Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation - Archive ouverte HAL
Article Dans Une Revue IMA Journal of Numerical Analysis Année : 2021

Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation

Résumé

We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method applied to the nonlinear Schrödinger equation which preserves a modified Hamiltonian on the discrete level. We derive a weak and strong convergence result, establish second-order global error bounds and present long time error estimates on the modified Hamiltonian. In addition, we illustrate the favorable energy conservation of the SAV method compared to classical splitting schemes in certain applications.
Fichier principal
Vignette du fichier
SAV-Schrodinger-.pdf (1.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03088926 , version 1 (27-12-2020)
hal-03088926 , version 2 (06-07-2021)

Identifiants

Citer

Alexandre Poulain, Katharina Schratz. Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation. IMA Journal of Numerical Analysis, 2021, ⟨10.1093/imanum/drab082⟩. ⟨hal-03088926v2⟩
139 Consultations
159 Téléchargements

Altmetric

Partager

More