On ground state (in-)stability in multi-dimensional cubic-quintic Schrödinger equations - Archive ouverte HAL
Article Dans Une Revue ESAIM: Mathematical Modelling and Numerical Analysis Année : 2023

On ground state (in-)stability in multi-dimensional cubic-quintic Schrödinger equations

Résumé

We consider the nonlinear Schrödinger equation with a focusing cubic term and a defocusing quintic nonlinearity in dimensions two and three. The main interest of this article is the problem of orbital (in-)stability of ground state solitary waves. We recall the notions of energy minimizing versus action minimizing ground states and prove that, in general, the two must be considered as nonequivalent. We numerically investigate the orbital stability of least action ground states in the radially symmetric case, confirming existing conjectures or leading to new ones.
Fichier principal
Vignette du fichier
NumCubicQuintic6.pdf (2.63 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03085923 , version 1 (22-12-2020)
hal-03085923 , version 2 (09-09-2021)

Identifiants

Citer

Rémi Carles, Christian Klein, Christof Sparber. On ground state (in-)stability in multi-dimensional cubic-quintic Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis, 2023, 57 (2), pp.423-443. ⟨10.1051/m2an/2022085⟩. ⟨hal-03085923v2⟩
184 Consultations
145 Téléchargements

Altmetric

Partager

More