

From the proof Proposition 6 on the second-order terms 0 ≤ Yt = ‖∇`t(x̂t)‖2/(2G2
ψ2

) we obtain

Et−1[exp(Yt)] ≤ 1 + 2Et−1[Y 2
t ] ≤ 1 + (G2/Gψ2)2 .

Thus, for any x > 0 we have

P
(

max
1≤t≤T

Yt > x
)
≤ E[exp(maxYt)] exp(−x) ≤

T∑
t=1

E[exp(Yt)] exp(−x) ≤ T (1 + (G2/Gψ2)2) exp(−x)

and with probability 1− δ it holds

max
1≤t≤T

Yt ≤ log(T ) + log(1 + (G2/Gψ2)2) + log(δ−1) .

Finally, we obtain the desired result using a union bound.

A.6 Proof of Proposition 12

We denote
yMt−1,t−p = ((yt−1 ∧M/2) ∨ (−M/2), . . . , (yt−p ∧M/2) ∨ (−M/2)) ∈ Rp.

Let Px = N (m̂
(p)
t (x), σ2) then `t(x) = (yt − m̂(p)

t (x))2/(2σ2) (plus constant) and

Et−1[∇`t(x)∇`t(x)T ] =
Et−1[(yt − m̂(p)

t (x))2]

σ4
yMt−1,t−p(y

M
t−1,t−p)

T ,

Et−1[∇2`t(x)] =
1

σ2
yMt−1,t−p(y

M
t−1,t−p)

T .

Because the second derivatives do not depend on x a Taylor expansion provides

Lt(y) = Lt(x) +∇Lt(y)T (y − x)− 1

σ2
(y − x)T yMt−1,t−p(y

M
t−1,t−p)

T (y − x)

= Lt(x) +∇Lt(y)T (y − x)− 1

σ2
(m̂

(p)
t (y)− m̂(p)

t (x))2

≤ Lt(x) +∇Lt(y)T (y − x)− Et−1[(yt − m̂(p)
t (x))2]

σ2(σ2 +M2)
(m̂

(p)
t (y)− m̂(p)

t (x))2

≤ Lt(x) +∇Lt(y)T (y − x)− σ2

σ2 +M2
(y − x)TEt−1[∇`t(x)∇`t(x)T ](y − x) .

The first inequality comes from the relations

Et−1[(yt − m̂(p)
t (x))2] = Et−1[(yt −mt)

2] + (mt − m̂(p)
t (x))2 ≤ σ2 +M2 .

Thus Condition (H2) is satisfied with α = σ2/(σ2 +M2).

Applying Theorem 7, the ONS achieves the stochastic regret against every x ∈ B1(1) (satisfying ‖x‖ ≤ √p)

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ O
(σ2 +M2

σ2
p log T +

(σ2 +M2

σ2
+

σ2

σ2 +M2
pG2

ψ2

)
log(δ−1))

)
with high probability. Since the risk satisfies the relation

Lt(x) =
1

2

(
log(2π) + log(σ2) +

(mt − m̂(p)
t (x))2 + σ2

t

σ2

)
= KL(Pt,N (m

(p)
t (x), σ2)) + cst. ,

we obtain the desired result.
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A.7 Proof of Proposition 13

We denote
y2,σ
t−1,t−q = (y2

t−1 ∧ σ2, . . . , y2
t−q ∧ σ2) ∈ Rq.

Let Px = N (0, σ̂
2,(q)
t (x)) then `t(x) = (log(σ̂

2,(q)
t (x)) + y2

t /σ̂
2,(q)
t (x))/2 and

Et−1[∇`t(x)∇`t(x)T ] =
Et−1[(y2

t − σ̂
2,(q)
t (x))2]

2
(
σ̂

2,(q)
t (x)

)4 y2,σ
t−1,t−q(y

2,σ
t−1,t−q)

T ,

Et−1[∇2`t(x)] =
2σ2

t − σ̂
2,(q)
t (x)

2
(
σ̂

2,(q)
t (x)

)3 y2,σ
t−1,t−q(y

2,σ
t−1,t−q)

T .

Because 1/2 ≤ σ2
t /σ̂

2,(q)
t (x) ≤ 2 under our assumptions, the second derivatives are decreasing in σ̂2,(q)

t (x) and thus

Et−1[∇2`t(x)] � 2σ2
t − σ2

2σ6 y2,σ
t−1,t−q(y

2,σ
t−1,t−q)

T � c− 1

2σ4 y
2,σ
t−1,t−q(y

2,σ
t−1,t−q)

T .

Combining this lower bound with a Taylor expansion, we obtain

Lt(y) ≤ Lt(x) +∇Lt(y)T (y − x)− c− 1

2σ4 (y − x)T y2,σ
t−1,t−q(y

2,σ
t−1,t−q)

T (y − x)

≤ Lt(x) +∇Lt(y)T (y − x)− (c− 1)Et−1[(y2
t − σ̂

2,(q)
t (x))2]

2σ4(3σ4 + σ4)
(σ̂

2,(q)
t (y)− σ̂2,(q)

t (x))2

≤ Lt(x) +∇Lt(y)T (y − x)− (c− 1)(cσ2/2)4

4σ8 (y − x)TEt−1[∇`t(x)∇`t(x)T ](y − x) .

The second inequality comes from the relations

Et−1[(y2
t − σ̂

2,(q)
t (x))2] = Et−1[(y2

t − σ2
t )2] + (σ2

t − σ̂
2,(q)
t (x))2 ≤ 3σ4 + σ2 .

Thus Condition (H2) is satisfied with α = (c− 1)c42−6.

Applying Theorem 7, the ONS achieves the stochastic regret with high probability against every x ∈ K (satisfying
‖x‖ ≤ √q)

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ O(q log T + (1 + qG2
ψ2

) log(δ−1)).

We conclude the proof by identifying the KL divergence with Lt up to additive constants.

Proof of Proposition 13

We use similar arguments than in the proofs of Propositions 12 and 13, keeping the same notation with

`t(x) =
1

2

(
log(σ̂

2,(q)
t (xp+1:p+q)) +

(yt − m̂(p)
t (x1:p))

2

σ̂
2,(q)
t (xp+1:p+q)

)
.

Adapting previous computations, we similarly obtain a lower bound on the second derivatives

Et−1[∇2`t(x)] � c− 1

2σ4

(
yMt−1,t−p, y

2,σ
t−1,t−q

)(
yMt−1,t−p, y

2,σ
t−1,t−q

)T
.

We can also upper bound the first derivatives to obtain

Et−1[∇`t(x)∇`t(x)T ] � 24

2(cσ2)4
Et−1[(σ̂

2,(q)
t − (yt − m̂(p)

t (x1:p))
2)2]
(
yMt−1,t−p, y

2,σ
t−1,t−q

)(
yMt−1,t−p, y

2,σ
t−1,t−q

)T
.

Under our assumptions, we roughly estimate

Et−1[(σ̂
2,(q)
t − (yt − m̂(p)

t (x1:p))
2)2] ≤ 2

((
σ̂

2,(q)
t

)2
+ Et−1

[
(yt − m̂(p)

t (x1:p))
4
])

≤ 2
(
σ4 + 2

(
Et−1

[
(yt −mt)

4
]

+ Et−1

[
(mt − m̂(p)

t (x1:p))
4
]))

≤ 18σ4 .

21



A PREPRINT - MARCH 28, 2023

Thus Condition (H2) is satisfied with α = (c− 1)c43−22−5.

Applying Theorem 7, the ONS achieves the stochastic regret with high probability against every x ∈ K (satisfying
‖x‖ ≤ D =

√
p+ q)

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤ O((p+ q) log T + (1 + (p+ q)G2
ψ2

) log(δ−1)).

We conclude the proof by identifying the KL divergence with Lt up to additive constants.

B Auxiliary results

B.1 The stopping time argument of Ville (1939) and Freedman (1975)

We recall the argument of Ville (1939) and Freedman (1975) as we apply it several times in the proofs of the
paper. Consider MT = exp(

∑T
t=1 Zt) for any Zt adapted to a filtration Ft and satisfying the exponential inequality

E[exp(Zt) | Ft−1] ≤ 1. Then we have

P
(
∃T ≥ 1 :

T∑
t=1

Zt > log(δ−1)
)
≤ δ

for any 0 < δ < 1 by applying the following lemma.
Lemma 15. If Mt is adapted to Ft, M0 = 1 a.s. and E[Mt | Ft−1] ≤ Mt−1 a.s., t ≥ 1, then, for any 0 < δ < 1, it
holds

P(∃T ≥ 1 : MT > δ−1) ≤ δ .

Proof. We apply the optional stopping theorem with Markov’s inequality defining the stopping time τ = inf{t > 1 :
Mt > δ−1} so that

P(∃t ≥ 1 : Mt > δ−1) = P(Mτ > δ−1) ≤ E[Mτ ]δ ≤ E[M0]δ ≤ δ .

B.2 SOCO analysis of the OGD algorithm

In this section we work under (H1) and (H2) with α = 0. Proposition 5 holds, λ > 0 = α and the compensator term in
Proposition 5 is positive. In this section we assume that the gradients are bounded by G <∞. A slow rate stochastic
regret bound O(GD

√
T ) is expected and the surrogate loss in Proposition 5 is useless. The classical Online Gradient

Descent (OGD) of Zinkevich (2003)

xt+1 = arg min
x∈K

∥∥∥x− D

G
√
t
∇ `t(xt)

∥∥∥ starting from x0 ∈ K ,

satisfies the following linearized regret bound in any SOCO problem, see the proof in Hazan (2016) that does not use
any convex assumption,

T∑
t=1

∇`t(xt)T (xt − x) ≤ 3

2
DG
√
T .

Under (H1) we easily bound a.s. both extra quadratic terms in Proposition 5 with the same quantity λ/2G2D2T .
Choosing λ =

√
2 log(δ−1)/(GD

√
T ) we immediately obtain a new slow rate stochastic regret bound for the OGD

valid in any SOCO problem:
Theorem 16. Assume that (H1) holds and that supx∈K ‖∇`t(x)‖ ≤ G a.s., t ≥ 1. The OGD algorithm satisfies with
probability 1− δ the stochastic regret bound

T∑
t=1

Lt(xt)−
T∑
t=1

Lt(x) ≤
(3

2
+ 2
√

2 log(δ−1)
)
DG
√
T

valid for any T ≥ 1 and any x ∈ K.

This simple extension of the usual iid setting to any stochastic adversarial setting could be obtained by classical
arguments such as Azuma’s inequality used in Chapter 9 of Hazan (2016). It relies on the martingale

∑T
t=1(∇Lt(xt)−

∇`t(xt))T (xt − x∗) and the gradient trick on Lt to remove the assumption of convexity on the losses `t.
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