Convergence, error analysis and longtime behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation
Résumé
We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method appliedto the nonlinear Schrödinger equation which preserves a modified Hamiltonian on the discretelevel. We derive a weak and strong convergence result, establish second-order global error boundsand present long time error estimates on the modified Hamiltonian. In addition, we illustrate thefavorable energy conservation of the SAV method compared to classical splitting schemes in certainapplications.
Origine | Fichiers produits par l'(les) auteur(s) |
---|