Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation

Résumé

We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method appliedto the nonlinear Schrödinger equation which preserves a modified Hamiltonian on the discretelevel. We derive a weak and strong convergence result, establish second-order global error boundsand present long time error estimates on the modified Hamiltonian. In addition, we illustrate thefavorable energy conservation of the SAV method compared to classical splitting schemes in certainapplications.
Fichier principal
Vignette du fichier
Convergence_error_SAV_Schrodinger.pdf (1.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03088926 , version 1 (27-12-2020)
hal-03088926 , version 2 (06-07-2021)

Identifiants

  • HAL Id : hal-03088926 , version 1

Citer

Alexandre Poulain, Katharina Schratz. Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation. 2020. ⟨hal-03088926v1⟩
140 Consultations
171 Téléchargements

Partager

More