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Convergence, error analysis and longtime behavior of the Scalar
Auxiliary Variable method for the nonlinear Schrödinger equation

Alexandre Poulain ∗† Katharina Schratz ‡§

July 6, 2021

Abstract
We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method applied

to the nonlinear Schrödinger equation which preserves a modified Hamiltonian on the discrete
level. We derive a weak and strong convergence result, establish second-order global error bounds
and present long time error estimates on the modified Hamiltonian. In addition, we illustrate the
favorable energy conservation of the SAV method compared to classical splitting schemes in certain
applications.
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1 Introduction

We consider the Gross-Pitaevskii [25] equation (NLS) set on the d-dimensional torus
Ω = Td = (R/2πZ)d (where d ≤ 3)

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + f
(
|u(t, x)|2

)
u(t, x), t ∈ (0, T ] (1.1)

with initial conditions u(0, x) = u0(x), a real-valued interaction potential V (x) and nonlinearity f(|u|2).
The Hamiltonian energy associated to equation (1.1) takes the form

H(u, u) =
1

2

∫
Ω

(
|∇u|2 + V (x) |u|2 + F

(
|u|2
))

dx,
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where F
(
|u|2
)
is defined by F ′

(
|u|2
)

= f
(
|u|2
)
. Note that the Hamiltonian H(u(t), u(t)) as well as

the probability density ‖u(t, ·)‖2L2(Ω) is preserved by the system (1.1).
In the following we will denote by E1 the sum of the nonlinear and potential part of the Hamiltonian

E1 =
1

2

∫
Ω
V (x) |u|2 + F

(
|u|2
)

dx.

Using the decomposition u(t, x) = p(t, x) + iq(t, x), equation (1.1) can be furthermore rewritten as
the Hamiltonian system {

∂tp = −∆q + δE1[t]
δq ,

∂tq = ∆p− δE1[t]
δp ,

(1.2)

with the associated Hamiltonian

H(p, q) =
1

2

∫
Ω
|∇p|2 + |∇q|2 + V (x)

(
|p|2 + |q|2

)
+ F

(
|p|2 , |q|2

)
dx. (1.3)

In this notation, E1 takes the form

E1 =
1

2

∫
Ω
V (x)

(
|p|2 + |q|2

)
+ F

(
|p|2 , |q|2

)
dx.

Due to their importance in numerous applications, reaching from Bose-Einstein condensation over
nonlinear optics up to plasma physics, nonlinear Schrödinger equations are nowadays very well studied
numerically. In the last decades a large variety of different numerical schemes has been proposed [8, 2,
10, 22, 23]. Thanks to their simplicity and accuracy, a popular choice thereby lies in so-called splitting
methods, where the right hand side of (1.1) is split into the linear and nonlinear part, respectively,
see, e.g., [11, 13, 7] and the references therein. The popularity of splitting methods also stems from
their structure preservation. They conserve exactly the L2 norm of the solution and allow for near
energy conservation over long times, see, e.g., [17]. However, in [27] the authors show that in certain
applications splitting methods suffer from severe order reduction such as in case of non-linearities
with non-integer exponents. The latter arises for instance in context of optical dark and power law
solitons with surface plasmonic interactions [16]. As a solution to that issue, the authors proposed
in [27] a new class of low regularity exponential-type integrators for NLS. In this article we use a
different approach based on the so-called Scalar Auxiliary Variable (SAV) method which was originally
proposed to design structure-preserving numerical schemes for gradient flows [30, 31]. Very recently
it also became popular in context of Hamiltonian systems [5, 20, 14, 18]. The main advantage of the
SAV method lies in the fact that it preserves a modified Hamiltonian on the discrete level. Due to
its generality, it can be applied to a large class of equations involving any kind of nonlinearity. The
resulting numerical schemes are linearly implicit and allow for efficient calculations.
The main idea behind the SAV method is to introduce a scalar variable r(t) =

√
E1 + Ec that will

become an unknown at the discrete level and where the arbitrary constant Ec > 0 is used to obtain
E1 + Ec > 0. We must stress that one as to be very careful with the choice of the constant Ec. Indeed,
it is well known that even for the cubic non-linearity, i.e. f(|p|2 , |q|2) = β

∣∣p2 + q2
∣∣2 with β < 0

(focussing NLSE), the hamiltonian energy (1.3) is not bounded from below a priori. In the following
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analysis, we implicit assume that it exists a constant Ec such that E1 +Ec > 0, which is often the case in
the study of Bose-Einstein condensate as pointed out by Antoine et al. [5]. In practice, we compute the
term E1 explicitly and therefore one can adapt the constant Ec during the simulation. The system is
supplemented by an equation describing the time evolution of r(t). In case of the nonlinear Schrödinger
equation (1.1) the continuous SAV model takes the form

∂tp = −∆q + r(t)g1(p, q),

∂tq = ∆p− r(t)g2(p, q),

∂tr(t) = 1
2 [(g1(p, q), ∂tq) + (g2(p, q), ∂tp)] ,

(1.4)

where (·, ·) denotes the standard L2 scalar product and

g1(p, q) =
1√

E1[t] + Ec
δE1[t]

δq
, g2(p, q) =

1√
E1[t] + Ec

δE1[t]

δp
.

Associated to this SAV model we find the Hamiltonian

H̃(p, q) =
1

2

∫
Ω
|∇p|2 + |∇q|2 dx+ |r|2 ,

which is conserved by the SAV model (1.4). In the following, we assume that for i = 1, 2∣∣g′i(p, q)∣∣ ≤ C ((|p|+ |q|)β + 1
)
,
∣∣g′′i (p, q)

∣∣ ≤ C ((|p|+ |q|)β′ + 1
)
, (1.5)

for some β, β′ > 0.

Remark 1.1 In this paper, we focus on the Gross-pitaevskii equation under the form (1.1). Even
though the choice of the nonlinearity and, therefore, the precise form of E1, depends on the structure of
the considered Schrödinger equation, we highlight that the SAV scheme is, in its design, general enough
to work for a large number of applications. Indeed, as long as there exists a constant Ec such that
for all times t ≥ 0 it holds that E1 + Ec > 0 we can apply the SAV method. Therefore, modifications
such as the effect of dipole-dipole interactions, rotating GPE (see Antoine et al. [5]), or even time
dependent potentials V = V (t, x) can be taken into account. For an extensive overview on applications
and generalisations of the nonlinear Schrödinger equation, we refer the interested reader to the review
article of Bao and Cai [8] and the references therein.

Following the works of Antoine et al. [5] and Fu et al. [20], we analyze a fully discrete SAV scheme
for the nonlinear Schrödinger equation (1.1) based on a Crank-Nicholson time discretization of the NLS
SAV model (1.4) coupled with a pseudo-spectral discretization for the spatial discretization. Energy
conservation properties of the SAV method for nonlinear Schrödinger equations were recently derived
in [5, 20] and their convergence was extensively tested numerically. Very recently, Feng et al. [18]
use the SAV method to design arbitrary high order space-time finite element scheme for the nonlinear
Schrödinger equation. While their method uses a finite element discretization in space, we propose
in this work to use a Fourier pseudospectral discretization. The main contribution of this article
lies in establishing global error estimates on the fully discrete Fourier-PseudoSpectral Crank-Nicholson
NLS SAV scheme (CN-SAV-SP in short). More precisely, we derive weak and strong convergence

3



and prove second order error estimates for the fully discrete scheme. Our theoretical convergence
analysis is inspired by the analysis of the SAV method in the context of gradient flows [29]. We
underline our convergence results with numerical experiments and compare the SAV scheme with
classical splitting methods. Our numerical findings suggest that in certain cases, such as in case of
non-linearities involving a non-integer exponent, the SAV scheme preserves its second order energy
conservation property while classical splitting methods suffer from sever order reduction. We also
conduct numerical experiments showing that the SAV scheme is able to compute correctly ground
states of Bose-Einstein condensates.

Outline of the paper. In the first part of the paper, we carry out a fully discrete error analysis of
the SAV scheme and establish second order convergence estimates, see Theorem 5.4. Our theoretical
convergence results are then numerically underlined in the second part of the paper, see Section 6.

Notations. Let Lp(Ω), Wm,p(Ω) with Hm(Ω) = Wm,2(Ω), where 1 ≤ p ≤ +∞ and m ∈ N, denote
the standard Lebesgue and Sobolev spaces equipped with the corresponding norms || · ||m,p, || · ||m and
semi-norms | · |m,p, | · |m. We also denote by Hm

p (Ω) the subset of Hm(Ω) that consists of 2π-periodic
functions that are in Hm(Ω). We denote by Lp (0, T ;V ) the Bochner spaces i.e. the spaces with values
in Sobolev spaces [1]. The norm in these spaces is defined for all Bochner measurable functions η by

‖η‖Lp(0,T ;V ) =

(∫ T

0
‖η‖pV dt

)1/p

, ‖η‖L∞(0,T ;V ) = ess sup
t∈(0,T )

‖η‖V .

The standard L2 inner product is denoted by (·, ·)Ω and the duality pairing between
(
H1(Ω)

)′
= H−1(Ω)

and H1(Ω) by < ·, · >Ω. The dual space H−1(Ω) is endowed with the norm

‖φ‖H−1(Ω) = sup
η∈H1(Ω)

{< φ, η >Ω, ‖η‖21 ≤ 1}.

Remark 1.2 Even though our model problem (1.1) is equipped with periodic boundary conditions, our
analysis holds for homogeneous Dirichlet or Neumann boundary conditions.

2 Numerical scheme

2.1 Time and space discretisation of the SAV model

We use a standard Fourier pseudospectral method [15, 19, 24] for the spatial discretization of the SAV
model (1.4). We refer the reader to the book of Trefethen [32] for details of the implementation of such
scheme in MATLAB. We emphasize that our paper presents numerical simulation in dimension d = 1.
However, the method can be adapted to higher dimensions. Our convergence and error analysis holds
in dimensions 1 ≤ d ≤ 3.
Thereby, for the sake of clarity, we here give the details of the space discretization for d = 1. We

denote by XN the space spanned by the trigonometric functions up to degree N/2

XN := span{eikx/L : −N/2 ≤ k ≤ N/2− 1}.

For the time discretisation of the SAV system (1.4) we apply a Crank-Nicholson discretisation with
time step τ such that tk = kτ for k ∈ N. At each grid point we thereby approximate the time derivative
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by

∂tu(tk+1, x) ≈ u(tk+1, x)− u(tk, x)

τ
.

Let us give the details of the approximation in dimension d = 1, where the domain is defined by
Ω = [−π, π] with a mesh size h. In this case the collocation points are xa = 2πa

N where a ∈ B with

B :=

{
{−P, . . . , P − 1} if N = 2P is even,
{−P, . . . , P} if N = 2P + 1 is odd.

We denote by Uk(xa) the approximation of u(tk, xa). The Fourier pseudo-spectral discretization is
given by

Uk(xa) =
∑
p∈B

ûkp exp (2iπap/N)

with the Fourier coefficients defined by

ûkp =
1

N

∑
b∈B

Uk(xb) exp (−2iπbp/N) .

We approximate the Laplacian by the Fourier differentiation matrix D(2) which for j, l = 0, . . . , N−1
takes the form (

D(2)
)
jl

=


1
4(−1)j+1N + (−1)j+l+1

2 sin2
(

(j−l)π
N

) , if j 6= l

− (N−1)(N−2)
12 , otherwise.

However, to avoid the need to use the symmetric matrix D(2) in the previous form and gain in
computational time, it can be preferable to use the method proposed in [5] that uses the fact that the
previous differentiation matrix is diagonal in Fourier space. Therefore, inverting this matrix has a very
low cost. In our work, since we use the Hamiltonian system (1.2) to analyze the properties of the SAV
scheme we will use the previously defined differentiation matrix D(2).
For the N collocation points xa, we define the interpolation operation IN by

(INu)(x) =
∑
p∈B

ũpe
2iπxp/N .

We have the following interpolation error (see Section 5.8.1 in [15]):

Lemma 2.1 (Interpolation error) For any u ∈ C(0, T ;Hm
p (Ω) with d ≤ 3, we have

{
‖INu− u‖Hl

p(Ω)) ≤ CN l−m |u|m , 0 ≤ l ≤ m,
‖IN∂tu− ∂tu‖Hl

p(Ω)) ≤ CN l−m |∂tu|m , 0 ≤ l ≤ m.
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2.2 The fully discrete SAV scheme

Applying the time discretization described in the previous section, for k = 0→ NT , the semi-discrete
model of (1.4) reads

pk+1−pk
τ = −∆qk+1/2 + rk+1/2g̃

k+1/2
1 ,

qk+1−qk
τ = ∆pk+1/2 − rk+1/2g̃

k+1/2
2 ,

rk+1 − rk = 1
2

[(
g̃
k+1/2
1 , qk+1 − qk

)
+
(
g̃
k+1/2
2 , pk+1 − pk

)]
,

(2.1)

where φk+1/2 =
(
φk+1 + φk

)
/2 and g̃k+1/2

i is a second order extrapolation of gi at time t = tk+1/2.
Denoting by capital letters the vectors of unknowns P k, Qk that are approximations at each collo-

cation nodes of the continuous (in space) unknowns pk, qk, the fully discrete space-time scheme then
takes the form 

Pk+1−Pk
τ = −D(2)Qk+1/2 +Rk+1/2G̃

k+1/2
1 ,

Qk+1−Qk
τ = D(2)P k+1/2 −Rk+1/2G̃

k+1/2
2 ,

rk+1 − rk = 1
2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

(2.2)

where G̃1, G̃2 are the vectors associated to the functions g̃1 and g̃2.
Let us now present two algorithms for the efficient solution of the fully discrete SAV system (2.2).

The two methods are equivalent and reduce the problem to the solving of two linear systems that
involves only real variables.

Algorithm 1

The algorithm below was originally proposed for solving the fully discrete SAV system arising in
gradient flows [30].
Let us give the procedure on how to solve the system (2.2). First, we need to replace rk+1 in the

first two equations using the third equation. This yields that
(
P k+1 − P k

)
= −τD(2) (Qk+1+Qk)

2 + τ
(
rk + 1

4

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)])
G̃
k+1/2
1 ,(

Qk+1 −Qk
)

= τD(2) (Pk+1−Pk)
2 − τ

(
rk + 1

4

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)])
G̃
k+1/2
2 .

Next we set

Zk =

(
P k

Qk

)
, G̃k+1/2 =

(
G̃
k+1/2
2

G̃
k+1/2
1

)
, B̃k+1/2 =

(
−G̃k+1/2

1

G̃
k+1/2
2

)
.

This allows us to rewrite the system into a matrix form

AZk+1 +
τ

4

(
G̃k+1/2, Zk+1

)
B̃k+1/2 = Ck, (2.3)

where

A =

[
I τ

2D
(2)

− τ
2D

(2) I

]
, and Ck =

(
I − τ

2D
(2)

τ
2D

(2) I

)
Zk − τrkB̃k+1/2 +

τ

4

(
G̃k+1/2, Zk

)
B̃k+1/2,
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with I the identity matrix. Multiplying (2.3) by A−1 and taking the discrete inner product with
G̃k+1/2, we finally obtain

(
G̃k+1/2, Zk+1

)
=

(
G̃k+1/2, A−1Ck

)
1 + τ

4

(
G̃k+1/2, A−1B̃k+1/2

) . (2.4)

Then, knowing
(
G̃k+1/2, Zk+1

)
, Zk+1 is computed using (2.3) and rk+1 is calculated from the third

equation of (2.2). Therefore, solving the fully discrete SAV model (2.2) reduces to solving the linear
system constituted by the equations (2.4) and (2.3).

Algorithm 2

Below we describe a second algorithm recently proposed in [5] for the numerical solution of the fully
discrete NLS SAV scheme (2.2). Rewriting the scheme in its matrix form we have{

Zk+1−Zk
τ = −JZk+1/2 − rk+1/2B̃k+1/2,

rk+1 − rk = 1
2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

(2.5)

where

J =

[
0 D(2)

−D(2) 0

]
.

Using the decomposition
Zk+1/2 = Z

k+1/2
1 + rk+1/2Z

k+1/2
2 , (2.6)

and adding 2
τZ

k on both sides of the first equation of (2.5), we furthermore obtain that

2

τ

[
Zk+1/2 + rk+1/2Z

k+1/2
2

]
=

2

τ
Zk − J

[
Z
k+1/2
1 + rk+1/2Z

k+1/2
2

]
− rk+1/2B̃k+1/2. (2.7)

Applying the same decomposition to the second equation of (2.5) and adding 2rk on both sides, we
get

2rk+1/2 = 2rk +
(
G̃k+1/2,

[
Z
k+1/2
1 + rk+1/2Z

k+1/2
2

]
− Zk

)
. (2.8)

Hence, denoting by I the identity matrix, we first solve the equation (2.7) using the system{[
2
τ I + J

]
Z
k+1/2
1 = 2

τZ
k[

2
τ I + J

]
Z
k+1/2
2 = −B̃k+1/2.

(2.9)

Then we compute rk+1/2 by solving equation (2.8) which yields that

rk+1/2 =
2rk +

(
G̃k+1/2, Z

k+1/2
1 − Zk

)
2−

(
G̃k+1/2, Z

k+1/2
2

) .

From the decomposition (2.6) we get Zk+1/2 from which we compute Zk+1 and rk+1.
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Remark 2.2 Since in practice the computation and storage of the invert of a non-diagonal matrix has
to be avoided, Algorithm 2 is a preferable choice. Indeed, the main step in Algorithm 2 lies in solving
two decoupled linear equations (2.9). To do so, standard tools of linear systems can be applied such as
matrix-free preconditioned Krylov solvers. We refer to Appendix C in [28] for a description of iterative
solvers of linear system and preconditioning.

Even though the previous remark already highlights the main advantage of Algorithm 2, we emphasize
that the inversion of the main matrix in Algorithm 1 can be carried out efficiently.

Remark 2.3 Referring to [30], we remark that the inversion of the matrix A in the first algorithm and
the matrix

[
2
τ + J

]
in the second Algorithm can be carried out efficiently using the Sherman-Morrison-

Woodbury formula [21]

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1,

where A is a n× n and U, V are n× k matrices, and I is the k × k identity matrix.

Remark 2.4 Referring to [20], a fast solver for solving the linear system (2.3) (in Algorithm 1)
and (2.9) (in Algorithm 2) exists. It uses the fact that the differentiation matrix D(2) can be decom-
posed into D(2) = F−1ΛF where F and F−1 are the corresponding matrices for the discrete Fourier
transformation and Λ is a diagonal matrix with eigenvalues of D(2) as its entries. Therefore, the matrix
A from Equation (2.3) admits the decomposition

A = F−1MF, with M =

[
I τ

2 Λ
− τ

2 Λ I

]
.

We note that a similar decomposition exists for the matrix [ 2
τ I + J ] in equation (2.9). Thanks to the

above decomposition, the inverse of the matrix A can be computed explicitly in an efficient manner
since

A−1 = F−1M−1F, and M−1 = MT

[
(I + τ2

4 Λ2)−1 0

0 (I + τ2

4 Λ2)−1

]
,

where (I + τ2

4 Λ2) is a diagonal matrix, such that its inverse is fast to compute.

3 Conservation properties and inequalities

In this section we outline the conserved quantities of the SAV method. It is well known that due to
its design the SAV scheme preserves a modified version of the underlying Hamiltonian. In addition,
to the conservation of energy, there is a wide variety of properties in the continuous equation which
is feasible to preserve also on the numerical (discrete) level, we refer to Bao and Cai [8] as well as
Antoine et al. [2]: i) time-reversibility or symmetry, i.e. the system is unchanged when τ → −τ , ii)
gauge-invariance, i.e. if the potential V is changed such that V → V + α with α a real constant then
the density |u|2 remains unchanged, iii) conservation of mass, i.e. ‖u(t)‖L2(Ω) = ‖u(0)‖L2(Ω), and the
Hamiltonian energy, i.e. H(t) = H(0), iv) preservation of the dispersion relation

ω(k) =
|k|2

2
+ f(|A|2),
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for the plane wave solutions u(t, x) = Aeik·x−ωt.
Proving analytically that the SAV scheme for the NLS equation meets the points ii) and iv) (over long

time scales) is up to our knowledge not possible with current techniques. However, the other points can
be verified for a large number of nonlinearities. Here, we briefly recall the proofs of the conservation
properties and refer to [20, 5], where they have been first set in context of nonlinear Schrödinger
equations and our Theorems 3.1 and 3.2 are found by a combination of the results from [20] and [5].

Theorem 3.1 (Conservation of the modified discrete energy) The scheme (2.1) is associated
to the discrete modified Hamiltonian

H̃k+1 =
1

2

(∣∣∣Qk+1
∣∣∣2
1

+
∣∣∣P k+1

∣∣∣2
1

)
+
∣∣∣rk+1

∣∣∣2 , (3.1)

and conserves the modified Hamiltonian energy through time i.e.

H̃k+1 = H̃k. (3.2)

Proof. Taking the inner product with Qk+1 − Qk for the first equation of (2.2) and for the second
with −

(
P k+1 − P k

)
, then summing the results we get

0 =
1

2

(∣∣∣Qk+1
∣∣∣2
1
−
∣∣∣Qk∣∣∣2

1
+
∣∣∣P k+1

∣∣∣2
1
−
∣∣∣P k∣∣∣2

1

)
+rk+1/2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

where |·|1 = ‖∇·‖0 is the H1−seminorm. Then, multiplying the third equation of (2.2) by 2Rk+1/2

and using the result in the previous equation, we obtain

0 =
1

2

(∣∣∣Qk+1
∣∣∣2
1
−
∣∣∣Qk∣∣∣2

1
+
∣∣∣P k+1

∣∣∣2
1
−
∣∣∣P k∣∣∣2

1

)
+

(∣∣∣rk+1
∣∣∣2 − ∣∣∣rk∣∣∣2) ,

from which we can conclude both (3.1) and (3.2).
The SAV scheme also preserves the mass up to an error of order O(τ3), where the latter error is

introduced by the second-order extrapolation.

Theorem 3.2 (Conservation of the L2 norm) The scheme (1.4) conserves the L2 norm of the
solution up to an order O(τ3) i.e. ∥∥∥Uk+1

∥∥∥2

0
=
∥∥∥Uk∥∥∥2

0
+O(τ3), (3.3)

with Uk = P k + iQk.

Proof. Taking the inner product of first equation of (2.2) with 2P k+1/2, the second equation with
2Qk+1/2, and summing the two we get

1

τ

(∥∥∥P k+1
∥∥∥2

0
−
∥∥∥P k∥∥∥2

0
+
∥∥∥Qk+1

∥∥∥2

0
−
∥∥∥Qk∥∥∥2

0

)
= 2rk+1/2

(
−
(
G̃
k+1/2
2 , Qk+1/2

)
+
(
G̃
k+1/2
1 , P k+1/2

))
.

Since G̃k+1/2
i is a second-order approximation of Gk+1/2

i , we can write

1

τ

(∥∥∥Uk+1
∥∥∥2

0
−
∥∥∥Uk∥∥∥2

0

)
= 2rk+1/2

(
−
(
G
k+1/2
2 , Qk+1/2

)
+
(
G
k+1/2
1 , P k+1/2

))
+O(τ2).
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Then, we find that

G
k+1/2
1 =

1√
E1

(
P k+1/2, Qk+1/2

)
+ Ec

∂E1

(
P k+1/2, Qk+1/2

)
∂Qk+1/2

= V (x)Qk+1/2 + f

(∣∣∣P k+1/2
∣∣∣2 , ∣∣∣Qk+1/2

∣∣∣2)Qk+1/2,

and

G
k+1/2
2 =

1√
E1

(
P k+1/2, Qk+1/2

)
+ Ec

∂E1

(
P k+1/2, Qk+1/2

)
∂P k+1/2

= V (x)P k+1/2 + f

(∣∣∣P k+1/2
∣∣∣2 , ∣∣∣Qk+1/2

∣∣∣2)P k+1/2,

from which we easily obtain

−
(
G
k+1/2
2 , Qk+1/2

)
+
(
G
k+1/2
1 , P k+1/2

)
= 0.

Consequently, we obtain (3.3).
To derive H2-bound for the solution of the SAV scheme, we use the following proposition. The proof
of this technical result can be found in Lemma 2.3 in [29].

Proposition 3.3 (Bound for
∥∥∥∇Gk+1/2

i

∥∥∥
0
) Assume that the functions gi (i=1,2) satisfy (1.5) and

let ‖U‖1 ≤M for some constant M > 0. Then there exists 0 ≤ σ < 1 such that∥∥∥∇Gk+1/2
i

∥∥∥ ≤ C(M)

(
1 +

∥∥∥∇∆P k+1/2
∥∥∥2σ

0
+
∥∥∥∇∆Qk+1/2

∥∥∥2σ

0

)
. (3.4)

We have the following result on the H2-norm of P k+1/2 and Qk+1/2.

Proposition 3.4 (H2-bound on the numerical solution) The solution {P k+1, Qk+1} of (2.1) sat-
isfies

max
k=1,...,NT−1

∥∥∥∆P k+1
∥∥∥2

0
+
∥∥∥∆Qk+1

∥∥∥2

0
≤ CT +

∥∥∆P 0
∥∥2

0
+
∥∥∆Q0

∥∥2

0
. (3.5)

Proof. First, we multiply the first equation of (2.1) by ∆2(Qk+1/2), the second equation by
∆2(P k+1/2) and integrate over Ω. Then, by summing the two, we obtain, after integration by parts,
that∥∥∥∇∆Qk+1/2

∥∥∥2

0
+
∥∥∥∇∆P k+1/2

∥∥∥2

0
=

(
rk+1/2∇G̃k+ 1

2
1 ,∇∆Qk+1/2)

)
+

(
rk+1/2∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
.

From the conservation of the modified Hamiltonian (3.1)–(3.2) and assuming a finite initial Hamilto-
nian, we have (

rk+1/2∇G̃k+ 1
2

1 ,∇∆Qk+1/2

)
+

(
rk+1/2∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
≤ C

2

(∥∥∥∥∇G̃k+ 1
2

1

∥∥∥∥2

0

+
∥∥∥∇∆Qk+1/2

∥∥∥2

0
+

∥∥∥∥∇G̃k+ 1
2

2

∥∥∥∥2

0

+
∥∥∥∇∆P k+1/2

∥∥∥2

0

)
.
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Then, from the result of Proposition 3.3, for any ε > 0, we have∥∥∥∥∇G̃k+ 1
2

1

∥∥∥∥2

0

+

∥∥∥∥∇G̃k+ 1
2

2

∥∥∥∥2

0

≤ ε
∥∥∥∇∆Qk+1/2

∥∥∥2

0
+ ε
∥∥∥∇∆P k+1/2

∥∥∥2

0
+ C(ε).

Therefore, combining the two previous inequalities, we obtain∥∥∥∇∆Qk+1/2
∥∥∥2

0
+
∥∥∥∇∆P k+1/2

∥∥∥2

0
≤ C. (3.6)

Secondly, by multiplying the first equation of (2.1) with ∆2(P k+1/2), the second equation with ∆2(Qk+1/2),
integrating over Ω, and summing the two, we obtain after integration by parts that∥∥∥∆P k+1

∥∥∥2

0
−
∥∥∥∆P k

∥∥∥2

0
+
∥∥∥∆Qk+1

∥∥∥2

0
−
∥∥∥∆Qk

∥∥∥2

0

= τrk+ 1
2

(
∇G̃k+ 1

2
1 ,∇∆Qk+1/2

)
− τrk+ 1

2

(
∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
.

Then, combining the result of Proposition 3.3 and the inequality (3.6), we have∥∥∥∆P k+1
∥∥∥2

0
−
∥∥∥∆P k

∥∥∥2

0
+
∥∥∥∆Qk+1

∥∥∥2

0
−
∥∥∥∆Qk

∥∥∥2

0
≤ τC,

and summing from k = 0→ NT , we obtain (3.5).

Remark 3.5 From the fact that H2(Ω) ⊆ L∞(Ω) for d ≤ 3, we can conclude from the previous
proposition that for k = 1, . . . NT − 1,∥∥∥P k+1

∥∥∥
L∞

+
∥∥∥Qk+1

∥∥∥
L∞
≤ C. (3.7)

Next, we present the stability inequality that will be useful in the convergence analysis.

Proposition 3.6 (Stability inequality) The solution of (2.1) satisfies the stability inequality

max
k=0,...,NT−1

[∥∥∥P k+1
∥∥∥2

0
+
∥∥∥Qk+1

∥∥∥2

0

]
+ τ2

NT−1∑
k=0

[∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

+

∥∥∥∥Qk+1 −Qk

τ

∥∥∥∥2

0

]
≤ C(τ,H0, NT ).

(3.8)

Proof. Multiplying the first equation with 2τP k+1, integrating over Ω and using 2(a − b)a =
a2 − b2 + (a− b)2, we obtain∥∥∥P k+1

∥∥∥2

0
+ τ2

∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

−
∥∥∥P k∥∥∥2

0
= −2τ

(
∇Qk+1/2,∇P k+1

)
+ 2τrk+1/2

(
G̃
k+1/2
1 , P k+1

)
.

Using the Cauchy-Schwartz inequality and (3.1)–(3.2), we obtain

−2τ
(
∇Qk+1/2,∇P k+1

)
≤ 2τ

∥∥∥∇Qk+1/2
∥∥∥

0

∥∥∥∇P k+1
∥∥∥

0
≤ 4τH0.
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Then, from the conservation of the Hamiltonian (3.1)–(3.2), and the conservation of the L2-norm of
the solution (3.3), we obtain using the Cauchy-Schwartz inequality

rk+1/2
(
G̃
k+1/2
1 , P k+1

)
≤ C

(∥∥∥G̃k+1/2
1

∥∥∥
0

∥∥∥P k+1
∥∥∥

0

)
≤ C

∥∥∥Gk+1/2
1

∥∥∥
0

+O(τ2).

Since from Proposition 3.4 and (3.7), we have that
∥∥∥Gk+1/2

i

∥∥∥
0
≤ C with i = 1, 2, for a large number of

nonlinearities. Therefore, combining the previous inequalities for the right-hand side of (3), we obtain

∥∥∥P k+1
∥∥∥2

0
+ τ2

∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

≤ Cτ +
∥∥∥P k∥∥∥2

0
.

The same can be found for the second equation by repeating the same calculations. Summing for
k = 0→ NT − 1, we find (3.8).

4 Convergence analysis

4.1 Notations

To study the convergence of the scheme, we introduce the following notation: For k = 0, . . . , NT − 1
we set

U(t, x) :=
t− tk

τ
Uk+1 +

tk+1 − t
τ

Uk, t ∈ (tk, tk+1],

and
∂U

∂t
:=

Uk+1 − Uk

τ
t ∈ (tk, tk+1].

We also define
U+ := Uk+1, U− := Uk,

and

U − U+ = (t− tk+1)
∂U

∂t
, U − U− = (t− tk)∂U

∂t
t ∈ (tk, tk+1], k ≥ 0.

In addition, we take analogous definitions for P and Q: For k = 0, . . . ,KT − 1 we set

P (t, x) :=
t− tk

τ
P k+1 +

tk+1 − t
τ

P k, t ∈ (tk, tk+1],

∂P

∂t
:=

P k+1 − P k

τ
t ∈ (tk, tk+1],

P+ := P k+1, P− := P k,

and

P − P+ = (t− tk+1)
∂P

∂t
, and P − P− = (t− tk)∂P

∂t
t ∈ (tk, tk+1], k ≥ 0.
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4.2 Convergence theorem

Now we are in the position to establish time convergence for the semi discrete SAV scheme (2.1).

Theorem 4.1 (Convergence) Let {p, q} be a pair of functions such thatp(t, x) ∈ L2
(
[0, T ];H1(Ω)

)⋂
H1
(

[0, T ];
(
H1(Ω)

)′)
q(t, x) ∈ L2

(
[0, T ];H1(Ω)

)⋂
H1
(

[0, T ];
(
H1(Ω)

)′)
.

Then for τ → 0 we can extract a subsequence of solutions of (2.1), such that

P, P± → p strongly in L2
(
[0, T ];L2(Ω)

)
, (4.1)

Q,Q± → q strongly in L2
(
[0, T ];L2(Ω)

)
, (4.2)

P, P± ⇀ p weakly in L2
(
[0, T ];H1(Ω)

)
, (4.3)

Q,Q± ⇀ q weakly in L2
(
[0, T ];H1(Ω)

)
, (4.4)

∂P

∂t
⇀

∂p

∂t
weakly in L2

(
[0, T ];

(
H1(Ω)

)′)
, (4.5)

∂Q

∂t
⇀

∂q

∂t
weakly in L2

(
[0, T ];

(
H1(Ω)

)′)
, (4.6)

rk+1 ⇀ r(t) =
√
E1[t] + Ec weak-star in L∞ (0, T ) . (4.7)

The limit {p, q} satisfies the nonlinear Schrödinger model (1.2) in the following weak sense
∫ T

0

〈
∂p
∂t , η

〉
dt =

∫ T
0

∫
Ω∇q∇η +

(
V (x)q + ∂F (|p|2,|q|2)

∂q

)
η dx dt∫ T

0

〈
∂q
∂t , η

〉
dt =

∫ T
0

∫
Ω−∇p∇η −

(
V (x)p+ ∂F (|p|2,|q|2)

∂p

)
η dx dt,

(4.8)

for all η ∈ L2
(
[0, T ];H1(Ω)

)
.

Proof.
Step 1: Weak and strong convergences. First, the weak convergences (4.3), (4.4), (4.5) and (4.6)

follow from the assumption that the initial Hamiltonian energy is bounded and the stability inequal-
ity (3.8).
Then, the weak-star convergence (4.7) also holds true by the conservation of the modified Hamiltonian

and the boundedness of the initial state.
From the compact embeddingH1(Ω) ⊂ L2(Ω) ≡

(
L2(Ω)

)′, we can apply the Lions-Aubin Lemma [26]
to find both convergences (4.1) and (4.2).
Step 2: Limit system. Let us work on the first equation of the discrete system. We use a test

function η ∈ L2
(
[0, T ];H1(Ω)

)
and analyze the convergence of the terms separately. First, from the

weak convergence (4.4), we have∫ T

0

∫
Ω
∇
(
Q+ +Q−

2

)
∇η dx dt→

∫ T

0

∫
Ω
∇q∇η dx dt.
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Secondly, from the fact that G̃k+1/2
1 is a second-order approximation of Gk+1/2

1 , we have∫ T

0

∫
Ω
rk+1/2G̃

k+1/2
1 η dx dt =

∫ T

0

∫
Ω
rk+1/2G

k+1/2
1 η dx dt+

∫ T

0

∫
Ω
rk+1/2O(τ2)η dx dt.

From the inequality ∣∣∣E1(Uk+1/2)− E1(u)
∣∣∣ ≤ C ∥∥∥Uk+1/2

∥∥∥2

L1(Ω)
,

and the fact that
P±, Q± ⇀ p, q weak-star in L∞

(
0, T ;H1(Ω)

)
,

which follows from the conservation of both the Hamiltonian energy and the L2 norm, we have

E1(Uk+1/2) ⇀ E1(u) weak-star in L∞ (0, T ) .

The same holds true for δEk+1/2
1
δq and δEk+1/2

1
δp using similar arguments. Then, using also the strong

convergences (4.1) and (4.2), together with the weak-star convergence (4.7), we obtain∫ T

0

∫
Ω
rk+1/2G

k+1/2
1 η dx dt+

∫ T

0

∫
Ω
rk+1/2O(τ2)η dx dt→

∫ T

0

∫
Ω
r(t)g1(t)η dx dt.

Finally, for any η ∈ H1([0, T ];H1(Ω)), by integration by parts we have∫ T

0

(
∂P

∂t
, η

)
dt = −

∫ T

0

(
P,
∂η

∂t

)
dt+ (P (T ), η(T ))− (P (0), η(0)) .

Hence, from the regularity of η and the convergence (4.1) , we obtain∫ T

0

(
P,
∂η

∂t

)
dt→

∫ T

0

(
p,
∂η

∂t

)
dt as τ → 0 and ∀η ∈ H1([0, T ];H1(Ω)).

Gathering the previous convergences, we have

(p(T ), η(T ))− (p(0), η(0))−
∫ T

0

(
p,
∂η

∂t

)
dt =

∫ T

0

∫
Ω
∇q∇η +

(
V (x)q +

∂F (|p|2 , |q|2)

∂q

)
η dx dt.

Since ∇q +
(
V (x)q + ∂F (|p|2,|q|2)

∂q

)
∈ L2(Ω) which follow from the conservation of the Hamiltonian en-

ergy, we know that p ∈ H1
(
[0, T ];H−1(Ω)

)
. Finally, we find the first equation of the limit system (4.8)

and the same arguments can be applied to the second equation. This yields the result.

5 Error analysis

In this section we analyse the difference between the exact and modified Hamiltonian, and establish a
bound on ∣∣∣H[p(tk), q(tk)]− H̃[P k, Qk]

∣∣∣ .
14



In addition we prove second-order convergence of the fully discrete SAV scheme (2.2) approximating
the solution of the nonlinear Schrödinger equation (1.1). We introduce the following notation to study
the error

eku = θku + ρku, (5.1)

where
θku = Uk − (INu)(tk, x), ρku = (INu)(tk, x)− u(tk, x).

For our convergence result we assume that the solution u of (1.1) is sufficiently smooth satisfying

‖∂tttu‖L∞(0,T ;H1(Ω)) + ‖u‖L∞(0,T ;H2(Ω)) ≤ C. (5.2)

We define the different truncation errors by

T
k+ 1

2
u =

uk+1 − uk

∆t
− ∂tu(tk+ 1

2 ),

T
k+ 1

2
u = uk+ 1

2 − u(tk+ 1
2 ) =

uk+1 + uk

2
− u(tk+ 1

2 ).

We commence with two important lemma that will be useful in the global error analysis.

Lemma 5.1 (Boundedness of nonlinear functions) If (p, q) is a solution of (1.4) satisfying (5.2),
we have for i = 1, 2

|gi(p, q)| ,
∣∣∣∣∂gi∂p

∣∣∣∣ , ∣∣∣∣∂gi∂q
∣∣∣∣ , ∣∣∣∣ ∂2gi

∂p∂q

∣∣∣∣ , ∣∣∣∣∂2gi
∂p2

∣∣∣∣ , ∣∣∣∣∂2gi
∂q2

∣∣∣∣ ≤ C.
Proof. This result is found by a combination of the fact that u ∈ L∞(0, T ;H2(Ω)), Remark 3.7,
and assumption (1.5).

Remark 5.2 From Lemma 5.1, and the hypothesis (5.2), we know that

|∂tttr| ≤ C
(
‖∂tttp‖20 + ‖∂tttq‖20

)
.

We have the following Lemma on the norm of the truncation errors (see Lemma 4.7 in [33] for example).

Lemma 5.3 (Truncation errors) For α = −1, 0, 1, 2, we have∥∥∥∥T k+ 1
2

ψ

∥∥∥∥2

Hα(Ω)

≤ τ3

∫ tk+1

tk
‖∂tttψ(s)‖2Hα(Ω) ds,∥∥∥∥T k+ 1

2
ψ

∥∥∥∥2

Hα(Ω)

≤ τ3

∫ tk+1

tk
‖∂tttψ(s)‖2Hα(Ω) ds,

Theorem 5.4 (Error analysis) Assume that the solution of (1.2) satisfies (5.2) with initial con-
dition u0 ∈ H3(Ω). Then the discrete solution {P k+1, Qk+1} of the fully discrete SAV scheme (2.2)
satisfies the error estimate

1

2

∥∥∥∇ek+1
q

∥∥∥2

0
+

1

2

∥∥∥∇ek+1
p

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 ≤ C exp
(

[1− Cτ ]−1 tk+1
) (
τ4 +N−4

)
,

where the constant C depends on the smoothness of the solution (5.2).
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Proof.
Step 1: Error equations. We begin by evaluating the model (1.4) at time tk+1/2

∂tp(t
k+1/2) = −∆q(tk+1/2) + r(tk+1/2)g1(tk+1/2),

∂tq(t
k+1/2) = ∆p(tk+1/2)− r(tk+1/2)g2(tk+1/2),

dr
dt (t

k+1/2) = 1
2

[(
g1(tk+1/2), ∂tq(t

k+1/2)
)

+
(
g2(tk+1/2), ∂tp(t

k+1/2)
)]
.

Subtracting the above equations from (2.2) yields

ek+1
p −ekp
τ + T

k+1/2
p = −∆

(
e
k+1/2
q + T

k+1/2
q

)
+Rk+1/2G̃

k+1/2
1 − r(tk+1/2)g1(tk+1/2),

ek+1
q −ekq
τ + T

k+1/2
q = ∆

(
e
k+1/2
p + T

k+1/2
p

)
−Rk+1/2G̃

k+1/2
2 + r(tk+1/2)g2(tk+1/2),

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[ (
G̃
k+1/2
1 , Q

k+1−Qk
τ

)
+
(
G̃
k+1/2
2 , P

k+1−Pk
τ

)
−
(
g1(tk+1/2), ∂tq(t

k+1/2)
)
−
(
g2(tk+1/2), ∂tp(t

k+1/2)
) ]
.

(5.3)

We introduce the error
e
k+1/2
g,1 = G̃

k+1/2
1 − g1(tk+1/2).

The rightmost terms of the two first equations of (5.3) can be replaced by

Rk+1/2G̃
k+1/2
1 − r(tk+1/2)g1(tk+1/2) = G̃

k+1/2
1

(
ek+1/2
r + T

k+1/2
r

)
+ r(tk+1/2)e

k+1/2
g,1 , (5.4)

and

Rk+1/2G̃
k+1/2
2 − r(tk+1/2)g2(tk+1/2) = G̃

k+1/2
2

(
ek+1/2
r + T

k+1/2
r

)
+ r(tk+1/2)e

k+1/2
g,2 . (5.5)

Similarly, we have

1

2

[(
G̃
k+1/2
1 ,

Qk+1 −Qk

τ

)
−
(
g1(tk+1/2), ∂tq(t

k+1/2)
)]

=
1

2

[(
G̃
k+1/2
1 ,

ek+1
q − ekq
τ

+ T k+1/2
q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)]

,

(5.6)

and
1

2

[(
G̃
k+1/2
2 ,

P k+1 − P k

τ

)
−
(
g2(tk+1/2), ∂tp(t

k+1/2)
)]

=
1

2

[(
G̃
k+1/2
2 ,

ek+1
p − ekp
τ

+ T k+1/2
p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
)]

.

(5.7)

Plugging (5.4), (5.5),(5.6), and (5.7) into (5.3), we thus obtain

ek+1
p −ekp
τ + T

k+1/2
p = −∆

(
e
k+1/2
q + T

k+1/2
q

)
+ G̃

k+1/2
1

(
e
k+1/2
r + T

k+1/2
r

)
+ r(tk+1/2)e

k+1/2
g,1 ,

ek+1
q −ekq
τ + T

k+1/2
q = ∆

(
e
k+1/2
p + T

k+1/2
p

)
− G̃k+1/2

2

(
e
k+1/2
r + T

k+1/2
r

)
− r(tk+1/2)e

k+1/2
g,2 ,

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[(
G̃
k+1/2
1 ,

ek+1
q −ekq
τ + T

k+1/2
q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+

(
G̃
k+1/2
2 ,

ek+1
p −ekp
τ + T

k+1/2
p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]
.
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Using the decomposition of the error (5.1), we furthermore obtain



θk+1
p −θkp
τ + ∆

(
θk+1
q +θkq

2

)
= −ρk+1

p −ρkp
τ −∆

(
ρ
k+1/2
q + T

k+1/2
q

)
+ G̃

k+1/2
1

(
e
k+1/2
r + T

k+1/2
r

)
+r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p ,

θk+1
q −θkq
τ −∆

(
θk+1
p +θkp

2

)
= −ρk+1

q −ρkq
τ + ∆

(
ρ
k+1/2
p + T

k+1/2
p

)
− G̃k+1/2

2

(
e
k+1/2
r + T

k+1/2
r

)
−r(tk+1/2)e

k+1/2
g,2 − T k+1/2

q ,

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[(
G̃
k+1/2
1 ,

ek+1
q −ekq
τ + T

k+1/2
q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+

(
G̃
k+1/2
2 ,

ek+1
p −ekp
τ + T

k+1/2
p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]
.

(5.8)

Step 2. Error estimate formula. We use the following notations to make the results more compact

D1
τθ
k+1
p =

θk+1
p − θkp

τ
, D1θk+1

p = θk+1
p − θkp .

Taking the inner product of the first equation of the system (5.8) with −D1θk+1
q and the second with

D1θk+1
p , and summing the results, we also have,

1

2
D1
∥∥∥∇θk+1

q

∥∥∥2

0
+

1

2
D1
∥∥∥∇θk+1

p

∥∥∥2

0
=
(
D1
τρ
k+1
p , D1θk+1

q

)
−
(
D1
τρ
k+1
q , D1θk+1

p

)
−
(
∇ρk+1/2

q ,∇D1θk+1
q

)
−
(
∇ρk+1/2

p ,∇D1θk+1
p

)
−
(
∇T k+1/2

q ,∇D1θk+1
q

)
−
(
∇TK+1/2

p ,∇D1θk+1
p

)
−
(
G̃
k+1/2
1

(
ek+1/2
r + T

k+1/2
r

)
, D1θk+1

q

)
−
(
G̃
k+1/2
2

(
ek+1/2
r + T

k+1/2
r

)
, D1θk+1

p

)
−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
.

(5.9)

Multiplying the third equation of (5.8) by 2τe
k+1/2
r , we have

D1
∣∣∣ek+1
r

∣∣∣2 + 2τT k+1/2
r ek+1/2

r − τek+1/2
r

[ (
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
+
(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]

= ek+1/2
r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
.

(5.10)
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Using (5.10) in (5.9), we have

1

2
D1
∥∥∥∇θk+1

q

∥∥∥2

0
+

1

2
D1
∥∥∥∇θk+1

p

∥∥∥2

0
+D1

∣∣∣ek+1
r

∣∣∣2
=
(
D1
τρ
k+1
p , D1θk+1

q

)
−
(
D1
τρ
k+1
q , D1θk+1

p

)
−
(
∇
(
ρk+1/2
q + T

k+1/2
q

)
,∇D1θk+1

q

)
−
(
∇
(
ρk+1/2
p + T

k+1/2
p

)
,∇D1θk+1

p

)
− T k+1/2

r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
− 2τT k+1/2

r ek+1/2
r + τek+1/2

r

[ (
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
+
(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]

−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
.

(5.11)

Step 3. Inequalities for the terms on the right-hand side of (5.11).
Now, we bound the right-hand side of (5.11). Using Lemma 2.1, Lemma 5.3 and Young’s inequality

we have (
D1
τρ
k+1
p , D1θk+1

q

)
≤ 4

∥∥∥D1
τρ
k+1
p

∥∥∥2

0
+

1

16

∥∥∥D1θk+1
q

∥∥∥2

0
≤ CN−6 +

1

16

∥∥∥D1θk+1
q

∥∥∥2

0
,

−
(
D1
τρ
k+1
q , D1θk+1

p

)
≤ 4

∥∥∥D1
τρ
k+1
q

∥∥∥2

0
+

1

16

∥∥∥D1θk+1
p

∥∥∥2

0
≤ CN−6 +

1

16

∥∥∥D1θk+1
p

∥∥∥2

0
.

Then, from Theorem (3.1), we have

−
(
∇ρk+1/2

q ,∇D1θk+1
q

)
−
(
∇ρk+1/2

p ,∇D1θk+1
p

)
≤
(∥∥∥∇ρk+1/2

q

∥∥∥2

0

∥∥∥∇D1θk+1
q

∥∥∥2

0
+
∥∥∥∇ρk+1/2

p

∥∥∥2

0

∥∥∥∇D1θk+1
p

∥∥∥2

0

)
≤ CN−4,

and
−
(
∇T k+1/2

q ,∇D1θk+1
q

)
−
(
∇TK+1/2

p ,∇D1θk+1
p

)
≤
(∥∥∥∇T k+1/2

q

∥∥∥2

0

∥∥∥∇D1θk+1
q

∥∥∥2

0
+
∥∥∥∇TK+1/2

p

∥∥∥2

0

∥∥∥∇D1θk+1
p

∥∥∥2

0

)
≤ Cτ4,

For the rest of the terms on the right-hand side of (5.11), we use Lemma 5.3, and Proposition 3.6
together with Lemma 5.1, and Remark 5.2, to obtain

−T k+1/2
r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
≤ 4

∣∣∣T k+1/2
r

∣∣∣2(∥∥∥G̃k+1/2
1

∥∥∥2

0
+
∥∥∥G̃k+1/2

1

∥∥∥2

0

)
+

1

16

(∥∥∥D1θk+1
q

∥∥∥2

0
+
∥∥∥D1θk+1

p

∥∥∥2

0

)
≤ Cτ4 +

1

16

(∥∥∥D1θk+1
q

∥∥∥2

0
+
∥∥∥D1θk+1

p

∥∥∥2

0

)
,

(5.12)
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−2τT k+1/2
r ek+1/2

r ≤ Cτ
(∥∥∥T k+1/2

r

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2) ≤ Cτ5 + τ

∣∣∣ek+1
r

∣∣∣2 + τ
∣∣∣ekr ∣∣∣2 ,

τek+1/2
r

(
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
≤ τ

2

∥∥∥G̃k+1/2
1

∥∥∥2

0

(∥∥∥D1
τρ
k+1
q

∥∥∥2

0
+
∥∥∥T k+1/2

q

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2)

≤ Cτ
(
N−6 + τ4 +

∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2) ,

τek+1/2
r

(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
≤ τ

2

∥∥∥G̃k+1/2
2

∥∥∥2

0

(∥∥∥D1
τρ
k+1
p

∥∥∥2

0
+
∥∥∥T k+1/2

p

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2)

≤ Cτ
(
N−6 + τ4 +

∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2) ,

τek+1/2
r

[(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
)]

≤ τ

2

∥∥∥∂tq(tk+1/2)
∥∥∥2

0

(∥∥∥ek+1/2
g,1

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2)

+
τ

2

∥∥∥∂tp(tk+1/2)
∥∥∥2

0

(∥∥∥ek+1/2
g,2

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2)

≤ Cτ
(∥∥∥ek+1/2

g,1

∥∥∥2

0
+
∥∥∥ek+1/2

g,2

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2) ,

and
−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
≤ 4

∣∣∣r(tk+1/2
∣∣∣2(∥∥∥ek+1/2

g,1

∥∥∥2

0
+
∥∥∥ek+1/2

g,2

∥∥∥2

0
+
∥∥∥T k+1/2

p

∥∥∥2

0
+
∥∥∥T k+1/2

q

∥∥∥2

0

)
+

1

16

(∥∥∥D1θk+1
q

∥∥∥2

0
+
∥∥∥D1θk+1

p

∥∥∥2

0

)
≤ C

(∥∥∥ek+1/2
g,1

∥∥∥2

0
+
∥∥∥ek+1/2

g,2

∥∥∥2

0
+ 2τ4

)
+

1

16

(∥∥∥D1θk+1
q

∥∥∥2

0
+
∥∥∥D1θk+1

p

∥∥∥2

0

)
.

(5.13)

Step 4. Estimating the terms in the inequalities (5.12)–(5.13). First, we aim to emiminate the terms∥∥D1θk+1
p

∥∥2

0
and

∥∥D1θk+1
q

∥∥2

0
in the above inequalities. Taking the inner product of the first equation of

(5.8) with 2τθk+1
p , we obtain(

D1
τθ
k+1
p , 2τθk+1

p

)
= 2τ

(
∇θk+1/2

q ,∇θk+1
p

)
− 2τ

(
D1
τρ
k+1
p , θk+1

p

)
+ 2τ

(
∇
(
ρk+1/2
q + T

k+1/2
q

)
,∇θk+1

p

)
+ 2τ

(
ek+1/2
r + T

k+1/2
r

)(
G̃
k+1/2
1 , θk+1

p

)
+ 2τ

(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , θk+1
p

)
.

Knowing that (
D1
τθ
k+1
p , 2τθk+1

p

)
≥
∥∥∥D1θk+1

p

∥∥∥2

0
,
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we have

∥∥∥D1θk+1
p

∥∥∥2

0
≤ 2τ

(
∇θk+1/2

q ,∇θk+1
p

)
− 2τ

(
D1
τρ
k+1
p , θk+1

p

)
+ 2τ

(
∇
(
ρk+1/2
q + T

k+1/2
q

)
,∇θk+1

p

)
+ 2τ

(
ek+1/2
r + T

k+1/2
r

)(
G̃
k+1/2
1 , θk+1

p

)
+ 2τ

(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , θk+1
p

)
.

(5.14)
Let us bound the terms on the right-hand side of (5.14). Using Lemma 2.1 we find that

2τ
(
∇θk+1/2

q ,∇θk+1
p

)
≤ τ

(∥∥∥∇θk+1
q

∥∥∥2

0
+
∥∥∥∇θkq∥∥∥2

0
+
∥∥∥∇θk+1

p

∥∥∥2

0

)
,

−2τ
(
D1
τρ
k+1
p , θk+1

p

)
≤ τ

(∥∥∥D1
τρ
k+1
p

∥∥∥2

H−1(Ω)
+
∥∥∥∇θk+1

p

∥∥∥2

0

)
≤ τ

(
N−6 +

∥∥∥∇θk+1
p

∥∥∥2

0

)
,

2τ
(
∇
(
ρk+1/2
q + T

k+1/2
q

)
,∇θk+1

p

)
≤ τ

(
CN−4 + Cτ4 +

∥∥∥∇θk+1
p

∥∥∥2

0

)
,

2τ
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , θk+1
p

)
≤ τ

(
C
∥∥∥ek+1/2

g,1

∥∥∥2

0
+ τ4 + C

∥∥∥∇θk+1
p

∥∥∥2

0

)
,

where we have used the Poincaré inequality to obtain the last inequality. Plugging the previous
inequalities into (5.14), we obtain

∥∥∥D1θk+1
p

∥∥∥2

0
≤ τ

(∥∥∥∇θk+1
q

∥∥∥2

0
+
∥∥∥∇θkq∥∥∥2

0
+ CN−4 + Cτ4 + C

∥∥∥ek+1/2
g,1

∥∥∥2

0
+ C

∥∥∥∇θk+1
p

∥∥∥2

0

)
. (5.15)

Similarly, taking the inner product of the second equation of (5.8) with 2τθk+1
q and repeating the

same steps as before, we obtain

∥∥∥D1θk+1
q

∥∥∥2

0
≤ τ

(∥∥∥∇θk+1
p

∥∥∥2

0
+
∥∥∥∇θkp∥∥∥2

0
+ CN−4 + Cτ4 + C

∥∥∥ek+1/2
g,2

∥∥∥2

0
+ C

∥∥∥∇θk+1
q

∥∥∥2

0

)
. (5.16)

Step 5. Estimating
∥∥∥ek+1/2

g,1

∥∥∥2

0
and

∥∥∥ek+1/2
g,2

∥∥∥2

0
. Using the notations

S(p, q) =
√
E1(p, q) + C,

and

N1(p, q) =
δ

δq
E1(p, q), N2(p, q) =

δ

δp
E1(p, q)
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we have that

e
k+1/2
g,1 = G1(P k+1/2, Qk+1/2)− g1(p(tk+1/2), q(tk+1/2))

=
N1(P k+1/2, Qk+1/2)

S(P k+1/2, Qk+1/2)
− N1(p(tk+1/2), q(tk+1/2))

S(p(tk+1/2), q(tk+1/2))

=
N1(P k+1/2, Qk+1/2)

S(P k+1/2, Qk+1/2)
− N1(P k+1/2, Qk+1/2)

S(p(tk+1/2), q(tk+1/2))
+

N1(P k+1/2, Qk+1/2)

S(p(tk+1/2), q(tk+1/2))

− N1(p(tk+1/2), q(tk+1/2))

S(p(tk+1/2), q(tk+1/2))

=
N1(P k+1/2, Qk+1/2)

[
E1(p(tk+1/2), q(tk+1/2))− E1(P k+1/2, Qk+1/2)

]
S(P k+1/2, Qk+1/2)S(p(tk+1/2), q(tk+1/2))

[
S(P k+1/2, Qk+1/2) + S(p(tk+1/2), q(tk+1/2))

]
+
N1(P k+1/2, Qk+1/2)−N1(p(tk+1/2), q(tk+1/2))

S(p(tk+1/2), q(tk+1/2))
.

From the smoothness assumption (5.2), Lemma 5.1, and Remark 3.5, we have∥∥∥ek+1/2
g,1

∥∥∥2

0
≤ C

[∥∥∥P k+1/2 − p(tk+1/2)
∥∥∥2

0
+
∥∥∥Qk+1/2 − q(tk+1/2)

∥∥∥2

0

]
.

Then, using the notation (5.1) and Lemma 5.3, we obtain∥∥∥ek+1/2
g,1

∥∥∥2

0
≤ C

[∥∥∥θk+1
p

∥∥∥2

0
+
∥∥∥θkp∥∥∥2

0
+
∥∥∥θk+1

q

∥∥∥2

0
+
∥∥∥θkq∥∥∥2

0
+ τ3 +N−4

]
≤ C

[∥∥∥∇θk+1
p

∥∥∥2

0
+
∥∥∥∇θkp∥∥∥2

0
+
∥∥∥∇θk+1

q

∥∥∥2

0
+
∥∥∥∇θkq∥∥∥2

0
+ τ3 +N−4

]
.

Similarly, we have∥∥∥ek+1/2
g,2

∥∥∥2

0
≤ C

[∥∥∥∇θk+1
q

∥∥∥2

0
+
∥∥∥∇θkq∥∥∥2

0
+
∥∥∥∇θk+1

p

∥∥∥2

0
+
∥∥∥∇θkp∥∥∥2

0
+ τ3 +N−4

]
.

Step 6. Discrete Gronwall Lemma. The above two estimates together with (5.15) and (5.16) imply

1

2
D1
∥∥∥∇θk+1

q

∥∥∥2

0
+

1

2
D1
∥∥∥∇θk+1

p

∥∥∥2

0
+D1

∣∣∣ek+1
r

∣∣∣2
≤ τC

[ ∥∥∥∇θk+1
p

∥∥∥2

0
+
∥∥∥∇θkp∥∥∥2

0
+
∥∥∥∇θk+1

q

∥∥∥2

0
+
∥∥∥∇θkq∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 +
∣∣∣ekr ∣∣∣2 ]+ C

[
τ4 +N−4

]
.

Therefore, by the use of Gronwall’s Lemma, we can conclude that

1

2

∥∥∥∇θk+1
q

∥∥∥2

0
+

1

2

∥∥∥∇θk+1
p

∥∥∥2

0
+
∣∣∣ek+1
r

∣∣∣2 ≤ C exp
(

[1− Cτ ]−1 tk+1
) (
τ4 +N−4

)
.
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6 Numerical experiments

In this section we numerically confirm our theoretical convergence result given in Theorem 5.4 and
illustrate the long time energy conservation of the SAV method. In the following, the numerical results
have been obtained from Algorithm 2. However, we want to emphasize that Algorithm 1 leads to the
same results and has a comparable computational cost for d = 1.
Our numerical findings suggest the favorable energy preservation of the SAV method compared to

classical splitting methods in certain applications such as for non-linearities with non-integer exponents
which arise for instance in context of optical dark and power law solitons with surface plasmonic
interactions [16]. For the comparison we use the classical first order Lie and second order Strang
splitting which are known for their near energy preservation over long times, see, e.g., [17].
In the numerical examples we plot the deviation of the exact Hamiltonian and the modified Hamil-

tonian H̃, i.e., eH̃ =
∣∣∣H(tk)− H̃k

∣∣∣, the error between the exact Hamiltonian and the discrete non-

modified Hamiltonian eH =
∣∣H(u(tk))−H(Uk)

∣∣, as well as the L2 error eu =
∥∥∣∣Uk∣∣− ∣∣u(tk)

∣∣∥∥
L2(Ω)

.
We choose the potential V = 0 in the Schrödinger equation (1.1).

6.1 First test case: cubic nonlinearity

In a first example we consider the nonlinear Schrödinger equation (1.1) with a cubic nonlinearity i.e.

f(|u|2) = β |u|2

on the spatial domain Ω = [−32, 32]. In Figure 1 we choose a mesh size h = 1/32 and approximate
the soliton solution [12, 5]

u(x, t) =
a√
−β

sech (a(x− vt)) exp
(
ivx− 0.5(v2 − a2)t

)
,

with the parameters a = 1, β = −1 and v = 1 up to T = 10. Figure 1 numerically confirms the second-
order convergence of the SAV method. The numerical findings also suggest that the error constant of
the Strang splitting method is slightly better than the one of the SAV method in this example. In
Figure 2 we simulate the solitary wave

u(t, x) =

√
2eit

cosh(x)

on the domain [− π
0.11 ,

π
0.11 ] with N = 256 collocation points and time step size τ = 0.01. We illustrate

the evolution of the errors eH , eu and eH̃ over long times, i.e., up to T = 1000. Our numerical findings
confirm the conservation of the modified Hamiltonian by the SAV method, see Figure 2. We also
observe that the SAV method preserves well the exact energy and L2 norm over long times. Even
though, the error eH of the Strang splitting seems favorable in this example, we have to stress that
the modified Hamiltonian is closer to the value of the real Hamiltonian (see error eH̃ on Figure 2).

6.2 Second test case: cubic nonlinearity with non-smooth initial condition

In this example we analyse the error behaviour of the SAV scheme in case of non-smooth initial
data. For this purpose we solve the NLS equation with cubic nonlinearity with initial data of various

22



Figure 1: Error eu (left) and eH (right) versus step size τ at time T = 10.

Figure 2: Left Figure: error eu (left) through time. Right Figure: eH (blue, red, yellow) and eH̃
(purple) through time.

regularity. More precisely, we choose f(|u|2) = β |u|2 with β = 1 and consider u0 ∈ Hα with α =
3/2, 2, 3, 5 on the spatial domain Ω = [−π, π] with N = 1024 gridpoints. The discrete initial data of
various regularity is generated as proposed in [27].
Figure 3 shows the convergence behaviour of the SAV scheme, and the two splitting methods for

the initial data of different regularity. We find that if α < 3, the SAV method does not maintain its
second order convergence rate and for α = 2, the SAV scheme reduces to first order. Decreasing the
regularity of the initial condition even more, the convergence worsens and becomes less than order 1.
A similar order reduction is observed for the splitting schemes, however, for the latter the error starts
to oscillate for α < 3. Again, the error eH is favorable for the Strang splitting for all α. However, the
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modified Hamiltonian is closer to the real Hamiltonian (see Figure 4 for α = 2
3).

Figure 3: Error eH versus step size τ for the nonlinear Schrödinger equation starting from different
initial conditions in Hα (α = 2

3 top-left, α = 2 top-right, α = 3 bottom left and α = 5 bottom-right).
The dotted lines represent order τ (green) and τ2 (purple), respectively.

6.3 Third test case: non-integer exponent

In this example we consider the periodic nonlinear Schrödinger equation (1.1) with nonlinearities with
non-integer exponents ([16])

f(|u|2) = β |u|4/γ , γ > 0
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Figure 4: Error eH (blue, red, yellow) through time and eH̃ (purple) through time for initial condition
in H

2
3 .

where the Hamiltonian takes the form

H(u) =

∫
Ω

1

2
|∇u|2 + β

γ

(4 + 2γ)
|u|

4
γ

+2
dx.

We carry out simulations for various exponents γ = 2, 8/3, 4, 8 up to time T = 10 with smooth initial
value

u(0, x) = sin(x) ∈ C∞([−π, π]).

The error eH for different exponents γ is plotted in Figure 5. Our numerical findings suggest that as γ
increases the splitting methods suffer from sever order reduction. This loss of convergence of splitting
methods was also observed in [27]. The SAV method, on the other hand, retains its second order
energy convergence for non-integer exponents.

6.4 Computing ground states

We use the SAV scheme to simulate ground states of Bose-Einstein condensates, however, unlike the
work of Antoine et al. [5], we propose here to use a different strategy. Indeed, in [5], the authors use
the SAV scheme presented in Section 2 and observe the capacity of the scheme to preserve the initial
mass and Hamiltonian for various strengths of the nonlinearity. In the present work, we propose to
use a different method and compare the numerical results with reference methods that are designed to
simulate the stationary states of the NLS equation for large nonlinearities.
To do so, we reformulate the problem into the solving of a gradient flow equation to compute these

stationary states: this method is known has the gradient flow with discrete normalization method [6, 9].
The SAV scheme is well adapted to this formulation since its original purpose was the simulation of

the gradient flow equations. Details of the reformulation and the adaptation of the SAV scheme to the
case can be found in Appendix A.
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Figure 5: Error eH versus step size τ for the nonlinear Schrödinger equation with different non-integer
exponents (γ = 2 top-left, γ = 8

3 top-right, γ = 4 bottom left and γ = 8 bottom-right). The dotted
lines represent order τ (green) and τ2 (purple), respectively.

We here present numerical results obtained choosing d = 1, V (x) = x2/2, β = 400, and
u0(x) = exp(−x2/2)

π1/4 /
∥∥u0
∥∥

0
. We validate our results with the Backward Euler PseudoSpectral (BEPS in

short) scheme implemented in the GPELab code [3, 4].
We denote by E(u) the energy associated to the renormalized system and Ẽ(u) its modified SAV

energy (see Appendix A for details).
Figure 6 (left) compares the stationary states obtained with the two schemes for h = 1/8 in space.

We clearly see that they both reach the same steady state. Figure 6 (right) depicts the evolution of
the energy during the simulation. We observe that the SAV scheme preserves the monotonic decay
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of the energy. The steady state reached at the end of the simulation has an energy Ẽ(φ) ≈ 22.90.
However, using the solution φg obtained for the SAV scheme and computing the "real" energy, we
obtain E(φ) ≈ 21.36 which is the value obtained with the BEPS scheme.

Figure 6: (Left) Comparison of stationary solutions of the NLS equation with a large cubic nonlinearity
obtained with the SAV scheme (blue) and the BEPS scheme from GPELab (red). (Right) Evolution
of the energy Ẽ(u) for the SAV scheme during the simulation.

We numerically evaluate the order of convergence in space of the SAV scheme for the simulation of
ground states. We choose our reference solution to be the result of a simulation with h = 1/32. Then,
we vary h from 1/2 to 1/16. Figure 7 shows that the scheme remains second order convergent in space
as predicted by our error analysis.

A Gradient flow with discrete normalization for computing ground
state

A common method to compute stationary states of the NLS equation (1.1) with a cubic nonlinearity
is to write

u(t, x) = φ(x) exp(−iµt),

where µ is defined as the chemical potential of the condensate

µ(φ) =

∫
Ω

(
1

2
|∇φ|+ β |φ|4 + V (x) |φ|2

)
dx.

Therefore, using the previous reformulation in Equation (1.1), we obtain

µφ(x) = −1

2
∆φ(x) + β |φ(x)|2 φ(x) + V (x)φ(x).
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Figure 7: Error eu versus grid size h for the simulation of ground states with a large cubic nonlinearity.

Denoting by S = {φ| ‖φ‖L2(Ω) = 1} the unit sphere, the ground state φg ∈ S of the Bose-Einstein
condensate is then defined by the solution minimizing the energy functional

E(φ) =

∫
Ω

(
1

2
|∇φ|+ 1

2
β |φ|4 + V (x) |φ|2

)
dx < +∞.

For the proof of the existence of such state and other mathematical properties we refer the reader to
[8].
In the following, we adapt the Scalar Auxiliary Variable method to compute the stationary solutions

of Equation (1.1). Therefore, endowing the equation with the normalization constraint, and using the
projected gradient method [6], the complete system reads{

∂tφ = 1
2∆φ− V (x)u− β |u|2 u(t, x),

‖φ‖2L2(Ω) = 1.

Our SAV scheme can be easily adapted to this case, leading to the discrete system
φ+−φk

τ = 1
2D

(2)φk+1/2 − rk+1/2G̃k+1/2,

rk+1 − rk = 1
2

(
G̃k+1/2, φ+ − φk

)
φk+1 = φ+

‖φ+‖2L(Ω)
,

with φk+1/2 = φ++φk

2 , G̃k+1/2 a second order approximation of δE1[tk+1/2]

δφk+1/2 . We precise that the associ-
ated modified SAV energy is

Ẽ(φ) =

∫
Ω

1

2
|∇φ| dx+ r(t)2 < +∞.
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Both Algorithm 1 and Algorithm 2 from Section 2 can be applied to compute the solution of the
SAV system. Furthermore, using the same calculation as in Section 3, we can easily prove that the
scheme dissipates the energy and preserves the normalization constraint.
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