# Quasi-regularity verification for 2D polygonal objects based on medial axis analysis

Phuc Ngo – Nicolas Passat – Yukiko Kenmochi

IEEE ICIP – Alaska, USA

19 - 22 September 2021



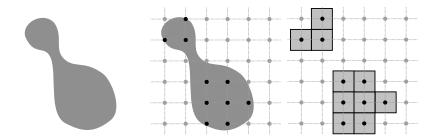






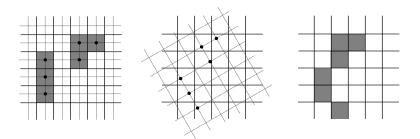
#### Problem

- 1. Topological preservation by digitization process
- 2. Rigid motion in discrete space of  $\mathbb{Z}^2$ : topological and geometrical properties of the transformed objects



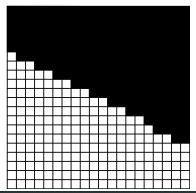
#### Problem

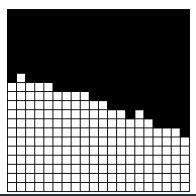
- 1. Topological preservation by digitization process
- 2. Rigid motion in discrete space of  $\mathbb{Z}^2$ : topological and geometrical properties of the transformed objects



#### Problem

- 1. Topological preservation by digitization process
- 2. Rigid motion in discrete space of  $\mathbb{Z}^2$ : topological and geometrical properties of the transformed objects





P. Ngo - N. Passat - Y. Kenmochi

#### Problem

- 1. Topological preservation by digitization process
- 2. Rigid motion in discrete space of  $\mathbb{Z}^2$ : topological and geometrical properties of the transformed objects

#### Contributions

- 1. A class of objects, called *quasi-regular*, that allows the connectivity preservation by digitization
- 2. Exact method for verifying quasi-regular polygonal objects via the notion of medial axis
- 3. A framework of rigid motion in  $\mathbb{Z}^2$  using polygonal representation of digital object together with the quasi-regularity for the topological and geometrical preservation

# Table of contents

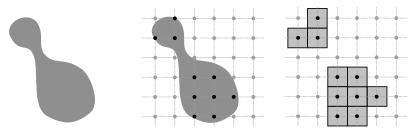
- 1. Motivation
- 2. Background notions
- 3. Quasi-regularity and its verification
- 4. Application: Rigid motions on  $\mathbb{Z}^2$
- 5. Conclusion

# **Gauss digitization**

# Definition [Klette and Rosenfeld, 2004]

Let  $X \subset \mathbb{R}^n$ ,  $n \ge 2$ . The Gauss digitization is defined as the intersection of X with  $\mathbb{Z}^n$ :

$$\mathsf{X} = \mathsf{X} \cap \mathbb{Z}^d$$

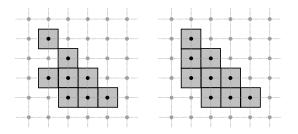


Digital topology of X is often non-coherent with the continuous topology of X.

# Well-composed sets

# Definition [Latecki et al., 1995]

A digital set  $X \subset \mathbb{Z}^2$  is *well-composed* if each 8-connected component of X and of its complement  $\overline{X}$  is also 4-connected.



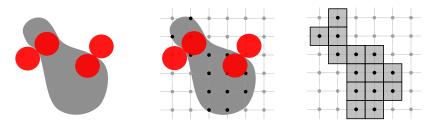
### Definition [Pavlidis, 1982]

A finite and connected subset  $X \subset \mathbb{R}^2$  is *r*-regular if for each boundary point of X, there exist two tangent open balls of radius *r*, lying entirely in X and its complement  $\overline{X}$ , respectively.



#### Definition [Pavlidis, 1982]

A finite and connected subset  $X \subset \mathbb{R}^2$  is *r*-regular if for each boundary point of X, there exist two tangent open balls of radius *r*, lying entirely in X and its complement  $\overline{X}$ , respectively.



#### Proposition [Latecki et al., 1998]

If a finite and connected set  $X \subset \mathbb{R}^2$  is *r*-regular, with  $r \geq \frac{\sqrt{2}}{2}$ , then  $X = X \cap \mathbb{Z}^2$  is a well-composed digital set.

P. Ngo - N. Passat - Y. Kenmochi

# Definition (in mathematical morphology)

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies the following four properties:

- (i)  $\mathrm{X} \ominus B_r$  is non-empty and connected
- (*ii*)  $\overline{\mathrm{X}} \ominus B_r$  is connected
- $(iii) X \subseteq X \ominus B_r \oplus B_r$
- $(iv) \ \overline{\mathrm{X}} \subseteq \overline{\mathrm{X}} \ominus B_r \oplus B_r$

where  $\overline{\mathbf{X}} = \mathbb{R}^2 \setminus \mathbf{X}$ ;  $\oplus$ ,  $\ominus$  are the dilation and erosion operators; and  $B_t \subset \mathbb{R}^2$  is the Euclidean ball of centre  $\mathbf{0}_{\mathbb{R}^2}$  and radius t.

By definition, polygonal objects are not r-regular for any r > 0.

# Definition (in mathematical morphology)

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies the following four properties:

- (i)  $\mathrm{X} \ominus B_r$  is non-empty and connected
- (*ii*)  $\overline{\mathrm{X}} \ominus B_r$  is connected
- $(iii) X \subseteq X \ominus B_r \oplus B_r$
- $(iv) \ \overline{\mathrm{X}} \subseteq \overline{\mathrm{X}} \ominus B_r \oplus B_r$

where  $\overline{\mathbf{X}} = \mathbb{R}^2 \setminus \mathbf{X}$ ;  $\oplus$ ,  $\ominus$  are the dilation and erosion operators; and  $B_t \subset \mathbb{R}^2$  is the Euclidean ball of centre  $\mathbf{0}_{\mathbb{R}^2}$  and radius t.

By definition, polygonal objects are not *r*-regular for any r > 0.

# Generalization of *r*-regularity: quasi-*r*-regularity

# Definition [Ngo et al., 2018]

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies the following four properties:

- (i)  $\mathrm{X} \ominus B_r$  is non-empty and connected
- (*ii*)  $\overline{\mathrm{X}} \ominus B_r$  is connected
- $(iii) X \subseteq X \ominus B_r \oplus B_{r\sqrt{2}}$
- $(iv) \ \overline{\mathrm{X}} \subseteq \overline{\mathrm{X}} \ominus B_r \oplus B_{r\sqrt{2}}$

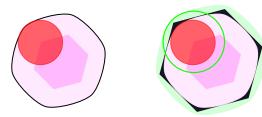


# Generalization of *r*-regularity: quasi-*r*-regularity

# Definition [Ngo et al., 2018]

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object (i.e., connected without hole). X is *r*-regular if it satisfies the following four properties:

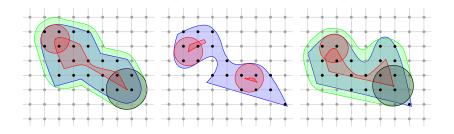
- (i)  $\mathrm{X} \ominus B_r$  is non-empty and connected
- (*ii*)  $\overline{\mathrm{X}} \ominus B_r$  is connected
- (iii)  $X \subseteq X \ominus B_r \oplus B_{r\sqrt{2}}$
- $(iv) \ \overline{\mathrm{X}} \subseteq \overline{\mathrm{X}} \ominus B_r \oplus B_{r\sqrt{2}}$



# Quasi-*r*-regular object and digitization

# Proposition [Ngo et al., 2018]

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object. If X is quasi-1-regular, then  $X = X \cap \mathbb{Z}^2$  and  $\overline{X} = \overline{X} \cap \mathbb{Z}^2$  are both 4-connected. In particular, X is then well-composed.

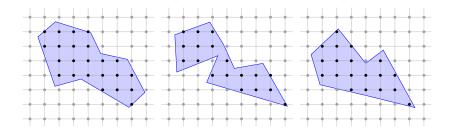


Verify the quasi-1-regularity of polygonal objects?  $\Rightarrow$  Medial axis

# Quasi-*r*-regular object and digitization

# Proposition [Ngo et al., 2018]

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object. If X is quasi-1-regular, then  $X = X \cap \mathbb{Z}^2$  and  $\overline{X} = \overline{X} \cap \mathbb{Z}^2$  are both 4-connected. In particular, X is then well-composed.

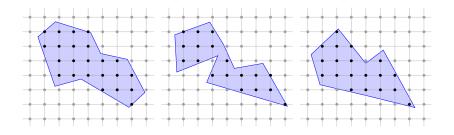


Verify the quasi-1-regularity of polygonal objects?  $\Rightarrow$  Medial axis

# Quasi-*r*-regular object and digitization

# Proposition [Ngo et al., 2018]

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected object. If X is quasi-1-regular, then  $X = X \cap \mathbb{Z}^2$  and  $\overline{X} = \overline{X} \cap \mathbb{Z}^2$  are both 4-connected. In particular, X is then well-composed.



Verify the quasi-1-regularity of polygonal objects?  $\Rightarrow$  Medial axis

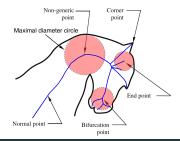
# Medial axis

# Definition [Blum, 1967]

Let  $X \subset \mathbb{R}^2$  be a closed, bounded set such that the boundary  $\partial X$  of X is a 1-manifold. The medial axis of X is defined as the locus of the centers of the maximal balls included in X:

 $\mathcal{M}(\mathbf{X}) = \{ x \in \mathbf{X} \mid \nexists y \in \mathbf{X}, B(x, r(x)) \subset B(y, r(y)) \}$ 

where  $B(y, r) \subseteq X$  is the ball of center y and radius  $r \in \mathbb{R}_+$ .



P. Ngo - N. Passat - Y. Kenmochi

# Medial axis

# Definition [Blum, 1967]

Let  $X\subset \mathbb{R}^2$  be a closed, bounded set such that the boundary  $\partial X$  of X is a 1-manifold. The medial axis of X is defined as the locus of the centers of the maximal balls included in X:

$$\mathcal{M}(\mathbf{X}) = \{ x \in \mathbf{X} \mid \nexists y \in \mathbf{X}, B(x, r(x)) \subset B(y, r(y)) \}$$

where  $B(y, r) \subseteq X$  is the ball of center y and radius  $r \in \mathbb{R}_+$ .

By definition, we have  $\mathcal{M}(X) \subseteq X$  and

$$\mathbf{X} = \bigcup_{x \in \mathcal{M}(\mathbf{X})} B(x, r(x))$$

# Medial axis

# Definition [Blum, 1967]

Let  $X \subset \mathbb{R}^2$  be a closed, bounded set such that the boundary  $\partial X$  of X is a 1-manifold. The medial axis of X is defined as the locus of the centers of the maximal balls included in X:

$$\mathcal{M}(\mathbf{X}) = \{x \in \mathbf{X} \mid \nexists y \in \mathbf{X}, B(x, r(x)) \subset B(y, r(y))\}$$

where  $B(y,r) \subseteq X$  is the ball of center y and radius  $r \in \mathbb{R}_+$ .

We define the  $\lambda$ -level medial axis, noted  $\mathcal{M}_{\lambda}(X)$ , by

$$\mathcal{M}_{\lambda}(\mathbf{X}) = \{ x \in \mathcal{M}(\mathbf{X}) \mid r(x) \geq \lambda \}$$

In particular,  $\lambda_1 \leq \lambda_2 \Rightarrow \mathcal{M}_{\lambda_2}(X) \subseteq \mathcal{M}_{\lambda_1}(X)$ , and  $\mathcal{M}_0(X) = \mathcal{M}(X)$ . We also define

$$\mathcal{M}_{\lambda_1}^{\lambda_2}(\mathbf{X}) = \{ x \in \mathcal{M}(\mathbf{X}) \mid \lambda_1 \leq r(x) \leq \lambda_2 \}$$

# Properties of medial axis

# Proposition [Lieutier, 2004]

X and  $\mathcal{M}(X)$  have the same homotopy type, and noted  $X \frown \mathcal{M}(X).$ 

#### Proposition [Serra, 1983]

Let  $B_{\lambda}$  be the ball of center  $0_{\mathbb{R}^2}$  and of radius  $\lambda \geq 0$ . We have

$$X \ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(X)} B(x, r(x) - \lambda)$$
$$X \oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(X)} B(x, r(x) + \lambda)$$
$$\mathcal{M}(X \ominus B_{\lambda}) = \mathcal{M}_{\lambda}(X)$$

We now verify the quasi-1-regularity of polygonal objects via the notion of medial axis.

P. Ngo - N. Passat - Y. Kenmochi

# **Properties of medial axis**

### Proposition [Lieutier, 2004]

X and  $\mathcal{M}(X)$  have the same homotopy type, and noted  $X \frown \mathcal{M}(X)$ .

#### Proposition [Serra, 1983]

Let  $B_{\lambda}$  be the ball of center  $0_{\mathbb{R}^2}$  and of radius  $\lambda \geq 0$ . We have

$$\begin{split} \mathbf{X} &\ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(\mathbf{X})} B(x, r(x) - \lambda) \\ \mathbf{X} &\oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(\mathbf{X})} B(x, r(x) + \lambda) \\ \mathcal{M}(\mathbf{X} &\ominus B_{\lambda}) = \mathcal{M}_{\lambda}(\mathbf{X}) \end{split}$$

We now verify the quasi-1-regularity of polygonal objects via the notion of medial axis.

P. Ngo - N. Passat - Y. Kenmochi

# Properties of medial axis

### Proposition [Lieutier, 2004]

X and  $\mathcal{M}(X)$  have the same homotopy type, and noted  $X \frown \mathcal{M}(X).$ 

#### Proposition [Serra, 1983]

Let  $B_{\lambda}$  be the ball of center  $0_{\mathbb{R}^2}$  and of radius  $\lambda \geq 0$ . We have

$$\begin{split} \mathbf{X} &\ominus B_{\lambda} = \bigcup_{x \in \mathcal{M}_{\lambda}(\mathbf{X})} B(x, r(x) - \lambda) \\ \mathbf{X} &\oplus B_{\lambda} = \bigcup_{x \in \mathcal{M}(\mathbf{X})} B(x, r(x) + \lambda) \\ \mathcal{M}(\mathbf{X} &\ominus B_{\lambda}) = \mathcal{M}_{\lambda}(\mathbf{X}) \end{split}$$

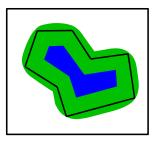
We now verify the quasi-1-regularity of polygonal objects via the notion of medial axis.

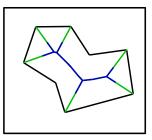
P. Ngo - N. Passat - Y. Kenmochi

#### Property

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected polygon. If  $\mathcal{M}(X) \frown \mathcal{M}_1(X)$  and  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$  then

- (i)  $X \ominus B_1$  is non-empty and connected
- (ii)  $\overline{\mathrm{X}} \ominus B_1$  is connected

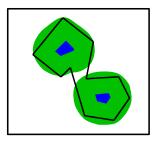


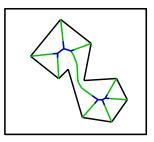


#### Property

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected polygon. If  $\mathcal{M}(X) \frown \mathcal{M}_1(X)$  and  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$  then

- (i)  $X \ominus B_1$  is non-empty and connected
- (ii)  $\overline{\mathrm{X}} \ominus B_1$  is connected

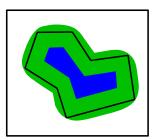


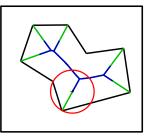


Let  $Y \in {X, \overline{X}}$  and  $M \subseteq \mathcal{M}_0^1(Y)$  a connected component of  $\mathcal{M}_0^1(Y)$ . M contains a set of k points, noted  $z_i$   $(1 \le i \le k)$ , with  $r(z_i) = 0$  (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let  $(\mathcal{P})$  :  $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$ . We have

$$(\mathcal{P}) \Rightarrow \bigcup_{x \in M} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$$

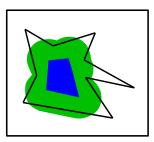


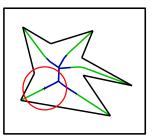


Let  $Y \in {X, \overline{X}}$  and  $M \subseteq \mathcal{M}_0^1(Y)$  a connected component of  $\mathcal{M}_0^1(Y)$ . M contains a set of k points, noted  $z_i$   $(1 \le i \le k)$ , with  $r(z_i) = 0$  (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let  $(\mathcal{P})$  :  $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$ . We have

$$(\mathcal{P}) \Rightarrow \bigcup_{x \in M} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$$





Let  $Y \in {X, \overline{X}}$  and  $M \subseteq \mathcal{M}_0^1(Y)$  a connected component of  $\mathcal{M}_0^1(Y)$ . M contains a set of k points, noted  $z_i$   $(1 \le i \le k)$ , with  $r(z_i) = 0$  (they are convex vertices of the polygon Y), and a point y with r(y) = 1.

Let  $(\mathcal{P})$  :  $\forall 1 \leq i \leq k, \|y - z_i\|_2 \leq \sqrt{2}$ . We have

$$(\mathcal{P}) \Rightarrow \bigcup_{x \in \mathcal{M}} B(x, r(x)) \subseteq Y \ominus B_1 \oplus B_{\sqrt{2}}$$

#### Proposition

Let  $X \subset \mathbb{R}^2$  be a bounded, simply connected polygon. Let us suppose that  $\mathcal{M}(X) \frown \mathcal{M}_1(X)$ ,  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$  and that for each connected component of  $\mathcal{M}_0^1(X)$  and  $\mathcal{M}_0^1(\overline{X})$ , property  $(\mathcal{P})$  holds. Then, X is quasi-1-regular.

# Quasi-1-regularity verification method

The method consists in verifying the following two conditions:

1. 
$$\mathcal{M}(X) \frown \mathcal{M}_1(X)$$
 and  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$ 

2. (P) holds for each connected component of  $\mathcal{M}_0^1(X)$  and  $\mathcal{M}_0^1(\overline{X})$ .

Algorithm 1: Quasi-regularity verification

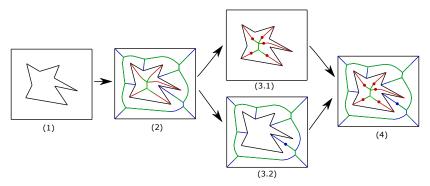
Input: A simply connected polygonal object  $X \subset \mathbb{R}^2$ Output: A Boolean indicating whether X is quasi-regular 1 for  $Y \in \{X, \overline{X}\}$  do 2 if not  $(\mathcal{M}(Y) \frown \mathcal{M}_1(Y))$  then return false 3 foreach connected component  $M \in \mathcal{M}_0^1(Y)$  do 4 Let  $y \in M$  s.t. r(y) = 15 foreach  $z_i \in M$  s.t.  $r(z_i) = 0$  do 6  $| \qquad | |y - z_i||_2^2 > 2$  then return false

7 return true

# Quasi-1-regularity verification method

The method consists in verifying the following two conditions:

- 1.  $\mathcal{M}(X) \frown \mathcal{M}_1(X)$  and  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$
- 2. (P) holds for each connected component of  $\mathcal{M}_0^1(X)$  and  $\mathcal{M}_0^1(\overline{X})$ .

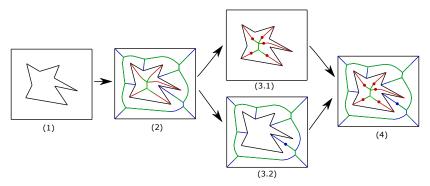


CGAL is used for computing the medial axis of the polygons.

# Quasi-1-regularity verification method

The method consists in verifying the following two conditions:

- 1.  $\mathcal{M}(X) \frown \mathcal{M}_1(X)$  and  $\mathcal{M}(\overline{X}) \frown \mathcal{M}_1(\overline{X})$
- 2. (P) holds for each connected component of  $\mathcal{M}_0^1(X)$  and  $\mathcal{M}_0^1(\overline{X})$ .



CGAL is used for computing the medial axis of the polygons.

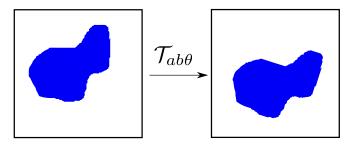
# **Rigid motion in** $\mathbb{R}^2$

#### Definition

A rigid motion is a bijection defined for any  $\boldsymbol{x} = (x, y) \in \mathbb{R}^2$ , as

$$\mathcal{T}(\mathbf{x}) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

where  $a, b \in \mathbb{R}$  and  $\theta \in [0, 2\pi[.$ 



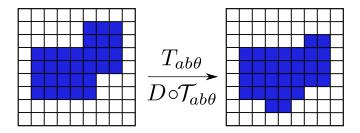
# **Rigid motion in** $\mathbb{Z}^2$

#### Definition

A digital rigid motion on  $\mathbb{Z}^2$  is defined for any  $oldsymbol{p}=(p,q)\in\mathbb{Z}^2$  as

$$T(\boldsymbol{p}) = D \circ \mathcal{T}(\boldsymbol{p}) = \left(\begin{array}{c} \left[p\cos\theta - q\sin\theta + a\right]\\ \left[p\sin\theta + q\cos\theta + b\right]\end{array}\right)$$

where  $D : \mathbb{R}^2 \to \mathbb{Z}^2$  is digitization (a rounding function).



# Problems induced by rigid motion on $\mathbb{Z}^2$



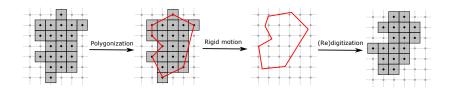
# Topological and geometrical alteration by point-wise rigid motion on $\mathbb{Z}^2$ .

# Digital rigid motion preserving topology and geometry

#### Proposed method

#### Approach via polygonization:

- polygonal representation of digital object for the overall shape preservation of the object by the transformation
- quasi-1-regularity for topology preservation by the digitization
- exact calculation considering rational rigid motions

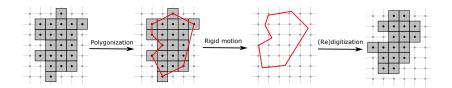


# Digital rigid motion preserving topology and geometry

#### **Proposed method**

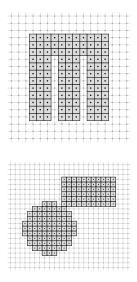
#### Approach via polygonization:

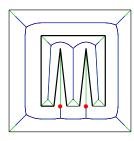
- polygonal representation of digital object for the overall shape preservation of the object by the transformation
- quasi-1-regularity for topology preservation by the digitization
- exact calculation considering rational rigid motions

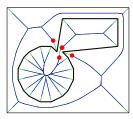


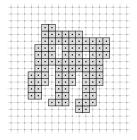
Conclusion

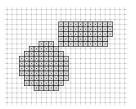
# **Experimental results**



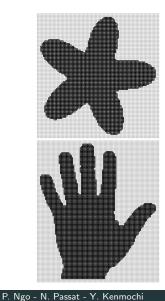


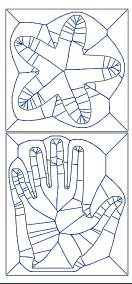


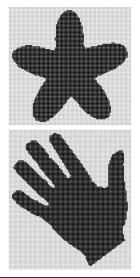




# Experimental results







# Conclusion

#### Present work

- 1. Exact method for verifying quasi-1-regularity of polygonal objects using medial axis
- 2. Application in rigid motion in  $\mathbb{Z}^2$  for preservation of both topology and geometry

#### Perspectives

- Polygonization methods for digital objects
- Repairing non-quasi-regular objects using medial axis
- Multi-resolution approaches for the limit case of quasi-1-regularity
- Extension of the proposed method in 3D

# Thank you for your attention ! Any question ?

# References i



# Blum, H. (1967).

**A** transformation for extracting new descriptors of shape. In Wathen-Dunn, W., editor, *Models for the Perception of Speech and Visual Form*, pages 362–380. MIT Press, Cambridge.

Klette, R. and Rosenfeld, A. (2004).

Digital Geometry: Geometric Methods for Digital Picture Analysis.

Elsevier, Amsterdam, Boston.



Latecki, L. J., Conrad, C., and Gross, A. (1998).

Preserving topology by a digitization process.

Journal of Mathematical Imaging and Vision, 8(2):131–159.

Latecki, L. J., Eckhardt, U., and Rosenfeld, A. (1995).
Well-composed sets.
Comput Vis Image Und, 61(1):70–83.

Lieutier, A. (2004).

Any open bounded subset of  $R^n$  has the same homotopy type as its medial axis.

*Computer-Aided Design*, 36(11):1029–1046.

 Ngo, P., Passat, N., and Kenmochi, Y. (2021).
Quasi-regularity verification for 2D polygonal objects based on medial axis analysis.
In International Conference on Image Processing (ICIP), Anchorage,

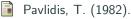
Alaska, United States.

# References iii

Ngo, P., Passat, N., Kenmochi, Y., and Debled-Rennesson, I. (2018).

#### Convexity invariance of voxel objects under rigid motions.

In International Conference on Pattern Recognition (ICPR), pages 1157–1162, Beijing, China.



# Algorithms for graphics and image processing. Berlin: Springer, and Rockville: Computer Science Press.

🚺 Serra, J. (1983).

Image Analysis and Mathematical Morphology.

Academic Press, Inc., USA.

# **Polygonization methods**

#### **Polygonal representation**

The properties to satisfy for the calculation of the polygonal representation P(X) of X:

- reversibility:  $P(X) \cap \mathbb{Z}^2 = X$
- polygon's vertices with rational coordinates (for exact calculus)

For a given  $X \subset \mathbb{Z}^2,$  different results can be obtained from different polygonization techniques

- Convex objects: convex hull + half-plane representation
- Non convex objects: methods based on object contour (decomposition into convex parts, tree of concavities, ...)

# **Polygonization methods**

#### **Polygonal representation**

The properties to satisfy for the calculation of the polygonal representation P(X) of X:

- reversibility:  $P(X) \cap \mathbb{Z}^2 = X$
- polygon's vertices with rational coordinates (for exact calculus)

For a given  $X \subset \mathbb{Z}^2,$  different results can be obtained from different polygonization techniques

- Convex objects: convex hull + half-plane representation
- Non convex objects: methods based on object contour (decomposition into convex parts, tree of concavities, ...)