Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks

Résumé

In this article, we develop a Triplet Markov Tree model with auxiliary random variables for an approximate inference in an intractable probabilistic model. It is based on recent advances on probabilistic modeling and varational inference with auxiliary random variables. The new Triplet Markov Tree model performs better than the classical Mean-Field variational inference and than a tree-structured variational inference. Our study provides insights and motivations for the developing workaround models involving auxiliary random variables.
Fichier principal
Vignette du fichier
stmt_smtda_2020.pdf (427.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03122810 , version 1 (30-01-2023)

Identifiants

  • HAL Id : hal-03122810 , version 1

Citer

Hugo Gangloff, Jean-Baptiste Courbot, Emmanuel Monfrini, Christophe Collet. Spatial Triplet Markov Trees for auxiliary variational inference in Spatial Bayes Networks. SMTDA 2020: 6th international conference on Stochastic Modeling Techniques and Data Analysis, Jun 2020, Barcelone (online), Spain. pp.237-249. ⟨hal-03122810⟩
61 Consultations
19 Téléchargements

Partager

More