Quasi-regularity verification for 2D polygonal objects based on medial axis analysis
Résumé
Quasi-regularity has been proved to be a sufficient condition for simple-connectedness preservation during the digitization process of 2D continuous objects. The original definition of quasi-regularity relies on set-based morphological operations of erosion and dilation. With this definition, quasi-regularity is algorithmically difficult to assess. In this paper, we propose a tractable framework for quasi-regularity verification, especially designed for polygons. Our approach mainly relies on the computation and analysis of the medial axis of these objects, and determines their potential quasi-regularity, and thus their ability to undergo a digitization without alteration of their topological properties. The framework is applied in the context of topology-preserving rigid motions of digital objects.
Fichier principal
Ngo_ICIP_2021.pdf (4.47 Mo)
Télécharger le fichier
Ngo_ICIP_2021_Poster.pdf (3.49 Mo)
Télécharger le fichier
Ngo_ICIP_2021_Slides.pdf (3.69 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|