Partition functions of N=1 gauge theories on ${S}^2$ × $\mathbb{R}_ε^2$ and duality - Archive ouverte HAL
Article Dans Une Revue International Journal of Modern Physics A Année : 2020

Partition functions of N=1 gauge theories on ${S}^2$ × $\mathbb{R}_ε^2$ and duality

Résumé

We compute the partition functions of N=1 gauge theories on ${S}^2$ × $\mathbb{R}_ε^2$ using supersymmetric localization. The path integral reduces to a sum over vortices at the poles of ${S}^2$ and at the origin of $\mathbb{R}_ε^2$. The exact partition functions allow us to test Seiberg duality beyond the supersymmetric index. We propose the N=1 partition functions on the Ω-background, and show that the Nekrasov partition functions can be recovered from these building blocks.
Fichier principal
Vignette du fichier
1812.11188v2.pdf (750.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03046726 , version 1 (21-05-2024)

Identifiants

Citer

Taro Kimura, Jun Nian, Peng Zhao. Partition functions of N=1 gauge theories on ${S}^2$ × $\mathbb{R}_ε^2$ and duality. International Journal of Modern Physics A, 2020, 35 (33), pp.2050207. ⟨10.1142/S0217751X20502073⟩. ⟨hal-03046726⟩
56 Consultations
27 Téléchargements

Altmetric

Partager

More