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Bayesian Networks: main definitions

� Also known as acyclic Directed Graphical Models (DGM)
� Let G = (S, E) be a directed graph:

� Directed edges link parents vertices P(s) and son vertice s ∈ S
� Vertices without any parent are root vertices (denoted r)

� Random variables associated to each vertice
� Define local conditional probabilities p(xr ) or p(xs |xxxP(s))
→ They define joint distribution on G:

p(xxx) =
∏

r∈roots

p(xr )
∏

s∈S\roots

p(xs |xxxP(s)) (1)
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Inference basics

Inference tasks:
� compute marginals p(xs)
� compute conditionals p(xs |xxxp(s))

� compute a mode of the distribution
(e.g. Maximum A Posteriori (MAP): x̂xx = argmaxxxxp(xxx),

Maximum Posterior Modes (MPM): x̂s = argmaxxsp(xs))

↓

Direct computations in Bayes Networks:
� Forward Backward (Stratonovich 1965) / Belief Propagation

(Pearl 1982)
Approximate computations in general DGM:

� Loopy Belief Propagation (Weiss 2000)
� MCMC: Gibbs sampling (Geman et al. 1984)
� Variational Inference (Jordan et al. 1999)
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Bayesian Networks: popularity
Hidden Markov Models (Baum et al. 1966) (Dymarski 2011)
Bayesian Networks with latent XXX and observed variables YYY . Widely
known for:

� Stock index forecasting (Gorynin et al. 2017)
� Speech processing (Toda 2011)
� Gene prediction (Stanke et al. 2006)

Hidden Markov Chain with Independent Noise:

p(xxx ,yyy) = p(xr )
∏
s∈S̄

p(xs |xs−1)
∏
s∈S

p(ys |xs) (2)

xs−1 xs xs+1

ys−1 ys ys+1

Hidden Markov Chain (direct computations)
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The probabilistic models
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Markov Tree (MT) Bayesian Networks
Vertices (except roots) have one
parent.
MT joint distribution (Monfrini et al.
2003):

p(xxx) = p(xr )
∏
s∈S̄

p(xs |xs−). (3) Dyadic MT (3 layers)
(direct computations)

� Dyadic tree: 1 root and 2 sons/vertice (except last layer).
� Quadtree: 1 root and 4 sons/vertice (except last layer).

Exact inference dyadic/quad trees:
� Upward-Downward (Durand et al. 2004) (principled approach

to get the marginals in dyadic MT).

p(xs) =
∑
xs−

p(xs−)p(xs |xs−). (4)
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Spatial Bayesian Networks (SBN)

A SBN is a Bayesian network with joint distribution (this paper):

p(xxx) =p(xr )
∏
s∈S̄

p(xs |xs− , xv(s)), (5)

v associates a father’s neighbour: not a Markov Tree!
The spatial context is modeled but the numerous loops makes
inference complex and approximate.

SBN (based on a dyadic tree) with 4 layers
(approximate computations)
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Spatial Triplet Markov Tree Bayesian Networks
In STMT, TTT = (XXX ,VVV ) and VVV auxiliary process (this paper) and
(Courbot et al. 2018).
TTT is a Markov Tree with joint distribution:

p(ttt) = p(tttr )
∏
s∈S̄

p(ttts |ttts−), (6)

with tststs a triplet (xs , v←s , v→s )

such that:

p(ttts |ttts−) = p(xs |xs− ,vvv s−)p(v←s |xs− ,vvv s−)p(v→s |xs− ,vvv s−). (7)

The transitions are specially designed to model the spatial context.

STMT (Markov property)
(direct computations)

STMT (all edges)
(direct computations)
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Sampling from the models
Test the ability to capture spatial context by clamped sampling
from Markov Random Field (MRF) realizations

Average different
rate from MRF

→ 0.142

→ 0.072

→ 0.068

� SBN and STMT seem to capture the spatial context
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Variational Inference
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The method

VI recasts inference into a maximization problem (Jordan et al.
1999):

−KL(q(xxx)||p(xxx)) = Eq[log p(xxx)]− Eq[log q(xxx)], (8)

where:
� p is the target distribution (SBN here)
� q is the variational distribution (structured or not)

Extended to integrate auxiliary variables (Agakov et al. 2004)

−KL(q(xxx ,vvv)||p̃(xxx ,vvv)) = Eq[log p̃(xxx ,vvv)]− Eq[log q(xxx ,vvv)],

= Eq[log p̃(xxx)] + Eq[log p̃(vvv |xxx)]− Eq[log q(xxx ,vvv)].

(9)

p̃ is extended with auxiliary variables (with condition: p̃(xxx) = p(xxx))
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A small SBN example I
� Target distribution:

Let xxx = (a, a←, a→, b, c, d , e, f , g),
p(xxx) has a SBN factorization

aa← a→

b c

d e f g

(approximate
computations)

� Variational approximation:

Markov Tree (MT) approximation:

qMT (xxx) = q(xr )
∏
s∈S̄

q(xs |xs−). (10)

→ qMT is MT structured

aa← a→

b c

d e f g

MT approximation
(direct computations)
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b c

d e f g
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(direct computations)
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A small SBN example II
� Target distribution:

aa← a→

bb← b→ cc← c→

dd← d→ ee← e→ ff← f→ gg← g→

(approximate computations)
p̃(xxx ,vvv) is a SBN with auxialiary variables (and p̃(xxx) = p(xxx))

� Variational approximation:

STMT approximation:

qSTMT (ttt) = q(tttr )
∏
s∈S̄

q(ttts |ttts−)

(11)
→ qSTMT is STMT structured

aa← a→

bb← b→ cc← c→

dd← d→ ee← e→ ff← f→ gg← g→

STMT approximation
(direct computations)
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Small network example: model proximity

→ Dispersions of errors for true marginals esti-
mation (1000 trials)

aa← a→

b c

d e f g

SBN

� Error dispersion : MF VI > MT VI > STMT VI
� STMT seems to best capture the enhanced correlations of

SBN
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Conclusion & Perspectives
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Conclusion & Perspectives

Conclusions:
� 2 new tree-structured models with rich correlations
� Importance of the triplet structure for exact approaches in

more complex networks.
� Auxiliary variables in probabilistic models can be an efficient

asset if the model is well-thought!
Perspectives:

� Analytical comparison STMT/SBN
� Extend the work to quadtrees for image processing
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