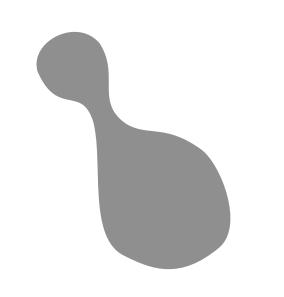
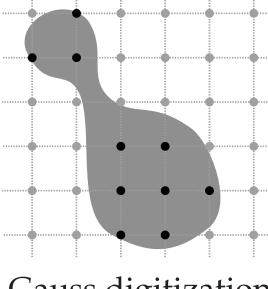


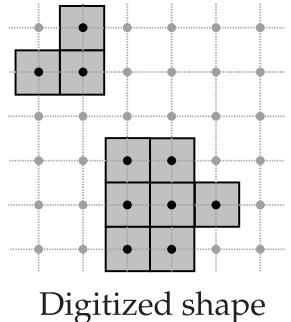
QUASI-REGULARITY VERIFICATION FOR 2D POLYGONAL OBJECTS BASED ON MEDIAL AXIS ANALYSIS

1. MOTIVATIONS

- 1. Topological preservation by digitization process
 - ✓ Class of quasi-1-regular objects for connectivity preservation
 - ✓ Exact method for verifying quasi-1-regularity of polygonal objects using medial axis





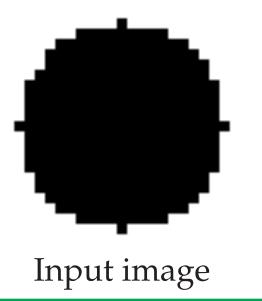


Continuous shape

Gauss digitization

2. Rigid motion in discrete space of \mathbb{Z}^2 : topological and geometrical properties of the transformed objects

 \checkmark framework of rigid motion using polygonal representation of digital object for the topological and geometrical preservation



Transformed image

2. BACKGROUND NOTIONS

- 1. *Gauss digitization:* Let $X \subset \mathbb{R}^n$, $n \ge 2$. The Gauss digitization is defined as the intersection of X with \mathbb{Z}^n : $X = X \cap \mathbb{Z}^d$.
- 2. Well-composed sets [1]: A digital set $X \subset \mathbb{Z}^2$ is well-composed if each 8-connected component of X and of its complement \overline{X} is also 4connected.
- 3. *r*-regularity [2]: A finite and connected subset $X \subset \mathbb{R}^2$ is *r*-regular if for each boundary point of X, there exist two tangent open balls of radius r, lying entirely in X and its complement \overline{X} , respectively.
- 4. Medial axis [3]: Let $X \subset \mathbb{R}^2$ be a closed, bounded set whose boundary ∂X of X is a 1-manifold. The medial axis of X is defined as: $\mathcal{M}(X) = \{x \in X \mid \nexists y \in X, B(x, r(x)) \subset B(z, r(z))\},\$ with $B(y, r(y)) \subseteq X$ the ball of center z and radius $r(z) \in \mathbb{R}_+$.

7. CONCLUSION

Contributions:

- Method for verifying quasi-1-regularity of polygonal objects using medial axis
- Framework of rigid motion in \mathbb{Z}^2 for preserving both topology and geometry

Perspectives:

- Polygonization methods for digital objects
- Repairing non-quasi-regular objects using medial axis
- Multi-resolution approaches for the limit case of quasi-1-regularity
- Extension of the proposed method in 3D

PHUC NGO – NICOLAS PASSAT – YUKIKO KENMOCHI hoai-diem-phuc.ngo@loria.fr

3. *r*-regularity

Definition (in mathematical morphology): Let $X \subset \mathbb{R}^2$ be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies the following four properties:

- (*i*) $X \ominus B_r$ is non-empty and connected
- (*ii*) $\overline{\mathbf{X}} \ominus B_r$ is connected
- $(iii) X \subseteq X \ominus B_r \oplus B_r$
- $(iv) \ \overline{\mathbf{X}} \subseteq \overline{\mathbf{X}} \ominus B_r \oplus B_r$

where $\overline{X} = \mathbb{R}^2 \setminus X$; \oplus , \ominus are the dilation and erosion operators; and $B_t \subset \mathbb{R}^2$ is the Euclidean ball of centre $0_{\mathbb{R}^2}$ and radius t.

Polygonal objects are not *r*-regular for any r > 0.

Proposition [2]: An *r*-regular set $X \subset \mathbb{R}^2$ has the same topological structure as its digitized version $X = X \cap \mathbb{Z}^2$ if $r \geq \frac{\sqrt{2}}{2}$.

5. Verification of quasi-1-regularity

We define the level medial axis as:

 $\mathcal{M}_{\lambda}(\mathbf{X}) = \{ x \in \mathcal{M}(\mathbf{X}) \mid r(x) \ge \lambda \}$ $\mathcal{M}_{\lambda_1}^{\lambda_2}(\mathbf{X}) = \{ x \in \mathcal{M}(\mathbf{X}) \mid \lambda_1 \le r(x) \le \lambda_2 \}$

Let $Y \in {X, \overline{X}}$ and $M \subseteq \mathcal{M}_0^1(Y)$ a connected co nent of $\mathcal{M}_0^1(Y)$. *M* contains *k* points, noted z_i (1) k) with $r(z_i) = 0$ and a point y with r(y) = 1. Let $(\mathcal{P}): \forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$. We have $(\mathcal{P}) \Rightarrow \bigcup B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$

We denote $X \frown Y$ if X and Y are homotopy equivalent.

6. Application: Rigid motions on \mathbb{Z}^2

A rigid motion is defined for any $\boldsymbol{x} = (x, y) \in \mathbb{R}^2$, as

$$\mathcal{T}(\boldsymbol{x}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

where $a, b \in \mathbb{R}$ and $\theta \in [0, 2\pi]$.

Proposed method: Rigid motion on \mathbb{Z}^2 via polygonization: • polygonal representation for the overall digital shape

- preservation by the transformation
- quasi-1-regularity for topology preservation
- exact calculation considering rational rigid motions

REFERENCES

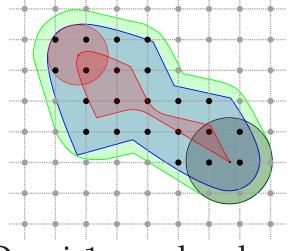
- [3] H. Blum. A transformation for extracting new descriptors of shape. In *Models for the Perception of Speech and Visual Form*, pages 362–380. MIT Press, Cambridge, 1967.

4. QUASI-*r*-REGULARITY

Definition: Let $X \subset \mathbb{R}^2$ be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies: (*i*) $X \ominus B_r$ is non-empty and connected

- (*ii*) $\overline{\mathbf{X}} \ominus B_r$ is connected
- (*iii*) $\mathbf{X} \subseteq \mathbf{X} \ominus B_r \oplus B_{r\sqrt{2}}$
- $(iv) \ \overline{\mathbf{X}} \subseteq \overline{\mathbf{X}} \ominus B_r \oplus B_{r\sqrt{2}}$

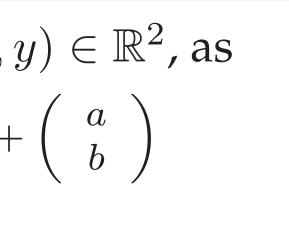
Proposition: Let $X \subset \mathbb{R}^2$ be a bounded, simply connected object. If X is quasi-1-regular, then $X = X \cap \mathbb{Z}^2$ and $\overline{X} = \overline{X} \cap \mathbb{Z}^2$ are both 4-connected. In particular, X is then well-composed.

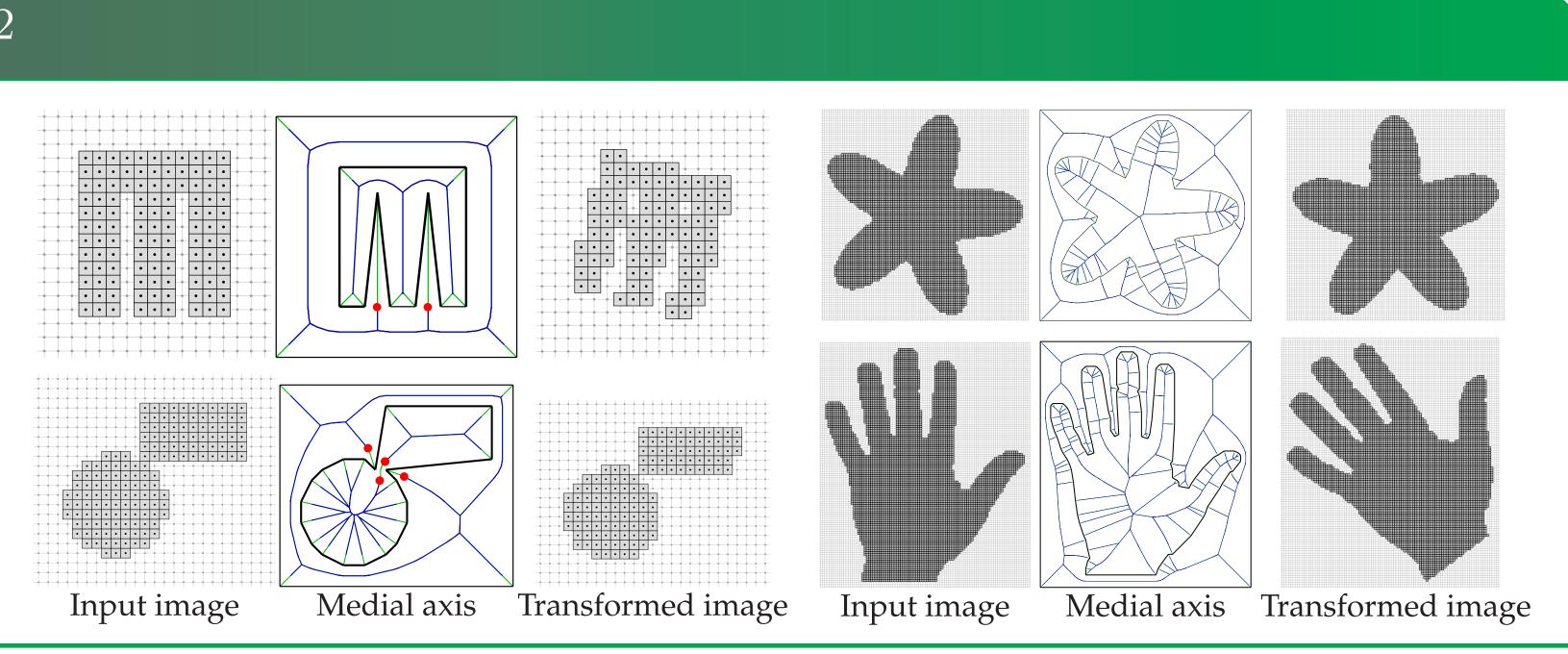


Quasi-1-regular shape

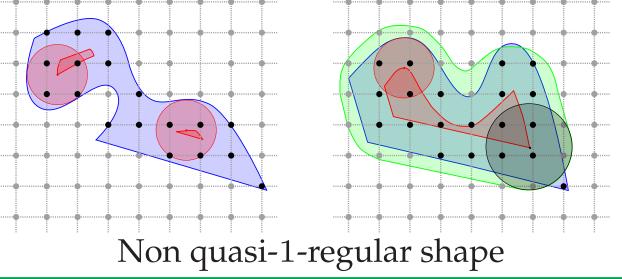
Proposition: Let $X \subset \mathbb{R}^2$ be a bounded, simply connected polygon. Let us suppose that $\mathcal{M}(X) \frown \mathcal{M}_1(X)$, $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$ and that for each connected component of $\mathcal{M}_0^1(X)$ and $\mathcal{M}_0^1(\overline{X})$, property (\mathcal{P}) holds. Then, X is quasi-1-regular.

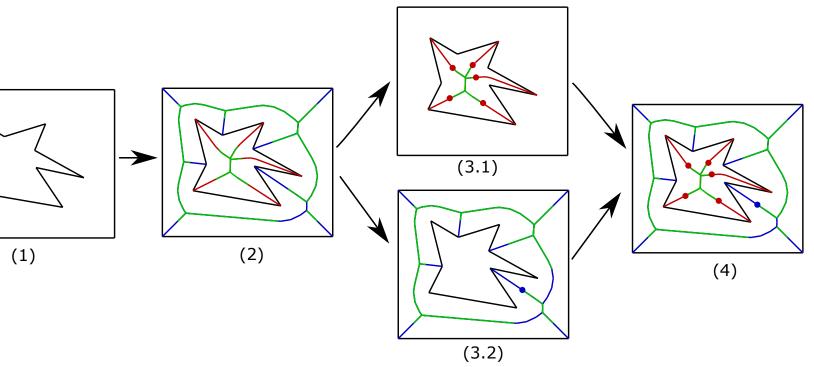
Input: A simply connected polygonal object $X \subset \mathbb{R}^2$ Output: A Boolean indicating whether X is quasi-regular	
1 for $Y \in \{X, \overline{X}\}$ do	
2 if not $(\mathcal{M}(Y) \frown \mathcal{M}_1(Y))$ then return false	
3 foreach connected component $M \in \mathcal{M}^1_0(Y)$ do	
4 Let $y \in M$ s.t. $r(y) = 1$	
5 foreach $z_i \in M$ s.t. $r(z_i) = 0$ do	
6 if $ y - z_i _2^2 > 2$ then return false	





[1] L. J. Latecki, U. Eckhardt, and A. Rosenfeld. Well-composed sets. *Comput Vis Image Und*, 61(1):70–83, 1995. [2] T. Pavlidis. *Algorithms for graphics and image processing*. Berlin: Springer, and Rockville: Computer Science Press, 1982.





Workflow of quasi-1-regular verification method