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ON GROUND STATE (IN-)STABILITY IN

MULTI-DIMENSIONAL CUBIC-QUINTIC SCHRÖDINGER

EQUATIONS

RÉMI CARLES, CHRISTIAN KLEIN, AND CHRISTOF SPARBER

Abstract. We consider the nonlinear Schrödinger equation with a focusing
cubic term and a defocusing quintic nonlinearity in dimensions two and three.

The main interest of this article is the problem of orbital (in-)stability of

ground state solitary waves. We recall the notions of energy minimizing versus
action minimizing ground states and prove that, in general, the two must be

considered as nonequivalent. We numerically investigate the orbital stability

of least action ground states in the radially symmetric case, confirming existing
conjectures or leading to new ones.

1. Introduction

1.1. Basic setting. This work is concerned with the time-evolution corresponding
to the cubic-quintic nonlinear Schrödinger equation (NLS)

(1.1) i∂tu+
1

2
∆u = −|u|2u+ |u|4u, (t, x) ∈ R× Rd,

in dimensions d = 2, or d = 3, and subject to initial data

u|t=0 = u0 ∈ H1(Rd).
The quintic modification of the cubic Schrödinger equation is a model which

was introduced in the one-dimensional case in [27], as an approximate model in
the framework of nonlinear optics. Equation (1.1) appeared more recently in the
context of Bose–Einstein condensation, with d = 2 or 3: see e.g. [1, 12, 25], and
[24] for a review. In space dimensions d = 2 or 3, the impact of the quintic term
on the dynamical properties of the solution u is stronger than in d = 1, as we shall
discuss below.

Depending on the space dimension, which we always assume at most three to
simplify the discussion, the nonlinearity in this model is seen to be: focusing L2-
subcritical plus defocusing L2-critical (d = 1), focusing L2-critical plus defocusing
H1-subcritical (d = 2), or focusing L2-supercritical plus defocusing H1-critical (d =
3). Recall that for the purely focusing cubic NLS, solitons exist in every dimension
and finite time blow-up is possible provided d > 2 (see e.g. [8]). The presence of the
quintic nonlinearity prevents finite time blow-up in d = 2 or 3 (see Proposition 1.1
below), and also affects the stability of solitary waves: understanding this latter
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1



2 R. CARLES, C. KLEIN, AND C. SPARBER

aspect more precisely is the main motivation for this paper. For a more precise
discussion on the role of criticality in combined power nonlinearities see [29].

The NLS (1.1) formally enjoys the following basic conservation laws:

(1) Mass:

M(u) = ‖u(t, ·)‖2L2(Rd),

(2) Momentum:

P (u) = Im

∫
Rd
ū(t, x)∇u(t, x)dx,

(3) Energy:

E(u) =
1

2
‖∇u(t, ·)‖2L2(Rd) −

1

2
‖u(t, ·)‖4L4(Rd) +

1

3
‖u(t, ·)‖6L6(Rd).

As evoked above, one important effect of the defocusing, quintic term is to pre-
vent finite time blow-up which may occur in the purely cubic case. Indeed, the
conservation of the energy, combined with Hölder’s inequality,

(1.2) ‖u‖4L4(Rd) 6 ‖u‖L2(Rd)‖u‖3L6(Rd),

shows that the focusing, cubic part cannot be an obstruction to the existence of a
global in-time solution. More precisely, we have, in view of [8] for d = 2 and [34]
for d = 3:

Proposition 1.1 (Global well-posedness). Let d = 2, 3. For any initial data u0 ∈
H1(Rd), the equation (1.1) has a unique solution u ∈ C(R;H1(Rd)), such that
u|t=0 = u0. This solution obeys the conservation of mass, energy, and momentum.

We note that in [21], numerical simulations are presented, in which the influence
of a small defocusing quintic term on the time-evolution of a focusing cubic NLS is
studied. In d = 2 and 3, and for initial data consisting of Gaussians, one obtains a
time-periodic (multi-focusing) solution, similar to the one depicted in Fig. 11.

1.2. Orbital stability of action minimizing ground states. A particular class
of global solutions are time-periodic solitary waves of the form u(t, x) = eiωtφ(x),
with ω ∈ R and φ satisfying

(1.3) −1

2
∆φ+ ωφ− |φ|2φ+ |φ|4φ = 0, φ ∈ H1(Rd) \ {0}.

For d 6 3, solitary waves φ exist provided that the frequency ω satisfies the (nec-
essary and sufficient) condition:

0 < ω < 3
16 ,

see [7]. Given an admissible ω ∈ (0, 3
16 ), we may then look for least action ground

states, i.e. solutions φω(x) which minimize the action

Sω(φ) = E(φ) + ωM(φ)

among all nontrivial stationary solutions φ ∈ H1(Rd). Indeed, it is known from
[6, 10] that every minimizer of the action Sω is of the form

(1.4) φω(x) = eiθQω(x− x0),

for some constant θ ∈ R, x0 ∈ Rd, and with Qω the unique positive, radial solution
to (1.3). In the following, we are mainly interested in the orbital stability of these
specific solutions. To this end, we note that, as in the case of more standard, homo-
geneous nonlinearities (e.g. the cubic case), the NLS (1.1) enjoys three important
invariances:

(i) Spatial translation: if u(t, x) solves (1.1), then so does u(t, x− x0), for any
given x0 ∈ Rd.
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(ii) Gauge: if u(t, x) solves (1.1), then so does eiθu(t, x), for any given constant
θ ∈ R.

(iii) Galilean: if u(t, x) solves (1.1), then so does u(t, x − vt)eiv·x−i|v|2t/2, for
any given v ∈ Rd.

The first two invariants are seen to be present in formula (1.4). In combination with
the third one, these invariants motivate the following standard notion of stability
(see e.g. [8]):

Definition 1.2. Let φ be a solution of (1.3). The standing wave eiωtφ(x) is orbitally
stable in H1(Rd), if for all ε > 0, there exists δ > 0 such that if u0 ∈ H1(Rd) satisfies

‖u0 − φ‖H1(Rd) 6 δ,

then the solution to (1.1) with u|t=0 = u0 satisfies

sup
t∈R

inf
θ∈R
y∈Rd

∥∥u(t, ·)− eiθφ(· − y)
∥∥
H1(Rd)

6 ε.

Otherwise, the standing wave is said to be unstable.

Following the breakthrough due to M. Weinstein, Grillakis, Shatah and Strauss
introduced a general stability/instability criterion in [14] (see also [11]). Assuming
certain spectral properties of the linearization of (1.3) about Qω (which are sat-
isfied in the present cubic-quintic case, see e.g. [7, 17, 22]), one has the following
dichotomy:

(i) If ∂
∂ωM(Qω) > 0, then eiωtQω(x) is orbitally stable,

(ii) If ∂
∂ωM(Qω) < 0, then eiωtQω(x) is unstable.

This criterion has proven extremely useful in the case of homogeneous nonlinearities,
as well as in the case of mixed nonlinearities in d = 1 thanks to an explicit formula,
cf. [15, 26]. In particular, when d = 1, all ground states solitary waves for (1.1) are
orbitally stable. However, in the case d = 2 or 3, only partial results are currently
available by using the criterion above, see Sections 2.2.2 and 2.2.3, respectively.
In our numerical simulations, we will only consider radial perturbation of ground
states, and thus remain in the radial framework. The notion of orbital stability
then coincides with asymptotic stability up to a phase.

Remark 1.3. The dependence of δ upon ε in Definition 1.2 is unknown, in general.
The proof of stability via the above criterion provides a rather explicit dependence of
(a possible) δ as a function of ε, when ∂

∂ωM(Qω) > 0 is known. On the other hand,
the stability of the set of constrained energy minimizers (cf. Definition 2.1 below) is
obtained by a non-constructive argument. In numerical simulations, tuning initial
perturbations of a solitary wave which are sufficiently large to be visible, but not
too large (to still adhere to the notion of stability), requires a subtle balance.

1.3. Constrained energy minimizers. Since solitary waves may be obtained by
other means than minimizing the action Sω, one may want to look for alternative
approaches to orbital stability. An important such alternative is obtained if for
ρ > 0, we denote

Γ(ρ) =
{
u ∈ H1(Rd), M(u) = ρ

}
,

and assume that the constrained minimization problem

(1.5) u ∈ Γ(ρ), E(u) = inf{E(v) ; v ∈ Γ(ρ)} =: Emin(ρ)

has a solution. We call such minimizers energy ground states, in order to make the
distinction with least action ground states as clear as possible. Denote by E(ρ) the
set of such solutions, i.e.

E(ρ) := {u ∈ H1(Rd), M(u) = ρ, E(u) = Emin(ρ)}.
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Now, let φ ∈ E(ρ): Then there exists a Lagrange multiplier Λ such that

dE(φ) = ΛdM(φ),

and thus, φ solves the stationary Schrödinger equation (1.3) for some (unknown)
ω ∈ (0, 3

16 ). Observe that if φ ∈ E(ρ), then

{eiθφ(· − y); θ ∈ R, y ∈ Rd} ⊂ E(ρ).

When the nonlinearity is homogeneous (and L2-subcritical), this inclusion becomes
an equality, see [9, 8]. However, for non-homogeneous nonlinearities like in (1.1),
relating these two constructions of solitary waves (i.e., action minimizing ground
states versus constrained energy minimizers) is not obvious at all, and the issue
is possibly more complex than it may appear at a glance. First, a-priori nothing
guarantees that an element of E(ρ) minimizes the action. Second, and this is more
subtle: consider a least action ground state Qω, and let ρ = M(Qω). It is not
obvious, and not necessarily true, that Qω ∈ E(ρ). In particular, the map ρ 7→ ω
may not be one-to-one. We will prove that, unlike in the case of homogeneous
nonlinearities, we may indeed have Qω 6∈ E(ρ), cf. Theorem 2.5 below. This fact
should be compared to the recent results of [16]: In there, the authors establish for
a large class of nonlinearities (including the cubic-quintic one in space dimension
d 6 3), that all all energy minimizing ground states are least action ground states.
In addition, they show that if ω is obtained as the Lagrange multiplier associated
to the mass constrained M(u) = ρ, then any least action solution of (1.3) at this
value of ω is a constrained energy minimizer with the same mass ρ.

This paper is now organized as follows: In Section 2, we shall review several
known mathematical results on the (in-)stability of ground state solitary waves in
d = 1, 2, 3. In particular, we recall the fact that the set of energy minimizers is
orbitally stable. We then prove that the dynamics of this set can be distinguished
from dispersive behavior and that in d = 3 the sets of action and energy minimizers
are not equivalent. In Section 3 we numerically construct action ground states
and also collect several of their qualitative properties. Numerical evidence for the
orbital stability of these action ground states in d = 2 is then given in Section
4, where we will also describe the numerical algorithm used to simulate the time
evolution of (1.1). Finally, we shall turn to the question of orbital stability and
instability of 3D action ground states in Section 5, where we will provide numerical
evidence for several conjectures on the particular nature of the instability.

2. Mathematical results on orbital (in-)stability

2.1. Stability for energy ground states. As a preliminary step, we shall recall
the Pohozaev identities for the cubic-quintic case (for a derivation, see e.g. [7]): if
φ ∈ H1(Rd) solves the stationary Schrödinger equation (1.3), then

(2.1)
1

2

∫
Rd
|∇φ|2 dx−

∫
Rd
|φ|4 dx+

∫
Rd
|φ|6 dx+ ω

∫
Rd
|φ|2 dx = 0,

as well as

(2.2)
d− 2

2

∫
Rd
|∇φ|2 dx− d

2

∫
Rd
|φ|4 dx+

d

3

∫
Rd
|φ|6 dx+ ωd

∫
Rd
|φ|2 dx = 0.

The aforementioned admissible range for ω ∈ (0, 3
16 ) is one of the consequences

of these identities. In addition, if d = 2, and after multiplying (2.1) by 2 and
subtracting (2.2), we find

0 = ‖∇φ‖2L2(R2) − ‖φ‖
4
L4(R2) +

4

3
‖φ‖6L(R2) = 2E(φ) +

5

6
‖φ‖6L(R2).
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Therefore, any solitary wave in 2D has negative energy. In the 3D case, this is not
necessarily so, as we will see below.

Next, we recall the notion of orbital stability for the set of energy minimizers,
as introduced in [9]:

Definition 2.1. We say that solitary waves are E(ρ)-orbitally stable, if for all ε > 0,
there exists δ > 0 such that if u0 ∈ H1(Rd) satisfies

inf
φ∈E(ρ)

‖u0 − φ‖H1(Rd) 6 δ,

then the solution to (1.1) with u|t=0 = u0 satisfies

sup
t∈R

inf
φ∈E(ρ)

‖u(t, ·)− φ‖H1(Rd) 6 ε.

This notion is weaker than the one given in Definition 1.2, in the sense that
E(ρ) may be a large set. In particular, we cannot infer orbital stability of individ-
ual members φ ∈ E(ρ), as required in Definition 1.2. In the case of homogeneous
nonlinearities, however, one can prove that the set E(ρ) consists of only a single
element φ (up to translation and phase conjugation), and thus one recovers Defini-
tion 1.2 from the one above. To prove E(ρ)-orbital stability via the concentration-
compactness method, the main step consists in showing that the minimal energy
Emin(ρ) < 0. In our case this yields:

Theorem 2.2 (From [7]). Let d = 2 or 3.

(1) If Emin(ρ) < 0, then E(ρ) is not empty, and the set of energy ground states
is E(ρ)-orbitally stable.

(2) There exists ρ0(d) > 0 such that for ρ > ρ0(d), Emin(ρ) < 0.

In particular, it seems reasonable to expect that no dispersion is possible near
elements of E(ρ), in the sense that a solution u(t, ·) within Definition 2.1 cannot
satisfy

(2.3) ‖u(t)‖L∞(Rd) −→
t→∞

0.

We will use this criterion as a guiding principle for interpreting several of our
numerical findings below. However, it is not clear a priori that for ρ > 0, such that
E(ρ) 6= ∅, we have

inf{‖φ‖L∞(Rd), φ ∈ E(ρ)} > 0.

The property Emin(ρ) < 0 makes it possible to rule out this scenario.

Proposition 2.3 (Non-dispersion of energy ground states). Let d = 2 or 3, and
ρ > 0. If Emin(ρ) < 0, then

mp := inf{‖φ‖Lp(Rd), φ ∈ E(ρ)} > 0,

for any p ∈ (4,∞]. In particular, there exists ε0(d) such that for 0 < ε 6 ε0(d),
any solution u provided by Definition 2.1 satisfies

inf
t∈R
‖u(t, ·)‖L∞(Rd) > 0.

The statement of this proposition does not involve the above parameter ρ0(d).
For practical application, we want to emphasize that if for a given mass ρ, a sta-
tionary solution has negative energy, then solutions around E(ρ) cannot disperse.

Proof. Assume, by contradiction, that there exists a sequence (φn)n∈N ⊂ E(ρ) such
that

lim
n→∞

‖φn‖Lp(Rd) = 0, for some p > 4.
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Since ‖φn‖L2(Rd) = ρ, by interpolation, this implies that

lim
n→∞

‖φn‖L4(Rd) = 0.

In turn, this yields that

Emin(ρ) = lim
n→∞

E(φn) = lim
n→∞

(
1

2
‖∇φn‖2L2(Rd) +

1

3
‖φn‖6L6(Rd)

)
> 0,

a contradiction.
Now, choose 0 < ε < m5. Consider initial data u0 ∈ H1(Rd) such that

inf
φ∈E(ρ)

‖u0 − φ‖H1(Rd) 6 δ,

where δ stems from Definition 2.1 and orbital stability (which is ensured since
Emin(ρ) < 0). Then, by the E(ρ)-orbital stability and Sobolev imbedding, we have

sup
t∈R

inf
φ∈E(ρ)

‖u(t, ·)− φ‖L5(Rd) 6 ε.

Since for all t and all φ ∈ E(ρ),

‖u(t, ·)‖L5(Rd) > ‖φ‖L5(Rd) − ‖u(t, ·)− φ‖L5(Rd) > m5 − ‖u(t, ·)− φ‖L5(Rd) ,

this implies that

inf
t∈R
‖u(t, ·)‖L5(Rd) > m5 − ε > 0.

In particular, since ‖u(t, ·)‖L2 = const., an interpolation between L2 and L∞ proves

inf
t∈R
‖u(t, ·)‖L∞(Rd) > 0,

and hence (2.3) cannot hold. �

2.2. Further mathematical results. In the following we review some of the
known results on orbital (in-)stability of ground states in d = 1, 2, 3. Moreover,
we shall prove that 3D action ground states are not necessarily energy minimizers.

2.2.1. The purely cubic case. For the cubic Schrödinger equation

(2.4) i∂tu+
1

2
∆u = −|u|2u, (t, x) ∈ R× Rd,

with d 6 3, the Cauchy problem is globally well-posed for d = 1 (both in L2(R)
and H1(R), since the nonlinearity is L2-subcritical), while finite time blow-up is
possible if d = 2 or 3, see e.g. [8]. Regarding the solitary waves, the analogue of
(1.3) is

(2.5) −1

2
∆φ+ ωφ− |φ|2φ = 0, φ ∈ H1(Rd) \ {0}.

The corresponding Pohozaev identities imply that such a non-trivial solution exists
only if ω > 0. Conversely, for any given ω > 0, (2.5) has a unique positive radial
solution. As a matter of fact, since the nonlinearity is homogeneous, the role of ω
is explicit: consider Qcubic the unique positive radial solution in the case ω = 1,

(2.6) −1

2
∆Qcubic +Qcubic −Q3

cubic = 0, x ∈ Rd.

Then for any ω > 0,

φω(x) :=
√
ωQcubic(x

√
ω)

is a positive radial solution to (2.5). By uniqueness of such solutions, φω is an
action ground state, minimizing

Ecubic(φ) + ωM(φ) =
1

2
‖∇φ‖2L2(Rd) −

1

2
‖φ‖4L4(Rd) + ω‖φ‖2L2(Rd).
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In particular, we readily compute

‖φω‖L2(Rd) = ω1/2−d/4‖Qcubic‖L2(Rd).

Recalling the Grillakis-Shatah-Strauss stability criterion, this directly implies that
cubic ground states are orbitally stable in d = 1, and unstable in d = 3 (in fact,
we have strong instability by blow-up, see e.g. [8]). The 2D case is L2-critical and
instability stems from the fact that the cubic ground state has exactly zero energy
(as seen from [32]). Arbitrarily small perturbations can therefore make the energy
negative, which consequently leads to finite time blow-up of the associated solution
u by a standard virial argument.

2.2.2. Cubic-quintic case in 2D. For d = 2, it follows from the analysis in [7] that
any solitary wave has a mass larger than that of the cubic ground state, i.e. for
any ω ∈ (0, 3

16 ), and any solution to (1.3)

‖φ‖L2(R2) > ‖Qcubic‖L2(R2),

where Qcubic is the radial, positive solution to (2.6).

Recall that Qω denotes the action ground state. Having in mind the Grillakis-
Shatah-Strauss theory, the following asymptotic results have been proved in [7, 23]:
for ω ≈ 0 or ω ≈ 3

16 , the map ω 7→ M(Qω) is increasing. This implies orbital
stability in the sense of Definition 1.2, at least for some range of the frequency ω
close to the critical values. The numerical plots of M(Qω) given in [23] (see also
Section 3 below) suggest that ω 7→M(Qω) is indeed increasing on the whole range
ω ∈ (0, 3

16 ), and hence:

Conjecture 2.4. In d = 2, all cubic-quintic action ground state solutions are
orbitally stable.

In Section 4 we shall give further numerical evidence for this conjecture to be
true, by performing several simulations of the time-evolution of perturbed action
ground states in 2D.

2.2.3. Cubic-quintic case in 3D. As established in [17, 23], when d = 3, it holds:

(i) On the one hand, as ω → 0, it holds:

M(Qω) =
1√
ω
M(Qcubic) +

√
ω

2
‖Qcubic‖6L6(R3) +O

(
ω3/2

)
,

where Qcubic is the positive, radial solution to (2.6).
(ii) On the other hand:

lim
ω→3/16

M(Qω) = lim
ω→3/16

∂M(Qω)

∂ω
= +∞.

According to the Grillakis-Shatah-Strauss theory, this implies that cubic-quintic
action ground states in 3D are unstable near ωmin = 0, and orbitally stable near
ωmax = 3

16 . Numerical plots in [23] show a U-shaped curve for ω 7→ M(Qω). This
suggests the existence of a unique unstable branch and a unique stable branch. We
shall numerically investigate the nature of instability in this case in Section 5.

Recalling the fact that the set of (constrained) energy minimizers with negative
energy is indeed orbitally stable, cf. Theorem 2.2, we shall now show that solutions
to (1.3) may have positive energy when d = 3. Indeed, following the approach of
[17, Section 2.4], we can rescale Qω via

ψω(x) :=
1√
ω
Qω

(
x√
ω

)
.
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The new unknown ψω then solves

−1

2
∆ψω + ψω − ψ3

ω + ωψ5
ω = 0,

and, as established in [17],

ψω = Qcubic +O(ω) in H1(R3), as ω → 0.

This implies

E(Qω) =
√
ω

(
1

2
‖∇Qcubic‖2L2(R3) −

1

2
‖Qcubic‖4L4(R3) +O(ω)

)
=
√
ω
(
‖Qcubic‖2L2(R3) +O(ω)

)
,

where the last simplification stems from Pohozaev identities for Qcubic (discard the
L6 norms from (2.1) and (2.2)). Therefore, there exists ω0 > 0 such that

E(Qω) > 0, ∀ω ∈ (0, ω0).

Recalling that M(Qω) → ∞ as ω → 0, this shows that there exists unstable ac-
tion ground states with positive energy and arbitrarily large mass. On the other
hand, Theorem 2.2 shows that there exists ρ0 > 0 such that for all ρ > ρ0, the
minimization problem (1.5) has a solution, and Emin(ρ) < 0. In summary this
yields:

Theorem 2.5. Not all action ground states in d = 3 are energy ground states.

To our knowledge, this is the first rigorous statement which shows that the two
notions of action versus energy ground states, in general, need to be considered as
independent (this is also a consequence of [33, Appendix E], as pointed out in [23],
since at least for some values of ω close to zero, ∂M(Qω)/∂ω < 0). Note that our
theorem is consistent with the results of [16] which establishes that the converse is
true, i.e. all energy ground states are action ground states. From the point of view
of dynamics, the results above leave open the possibility of having orbitally stable
least action ground states, which are not members of E(ρ).

2.2.4. Previous results in the 1D case. In the case d = 1, it is fairly natural to
generalize the nonlinearity in (1.1) to recover features similar to those of (1.1)
when d = 2 or 3. More precisely, consider

(2.7) i∂tu+
1

2
∂2
xu = −|u|p−1u+ |u|q−1u,

with 1 < p < q. In dimension one, all algebraic nonlinearities are energy-subcritical
and explicit solution formulas for φω are available in some cases (see in particular
[15]). In addition, the focusing part is L2-critical for p = 4. We therefore expect
(2.7) to behave similar to (1.1) in d = 2, if we choose p = 4, and similar to (1.1)
in d = 3, if p > 4. Indeed, using [14, 15], it is proved in [26] that for p = 4, all
standing waves (not necessarily ground states) are orbitally stable, while for p > 4,
some are orbitally stable (for ω ≈ ωmax, computed analogously to the value 3

16 for
(1.1)), and some are unstable (for ω ≈ 0).

Numerical simulations have addressed the case p > 4, see [5, 13, 28]. In par-
ticular, [13] reports simulations for perturbations of unstable action ground states,
showing two possible dynamics: full dispersion, or convergence to another (stable)
soliton.

Remark 2.6. In the case d = 1 and p > 4, the conclusion of Theorem 2.5 remains
true, using the same proof.
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3. Numerical construction of action ground states

3.1. Numerical algorithm. In this section, we shall discuss a numerical approach
for constructing least action ground state solutions to (1.3) in dimensions d = 2
and 3. To this end, we first note that since Qω is real and radially symmetric, it
solves

(3.1)
1

2

(
∂2Qω
∂r2

+
d− 1

r

∂Qω
∂r

)
− ωQω +Q3

ω −Q5
ω = 0,

where r = |x|. In order to get an equation with regular coefficients (which conse-
quently allows for a more efficient numerical approximation), we introduce the new
independent variable

(3.2) s = r2,

in which (3.1) reads

(3.3) 2s
∂2Qω
∂s2

+ d
∂Qω
∂s
− ωQω +Q3

ω −Q5
ω = 0.

Since it is known that cubic-quintic ground states are exponentially decreasing
(see, e.g., [7]), we choose an s0 � 1 such that Qω(s0) vanishes within numerical
precision (which is of the order of 10−16 here since we work in double precision).
Below s0 = 103, while in the next section we shall also consider examples with
s0 = 104. The numerical task is thus to find a non-trivial solution to (3.3) for
given ω ∈ (0, 3

16 ), such that Qω (numerically) satisfies the homogenous Dirichlet
condition Qω(s0) = 0.

The interval [0, s0] is then mapped via s = s0
2 (1 + `), ` ∈ [−1, 1] to the interval

[−1, 1]. On the latter we introduce standard Chebyshev collocation points `n =
cos(nπ/N), n = 0, . . . , N , N ∈ N to discretize the problem. For any given ω > 0
in the admissible range, the function Q ≡ Qω is consequently approximated via
the Lagrange interpolation polynomial PN (`) of degree N , coinciding with Q at the
collocation points,

PN (`n) = Q(`n), n = 0, . . . , N.

Similarly, the (radial) derivative of Q is approximated via the derivative of the
Lagrange polynomial, i.e.

∂

∂s
Q(s(`n)) ≈ P ′N (`n).

At the collocation points, this implies ∂sQ(~̀) ≈ DQ, since the interpolation poly-

nomial is obviously linear in the `n, n = 0, . . . , N . Here, ~̀ is the vector with
components `n, D is the Chebyshev differentiation matrix [30, 31] and Q is the
vector with components Q(s(`n)), n = 0, . . . , N .

With the above discretization, equation (3.3) is approximated by a system of
nonlinear equations for the vector Q which can be formally written in the form
F(Q) = 0. The homogenous Dirichlet condition for s = s0 is thereby implemented
by eliminating the column and the line corresponding to s0, cf. [30] for more details.
This shows that F(Q) = 0 is an N -dimensional system of nonlinear equations for
the N components Q(s(`n)), n = 1, . . . , N . This system will be solved via a Newton
iteration,

(3.4) Q(m+1) = Q(m) − (JacF(Q(m)))−1MQ(m),

where JacF denotes the Jacobian of F, and where Q(m), m = 0, 1, . . . denotes the
m-th iterate.

Note, however, that Q = 0 is always a trivial solution to (3.3), which needs to
be avoided during the iteration process. In order for this algorithm to converge to
our desired, non-trivial solution Q, one needs to identify a suitable initial iterate
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Q(0). To do so, we shall apply a tracing or continuation technique as follows: We
introduce in (3.3) a deformation parameter α ∈ [0, 1], such that for α = 0 we have
only the focusing cubic nonlinearity, while for α = 1 we obtain the full cubic-quintic
equation, i.e. we effectively solve

(3.5) 2s
∂2Qω,α
∂s2

+ d
∂Qω,α
∂s

− ωQω,α +Q3
ω,α − αQ5

ω,α = 0, α ∈ [0, 1],

instead of only (3.3). The cubic solitons Qω,α=0 are numerically known, see, e.g.
[2, 19] (no explicit ground state formula exists in dimensions d > 2). We can thus
solve the discretized equation (3.5) for α = 0.1 and, say, ω = 0.1 via the Newton
iteration described above. The resulting solution Qω=0.1,α=0.1 is then used as an
initial iterate for the same equation for α = 0.2, and so on, until the cubic-quintic
case α = 1 is reached. In a second step, we use the ground states obtained for
ω = 0.1 as an initial iterate for slightly smaller or larger ω’s within the admissible
range 0 < ω < 3

16 = 0.1875. In this way all examples presented below can be
treated.

As an example we show in Fig. 1 the ground state solutions Qω(r) at ω = 0.1
for the cubic NLS in blue and the cubic-quintic NLS in red. It can be seen that the

Figure 1. Ground state solutions Qω=0.1 to the cubic NLS in blue
and the cubic-quintic NLS in red: on the left for d = 2 and on the
right for d = 3.

situation is qualitatively different depending on the spatial dimension. Whereas in
2D, the cubic-quintic ground state has a slightly greater maximum and is slightly
faster decaying than Qcubic, in 3D the cubic-quintic ground state has a much smaller
maximum and a considerably larger support.

3.2. Numerical ground states in 2D. We first consider the case d = 2 with
N = 400 collocation points: In Fig. 2 we show on the left a plot of the ground state
function Qω(r) for various values of ω. It is seen that the maximum of the ground
states increases with ω. The solutions also become more localized with increasing
ω. On the right of the same figure, we show the L∞(R2)-norm of the ground states
as function of ω. For convenience, we only consider values of ω ∈ [0.005, 0.16].

In Fig. 3 we depict the ground-state massM(Qω) and energy E(Qω) as a function
of ω. These plots are based on a total library of roughly 100 numerical ground state
solutions Q on the shown range of ω. The corresponding mass- and energy-integrals
are thereby computed with the Clenshaw-Curtis algorithm in s = r2, a spectral
integration method based on the same Chebyshev collocation points as before, see
[30]. Both M(Qω) and E(Qω) appear to be monotonic in ω. In particular, the
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Figure 2. Left: Ground state solutions to (3.1) in dimension d =
2 for several values of ω. Right: The L∞-norm of these states as a
function of ω.

monotonicity of M(Q) indicates orbital stability in the sense of Definition 1.2, in
view of the Grillakis-Shatah-Strauss theory.

Figure 3. M(Qω) and E(Qω) as a functions of ω in dimension d = 2.

3.3. Numerical ground states in 3D. In the case d = 3, we use the same
numerical parameters as before: In Fig. 4, we show on the left the ground states
for several values of ω. It can again be seen that the maximum of Qω increases
with ω, at least up to some value ω∗ ≈ 0.1. For larger values of ω, however, the
L∞(R3)-norm of Qω is seen to be decreasing again.

Analogously to the 2D case, the solutions become more localized with increasing
ω. Note, however, that despite its exponential decay, the 3D soliton is less localized
than in the case of the purely focusing, cubic NLS, see Fig. 1 on the right. The
3D ground states in Fig. 4 on the left are also found to be less peaked than the
corresponding solutions in dimension 2, see Fig. 2.

In contrast to the 2D case, the ground state mass M(Qω) is no longer mono-
tonically increasing as a function of ω. Looking at Fig. 5, we see that, instead,
M(Qω) has a minimum at ωcrit ≈ 0.026. We consequently expect orbital instability
of ground states Qω for ω < ωcrit, a phenomenon we shall study in more detail in
Section 5. In Fig. 6, the corresponding ground state energy E(Qω) is seen to have
a maximum at the same ωcrit ≈ 0.026.
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Figure 4. Left: Ground state solutions to (3.1) in dimension d =
3 for several values of ω. Right: The L∞-norm of these states as a
function of ω.
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Figure 5. Left: M(Qω) as a functions of ω, for cubic-quintic
ground states Qω in dimension d = 3. Right: a close-up of the
same curve near ωcrit.
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Figure 6. Left: E(Qω) as a functions of ω, for cubic-quintic
ground states Qω in dimension d = 3. Right: a close-up of the
same curve near ωcrit.

The appearance of an unstable branch is clearly visible when the energy E(Qω)
is plotted as a function of the mass M(Qω), see Fig. 7. Our figure is in good
agreement with [17, Figure 2] (where the constants are different because the factors
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Figure 7. E(Qω) as a function of M(Qω) for cubic-quintic ground
states in dimension d = 3.

are different from (1.1)). Clearly, ground states φω corresponding to the upper
branch cannot correspond to constrained energy minimizers with mass ρ = M(Qω).

4. Orbital stability of action ground states in 2D

4.1. Numerical method for the time-evolution. In this section we will nu-
merically study the time-evolution of (1.1) resulting from initial data u0 given by
perturbations of action ground states. We will only consider perturbations which
conserve the radial symmetry. To consider more general perturbations, a full 3D
code would be necessary which is beyond the scope of the present paper. This
allows us to use the change of variables (3.2) and effectively solve (1.1) in the
(non-singular) form

(4.1) i∂tu+ 2s
∂2u

∂s2
+ d

∂u

∂s
+ |u|2u− |u|4u = 0, d = 2, 3.

We thereby use the same discretization for s ∈ [0,∞) in terms of Chebyshev collo-
cation points as detailed in the previous section.

After the spatial discretization in s, equation (4.1) is then approximated via a
system of ordinary differential equations. These equations are then integrated in
time using a time-splitting method in which the linear step is solved numerically via
an implicit fourth-order Runge-Kutta method, see [20] for more details. The accu-
racy of this time-integration algorithm is henceforth controlled via the analytically
conserved quantity E(u), which in our case nevertheless depends on time due to
unavoidable numerical errors. As discussed in [18], the numerical conservation of
the relative mass tends to overestimate the numerical error by one to two orders
of magnitude. We shall always aim at a numerical error below O(10−3), i.e. below
plotting accuracy. This means that we ensure a relative energy-conservation

∆E =

∣∣∣∣E(t)

E(0)
− 1

∣∣∣∣
of order ∆E = O(10−5), or better.

We shall use a single computational domain Ω = [0, s0] for which we impose
a homogeneous Dirichlet condition u(t, s0) = 0, for all t > 0. We mostly choose
s0 = 103, but in some unstable situations we shall also take s0 = 104. As a basic
test case, we first propagate the three-dimensional ground state Qω, numerically
found at ω = 0.1. We thereby use Nt = 104 time-steps until a final time tf = 10.
We find that the hereby obtained numerical solution u, at t = tf , satisfies

max
Ω
|u(tf , ·)− eitfωQω| = O(10−9),
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i.e. the same order of accuracy as reached in [20].

Remark 4.1. In general, it is not unproblematic to work with a homogeneous
Dirichlet boundary condition on a finite numerical domain, since this could lead
to unwanted reflections of the emitted radiation at the boundary, see, e.g., the
discussion in [3]. In our case, however, only small, rapidly decreasing perturbations
of ground states are considered. It is thus possible to work on sufficiently large
computational domains Ω, on which the radiation can separate from the bulk before
spurious reflections from the boundary lead to noticeable effects.

4.2. Time-evolution of perturbed 2D ground states. In this subsection, we
shall study the time-evolution of perturbed ground states to (1.1) in dimension
d = 2. To this end, we first consider the case where

(4.2) u0(x) = λQω(x), λ > 0.

Here λ > 0 is a perturbation parameter and Qω is a numerically obtained action
ground state, at a certain admissible frequency ω ∈ (0, 3

16 ).

We first study the case where ω = 0.1 and λ = 0.99, and use Nt = 104 time
steps to reach the indicated final time tf = 20. As expected, the solution u to (1.1),
effectively given by (4.1), is found to be close to the exact time-periodic state

φω(t, x) = eiωtQω(x).

To this end, we show on the left of Fig. 8 the L∞(R2)-norm of the solution as a
function of time. It can be seen that it approaches a final state as t → 20. The
latter is found to be very close (in absolute value) to the unperturbed ground state
Qω=0.1. Note that the L∞-difference is of the order of 10−4 and thus, much smaller
than the initial perturbation.

0 5 10 15 20

t

0.74795

0.748

0.74805

0.7481

0.74815

0.7482

0.74825

||
u
||

Figure 8. The 2D solution u to (1.1) for initial data (4.2) with
ω = 0.1 and λ = 0.99. On the left the L∞-norm as a function of
time. On the right the difference between |u| and Qω=0.1 at the
final time tf = 20.

As a second case, we consider the same 2D initial data (4.2), but with λ = 1.001.
In Fig. 9 we again show the L∞-norm of the solution as a function of time. Similarly
as before, a final state is reached and its maximum is again found to be very close
to the unperturbed ground state Qω=0.1. In both cases, we find that the difference
is largest for r close to the origin.

In order to illustrate that the qualitative picture found before is not due to our
specific choice of perturbations, we shall also consider ground states perturbed by
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Figure 9. The 2D solution u to (1.1) for initial data (4.2) with
ω = 0.1 and λ = 1.001. On the left the L∞-norm as a function of
time. On the right the difference between |u| and Qω=0.1 at the
final time tf = 20.

a small Gaussian-like perturbation, i.e.

(4.3) u0(x) = Qω=0.1(x)± λe−|x|
2

, λ = 0.001.

Note that we only consider smooth perturbations in this paper in order to allow
for spectral accuracy in the radial coordinate, i.e., an exponential decrease of the
numerical error with the number of collocation points. In Fig. 10 we show the
behavior in time of the respective L∞-norms for the two choices ±λ. In both
situations the difference between |u| at tf = 20 and Qω=0.1 is found to be of the
order O(10−4). Moreover, the error (not depicted here for the sake of readability)
is again found to be largest close to the origin.
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Figure 10. L∞-norm as a function of time for the 2D solution u
to (1.1) with initial data (4.3) and ω = 0.1. On the left the case
with “+” sign. On the right the case with “−” sign.

If similar perturbations are applied to other ground states Qω, the resulting
solution u behaves qualitatively similarly. Our numerical tests therefore support
Conjecture 2.4. However, we also find that the smaller the choice of ω ∈ (0, 3

16 ), the
longer it takes for the solution u to reach its final state. In fact, for small enough
ω, damping effects within the time-oscillations of |u| become almost invisible, even
if one computes up to much larger times tf = 400, see Fig. 11.
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Figure 11. L∞-norm as a function of time for the 2D solution u
to (1.1) with initial data (4.3) and ω = 0.05. On the left the case
with the “+” sign. On the right the case with the “−” sign.

5. (In-)stability of action ground states in 3D

5.1. Stable branch. In this section, we shall study the question of (in-)stability
of cubic-quintic ground states in dimension d = 3. In view of Fig. 5, we expect
ground states Qω with ω > ωcrit ≈ 0.026 to be orbitally stable. That this is indeed
the case, is strongly suggested by our numerical results below.

To this end, we first consider multiplicative perturbations of Qω on the stable
branch: In Figures 12 and 13 we study the time-evolution of (1.1) with initial data
of the form (4.2). On the left of Fig. 12 we show the L∞-norm of the solution u
obtained in the case ω = 0.1 and λ = 0.99. On the right of the same figure, we
show the difference between the unperturbed ground state Qω=0.1 and |u| at the
final time tf = 15. It can be seen that the L∞ norm settles on a nearly constant
value as t→ 15.

Figure 12. The 3D solution u to (1.1) for initial data (4.2) with
ω = 0.1 and λ = 0.99. On the left the L∞-norm as a function of
time. On the right the difference between |u| and Qω=0.1 at the
final time tf = 15.

In Fig. 13 we study the analogous situation with λ = 1.001: Again, the (absolute
value of the) solution u seems to settle around tf = 15 on the stable unperturbed
ground state Q0.1. In both cases, the error between |u| and Qω=0.1 is again found
to be of the order O(10−4).
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Figure 13. The 3D solution u to (1.1) for initial data (4.2) with
ω = 0.1 and λ = 1.001. On the left the L∞-norm as a function of
time. On the right the difference between |u| and Qω=0.1 at the
final time tf = 15.

5.2. Unstable branch. The situation dramatically changes if we consider pertur-
bations of ground state solutions on the unstable branch, i.e. perturbations of Qω
with ω < ωcrit ≈ 0.026:

In Fig. 14 we show the solution u to (1.1) obtained from initial data (4.2) with
ω = 0.01 and λ = 0.999. Note that this implies M(u0) < M(Qω). The solution is
seen to be purely dispersive which is also confirmed by the L∞-norm of the solution
as a function of time (depicted on the right of the same figure). In fact, we did not
discover any stable structure within the time-evolution even if we let the numerical
code run for longer times.

Figure 14. Left: The absolute value of the solution u to (1.1) in
dimension d = 3 obtained from initial data (4.2) with ω = 0.01
and λ = 0.999. Right: The L∞-norm of u as a function of time.

If we consider the same ground state as before, but instead choose λ = 1.001,
we find a different kind of instability. Now the solution u shows oscillations of high
amplitude, see Figure 15.

These oscillations are even more visible in the L∞-norm of the solution, as de-
picted on the left of Fig. 16. One can see that early on the norm is growing strongly
but then it appears to show damped oscillations around some final state. We con-
jecture that the latter corresponds to another ground state on the stable branch.
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Figure 15. Solution to (1.1) in dimension d = 3 for initial data
(4.2) with ω = 0.01 and λ = 1.001.

Figure 16. Solution to (1.1) in dimension d = 3 for initial data
(4.2) with ω = 0.01 and λ = 1.001: On the left the L∞-norm of u
as a function of time. On the right |u| at the final time (in blue)
together with the ground state Qω=0.047 (in green).

To this end, we compare the maximum of |u|, obtained at the final time tf = 500,
with the L∞-norms in our library of previously computed action ground states Qω,
cf. Fig. 4. Indeed we find good agreement of |u|, when compared to Qω with
ω = 0.047 > ωcrit, see the right of Fig. 16. Thus perturbations of unstable ground
states where M(u0) > M(Qω), seem to result in solutions which eventually settle on
another, stable ground state as t→ +∞. Note, however, that M(Qω=0.01) ≈ 79.44
while M(Qω=0.047) ≈ 77.05. If the final state had the same mass as the unper-
turbed initial state, this would correspond to an ω ≈ 0.0495. This shows that a
certain amount of mass is lost through radiation.

5.3. Other kinds of perturbations. The results described above are not due to
our specific choice of perturbations. To show this, we consider initial data

(5.1) u0,±(x) = Qω(x)± λe−(|x|−|x0|)2 , λ = 0.001.

For both |x0| = 0 and |x0| 6= 0, the solution in the case with the “+” sign looks
very similar to the one depicted in Fig. 16. This fact becomes particularly clear
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when one compares the time-evolution of the L∞-norm of u depicted in Fig. 17,
with the one from Fig. 16.

Figure 17. Solution to (1.1) in dimension d = 3 for initial data
of the form (5.1) with |x0| = 1, and ω = 0.01: On the left the
L∞-norm of u as a function of time. On the right |u| at the final
time (in blue) together with the ground state Qω=0.048 (in green).

By comparing the maximum of |u| found at the final time tf = 600 with the L∞-
norm of a stable ground state, we find good agreement with Qω=0.048. The latter
has mass M(Qω=0.048) ≈ 77.95. Unfortunately, we are unable to clearly decide
whether the final state is closer to Qω=0.048 than to Qω=0.047.

In the case of initial data (5.1) with the “−” sign, we again find that the solu-
tion is completely dispersed, see Fig. 18. This is consistent with our earlier findings
above which indicate that perturbation with M(u0) < M(Qω) lead to purely dis-
persive solutions.
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0
0 100 200 300 400 500 600

Figure 18. The L∞-norm of the solution u in dimension d = 3
obtained from initial data (5.1) with the “−” sign. On the left the
case with x0 = 0 and on the right the one with x0 = 1.

We finally note that the situation is qualitatively similar for other values of ω
on the unstable branch. In our last example, we choose ω = 0.007 < ωcrit within
the initial u0 given by (5.1). We again find that perturbations with an initial mass
smaller than M(Qω=0.007) are purely dispersive. Perturbations with mass larger
than M(Qω=0.007) lead to damped oscillations around some final state, see Fig. 19.
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Figure 19. Left: Solution to (1.1) in dimension d = 3 for initial
data (5.1) with x0 = 0 and ω = 0.007. Right: The L∞-norm of u
as a function of time.

The asymptotic final state appears to be close to Qω=0.044 on the stable branch.
The mass of the unperturbed initial data M(Qω=0.007) ≈ 90.57 is seen to be bigger
than M(Qω=0.044) ≈ 75.37, showing again that a non-negligible part of the initial
mass has been radiated away.

The numerical results within this subsection can then be summarized as follows:

Conjecture 5.1. For ω < ωc, consider initial data of the form

u0(x) = Qω(x) + ε(|x|), with ‖ε‖H1 � 1.

(i) If M(u0) < M(Qω), then the solution u to (1.1) is purely dispersive;
(ii) If M(u0) > M(Qω), then the solution to (1.1) converges, as t → +∞, to

a solitary wave φω(t, x) = eiωtQω(x) plus radiation, where Qω is a stable
ground state with mass smaller that the unstable one, M(Qω) < M(Qω).

Remark 5.2. The same instability scenario was found (numerically) for perturbed
solitary wave solutions to the generalized BBM equation in [4], and for a version of
NLS with derivative nonlinearity in [2]. In particular, analogously to our situation,
a perturbation which lowered the mass of the initial data below the one of the
(unstable) solitary wave always resulted in purely dispersive solutions. In all of
these cases, it remains an interesting open question to find a possible selection
criterion for the specific value ω which describes the (stable) asymptotic state φω.
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