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Bayesian Networks: main definitions

� Also known as acyclic Directed Graphical Models (DGM)
� Let G = (S, E) be a directed graph:

� Directed edges link parents vertices P(s) and son vertice s ∈ S
� Vertices without any parent are root vertices (denoted r)

� Random variables associated to each vertice
� Define local conditional probabilities p(xr ) or p(xs |xxxP(s))
→ They define joint distribution on G:

p(xxx) =
∏

r∈roots

p(xr )
∏

s∈S\roots

p(xs |xxxP(s)) (1)
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Inference basics

Inference tasks:
� compute marginals p(xs)
� compute conditionals p(xs |xxxp(s))

� compute a mode of the distribution
(e.g. Maximum A Posteriori (MAP): x̂xx = argmaxxxxp(xxx),

Maximum Posterior Modes (MPM): x̂s = argmaxxsp(xs))

↓

Direct computations in Bayes Networks:
� Forward Backward (Stratonovich 1965) / Belief Propagation

(Pearl 1982)
Approximate computations in general DGM:

� Loopy Belief Propagation (Weiss 2000)
� MCMC: Gibbs sampling (Geman et al. 1984)
� Variational Inference (Jordan et al. 1999)
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Bayesian Networks: popularity
Hidden Markov Models (Baum et al. 1966) (Dymarski 2011)
Bayesian Networks with latent XXX and observed variables YYY . Widely
known for:

� Stock index forecasting (Gorynin et al. 2017)
� Speech processing (Toda 2011)
� Gene prediction (Stanke et al. 2006)

Hidden Markov Chain with Independent Noise:

p(xxx ,yyy) = p(xr )
∏
s∈S̄

p(xs |xs−1)
∏
s∈S

p(ys |xs) (2)

xs−1 xs xs+1

ys−1 ys ys+1

Hidden Markov Chain (direct computations)
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The probabilistic models
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Markov Tree (MT) Bayesian Networks
Vertices (except roots) have one
parent.
MT joint distribution (Monfrini et al.
2003):

p(xxx) = p(xr )
∏
s∈S̄

p(xs |xs−). (3) Dyadic MT (3 layers)
(direct computations)

� Dyadic tree: 1 root and 2 sons/vertice (except last layer).
� Quadtree: 1 root and 4 sons/vertice (except last layer).

Exact inference dyadic/quad trees:
� Upward-Downward (Durand et al. 2004) (principled approach

to get the marginals in dyadic MT).

p(xs) =
∑
xs−

p(xs−)p(xs |xs−). (4)
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Spatial Bayesian Networks (SBN)

A SBN is a Bayesian network with joint distribution (this paper):

p(xxx) =p(xr )
∏
s∈S̄

p(xs |xs− , xv(s)), (5)

v associates a father’s neighbour: not a Markov Tree!
The spatial context is modeled but the numerous loops makes
inference complex and approximate.

SBN (based on a dyadic tree) with 4 layers
(approximate computations)
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Spatial Triplet Markov Tree Bayesian Networks
In STMT, TTT = (XXX ,VVV ) and VVV auxiliary process (this paper) and
(Courbot et al. 2018).
TTT is a Markov Tree with joint distribution:

p(ttt) = p(tttr )
∏
s∈S̄

p(ttts |ttts−), (6)

with tststs a triplet (xs , v←s , v→s )

such that:

p(ttts |ttts−) = p(xs |xs− ,vvv s−)p(v←s |xs− ,vvv s−)p(v→s |xs− ,vvv s−). (7)

The transitions are specially designed to model the spatial context.

STMT (Markov property)
(direct computations)

STMT (all edges)
(direct computations)
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Sampling from the models
Test the ability to capture spatial context by clamped sampling
from Markov Random Field (MRF) realizations

Average different
rate from MRF

→ 0.142

→ 0.072

→ 0.068

� SBN and STMT seem to capture the spatial context
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Variational Inference
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The method

VI recasts inference into a maximization problem (Jordan et al.
1999):

−KL(q(xxx)||p(xxx)) = Eq[log p(xxx)]− Eq[log q(xxx)], (8)

where:
� p is the target distribution (SBN here)
� q is the variational distribution (structured or not)

Extended to integrate auxiliary variables (Agakov et al. 2004)

−KL(q(xxx ,vvv)||p̃(xxx ,vvv)) = Eq[log p̃(xxx ,vvv)]− Eq[log q(xxx ,vvv)],

= Eq[log p̃(xxx)] + Eq[log p̃(vvv |xxx)]− Eq[log q(xxx ,vvv)].

(9)

p̃ is extended with auxiliary variables (with condition: p̃(xxx) = p(xxx))
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A small SBN example I
� Target distribution:

Let xxx = (a, a←, a→, b, c, d , e, f , g),
p(xxx) has a SBN factorization

aa← a→

b c

d e f g

(approximate
computations)

� Variational approximation:

Markov Tree (MT) approximation:

qMT (xxx) = q(xr )
∏
s∈S̄

q(xs |xs−). (10)

→ qMT is MT structured

aa← a→

b c

d e f g

MT approximation
(direct computations)
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b c

d e f g
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(direct computations)
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A small SBN example II
� Target distribution:

aa← a→

bb← b→ cc← c→

dd← d→ ee← e→ ff← f→ gg← g→

(approximate computations)
p̃(xxx ,vvv) is a SBN with auxialiary variables (and p̃(xxx) = p(xxx))

� Variational approximation:

STMT approximation:

qSTMT (ttt) = q(tttr )
∏
s∈S̄

q(ttts |ttts−)

(11)
→ qSTMT is STMT structured

aa← a→

bb← b→ cc← c→

dd← d→ ee← e→ ff← f→ gg← g→

STMT approximation
(direct computations)
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Small network example: model proximity

→ Dispersions of errors for true marginals esti-
mation (1000 trials)

aa← a→

b c

d e f g

SBN

� Error dispersion : MF VI > MT VI > STMT VI
� STMT seems to best capture the enhanced correlations of

SBN
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Conclusion & Perspectives

17/18



Conclusion & Perspectives

Conclusions:
� 2 new tree-structured models with rich correlations
� Importance of the triplet structure for exact approaches in

more complex networks.
� Auxiliary variables in probabilistic models can be an efficient

asset if the model is well-thought!
Perspectives:

� Analytical comparison STMT/SBN
� Extend the work to quadtrees for image processing

18/18



References I

[1] Felix V Agakov and David Barber. “An auxiliary variational method”. In: International
Conference on Neural Information Processing. Springer. 2004, pp. 561–566.

[2] Leonard E Baum and Ted Petrie. “Statistical inference for probabilistic functions of finite state
Markov chains”. In: The annals of mathematical statistics 37.6 (1966), pp. 1554–1563.

[3] Jean-Baptiste Courbot et al. “Triplet markov trees for image segmentation”. In: SSP 2018:
IEEE Workshop on Statistical Signal Processing. 2018, pp. 233–237.

[4] J-B Durand, Paulo Goncalves, and Yann Guédon. “Computational methods for hidden Markov
tree models-An application to wavelet trees”. In: IEEE Transactions on Signal Processing 52.9
(2004), pp. 2551–2560.

[5] Przemyslaw Dymarski. Hidden Markov Models: Theory and Applications. IntechOpen, 2011.

[6] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images”. In: IEEE Transactions on pattern analysis and machine
intelligence 6 (1984), pp. 721–741.

[7] Ivan Gorynin, Emmanuel Monfrini, and Wojciech Pieczynski. “Pairwise Markov models for
stock index forecasting”. In: 25th European Signal Processing Conference (EUSIPCO). IEEE.
2017, pp. 2041–2045.

[8] Michael I Jordan et al. “An introduction to variational methods for graphical models”. In:
Machine learning 37.2 (1999), pp. 183–233.

[9] E Monfrini et al. “Image and signal restoration using pairwise Markov trees”. In: IEEE
Workshop on Statistical Signal Processing, 2003. IEEE. 2003, pp. 174–177.

[10] Judea Pearl. “Reverend bayes on inference engines: a distributed hierarchical approach”. In:
Proceedings of the Second AAAI Conference on Artificial Intelligence. 1982, pp. 133–136.

1/1



References II

[11] Mario Stanke et al. “Gene prediction in eukaryotes with a generalized hidden Markov model
that uses hints from external sources”. In: BMC bioinformatics 7.1 (2006), p. 62.

[12] Ruslan Leont’evich Stratonovich. “Conditional markov processes”. In: Non-linear
transformations of stochastic processes. Elsevier, 1965, pp. 427–453.

[13] Tomoki Toda. “Modeling of speech parameter sequence considering global variance for
HMM-based speech synthesis”. In: Hidden Markov Models, Theory and Applications. InTech,
2011, pp. 131–150.

[14] Yair Weiss. “Correctness of local probability propagation in graphical models with loops”. In:
Neural computation 12.1 (2000), pp. 1–41.

2/1


	Introduction
	The probabilistic models
	Markov Tree network
	Spatial Bayes Network
	STMT network

	Variational Inference
	The method
	Several VIs on a small example
	Experimental results

	Conclusion & Perspectives
	Appendix

