
HAL Id: hal-03046726
https://hal.science/hal-03046726v1

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partition functions of N=1 gauge theories on S2 x R_ϵ2

and duality
Taro Kimura, Jun Nian, Peng Zhao

To cite this version:
Taro Kimura, Jun Nian, Peng Zhao. Partition functions of N=1 gauge theories on S2 x
R_ϵ2 and duality. International Journal of Modern Physics A, 2020, 35 (33), pp.2050207.
�10.1142/S0217751X20502073�. �hal-03046726�

https://hal.science/hal-03046726v1
https://hal.archives-ouvertes.fr


LCTP-18-27

Partition Functions of N = 1 Gauge Theories on

S2 × R2
ε and Duality

Taro Kimuraa , Jun Nianb,c and Peng Zhaod

aDepartment of Physics, Keio University, Kanagawa 223-8521, Japan
bLeinweber Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, U.S.A.
cRiemann Center for Geometry and Physics, Leibniz University Hannover, D-30167, Germany
dInstitute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

E-mail: taro.kimura@keio.jp, nian@umich.edu, zhaopeng@itp.ac.cn

Abstract: We compute the partition functions of N = 1 gauge theories on S2×R2
ε using

supersymmetric localization. The path integral reduces to a sum over vortices at the poles

of S2 and at the origin of R2
ε. The exact partition functions allow us to test Seiberg duality

beyond the supersymmetric index. We propose the N = 1 partition functions on the Ω-

background, and show that the Nekrasov partition functions can be recovered from these

building blocks.
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1 Introduction

The localization technique provides us with an extremely powerful tool for studying physical

quantities non-perturbatively [1]. For theories with extended supersymmetry, it has been

applied successfully for the computation of partition functions and expectation values of

defect operators, as well as precision tests of dualities. In particular, the low-energy physics

of 4d N = 2 gauge theories can be studied by computing the Nekrasov partition function

[2]. Besides flat space, one can also construct supersymmetry and perform localization on

curved spacetimes. Following the pioneering work [3], a plethora of exact results has been

obtained in various theories in diverse dimensions.

In minimally supersymmetric theories, which exhibit far richer dynamics, progress has

been hindered by the dearth of exact results. Even for 4d N = 1 theories, it has been a

long-standing problem to localize the theories on the simplest compact manifold S4, aside

from indirect attempts using holography [4] and analytic continuation in dimensions [5].

The technical difficulties are explained in [6, 7], using the formalism developed in [8–10].

The compact manifolds on which one can place N = 1 theories have been classified in

[11] and exact calculations were performed in [12–20]. However, most available results are

generalizations of the Witten index and related to the well-studied superconformal indices

[21, 22]. One notable exception is the partition function on T 2 × R2
ε, which has been

computed in [23]. By decoupling the Kaluza-Klein modes on T 2, the first author and the

collaborators provided a partition function test of the 4d/2d correspondence proposed in

[24, 25] (see also [26–29]).

Inspired by [23, 30], in this paper we consider N = 1 gauge theories on S2×R2
ε. From

the 4d point of view, the Killing spinor equation is no longer covariant but depends on the

directions. This treatment has been used before in the literature [31, 32]. We highlight that

treating different directions separately is a crucial step, which circumvents previous diffi-

culties and allows us to localize N = 1 gauge theories in this case. Following the standard

procedure, we construct supersymmetric actions, derive the BPS equations and find the

classical solutions. We find vortices and anti-vortices located at the north and the south

poles of S2 as well as at the origin of R2
ε. This kind of classical configurations is also similar

to previous works on Higgs branch localization for other theories and backgrounds [33–38].

The locations of the (anti-)vortices play the role of the fixed points of the supersymmetry

algebra, which are the points where the only contributions to the partition function come

from.

Finally, we localize N = 1 gauge theories in the Higgs branch on the background

S2 × R2
ε, and the partition function takes the general form:

Z =
∑
~m,~n

ZclassZ
vec
1-loopZ

chiral
1-loop , (1.1)

where ~m and ~n denote the vortex and the anti-vortex numbers, respectively. Zclass is the

classical contribution. The 1-loop determinants Zvec
1-loop and Zchiral

1-loop can be obtained via the

index theorem and the results are expressed as infinite products, which can be suitably

regularized.
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As an application, we use the partition function to test Seiberg duality between two

theories. Seiberg duality has already been subject to numerous tests, most rigorously using

superconformal indices [39–41]. This paper provides another non-index partition function

test of Seiberg duality. Moreover, we expect that our N = 1 results can be related to the

N = 2 Nekrasov partition functions. This is because S2 ×R2
ε can be decomposed into two

patches, each identified with a 4d Ω-background with equivariant parameters

ε1 = ±1

`
, ε2 = ε , (1.2)

where ` denotes the radius of S2. We expect that the results conjectured in this paper can

be confirmed by a direct instanton counting in the future.

This paper is organized as follows. In Section 2, we construct the N = 1 supersymme-

try first on S2 × R2, and then on S2 × R2
ε through a change of coordinates. In Section 3,

we construct the actions that are invariant under the supersymmetry transformations. In

addition, we derive the BPS equations from the action and find the classical solutions. In

Section 4, the partition functions are computed via the Higgs branch localization. In Sec-

tion 5, we test Seiberg duality for 4d N = 1 gauge theories with unitary gauge groups. In

Section 6 we discuss some possible relations between our results and the N = 2 Nekrasov

partition functions on the Ω-background. Some possible directions for future research are

discussed in Section 7. Our convention is summarized in Appendix A. To construct the

4d Killing spinors, we need the 2d Killing spinors on S2, which are discussed in detail in

Appendix B. The 4d N = 1 supersymmetry constructed in Section 2 can also be written

in terms of 2d fields. Assuming that these 2d fields are independent of the coordinates on

R2
ε, we can also rewrite the 4d N = 1 supersymmetry as a 2d N = (2, 2) supersymme-

try discussed in Appendix C. Some identities relevant to deriving the BPS equations are

listed in Appendix D, where we also discuss the classical solutions to the BPS equations.

In Appendix E, we apply the index theorem to compute the 1-loop determinants for the

partition function. Some special functions used in the paper are collected in Appendix F.

2 4D N = 1 Supersymmetry

2.1 Background and Killing Spinors

The metric on S2 × R2
ε with the 2d Ω-background is given in the coordinates (θ, ϕ, w, w̄)

by

ds2 = `2(dθ2 + sin2θ dϕ2) + |dw − iw`ε dϕ|2 , (2.1)

where ` denotes the radius of the two-sphere S2, and we assume that ε is a real parameter.

We choose the real vielbeins ei (i = 1, · · · , 4) to be

e1 = ` dθ , e2 = ` sinθ dϕ , e3 + ie4 = dw − iw`ε dϕ , e3 − ie4 = dw̄ + iw̄`ε dϕ . (2.2)

Consequently, the nonvanishing components of the spin connection are

ω12 = −ω21 = −cosθ dϕ ,

ω34 = −ω43 = `εdϕ .
(2.3)
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Let us define a set of new coordinates:

θ̃ = θ , ϕ̃ = ϕ , z = w e−i`εϕ , z̄ = w̄ ei`εϕ . (2.4)

Although the S2 part of the coordinates remains the same, to distinguish the new coordi-

nates from the old ones we use (θ̃, ϕ̃) instead of (θ, ϕ). In the new coordinates (θ̃, ϕ̃, z, z̄)

we can rewrite the metric (2.1) into the following form:

ds2 = `2(dθ̃2 + sin2θ̃ dϕ̃2) + |dz|2 , (2.5)

which is the same as the one for S2 ×R2. In fact, a similar coordinate transformation can

be applied to T 2 × R2
ε discussed in [23] and bring it into T 2 × R2.1

For the new metric (2.5), we can choose a new set of real vielbeins ẽi as follows:

ẽ1 = ` dθ̃ , ẽ2 = ` sinθ̃ dϕ̃ , ẽ3 + iẽ4 = dz , ẽ3 − iẽ4 = dz̄ . (2.6)

Within this new frame, the only nonvanishing components of the spin connection are

ω̃12 = −ω̃21 = −cosθ̃ dϕ̃ . (2.7)

To study the supersymmetry defined on the background S2×R2
ε, we first consider the

supersymmetry on S2×R2, which is done in Subsection 2.2 and 2.3 for the vector multiplet

and the gauged (anti-)chiral multiplet respectively, and then we change the coordinates to

obtain the supersymmetry on S2 × R2
ε in Subsection 2.4.

Now let us study the supersymmetry on S2 × R2, whose coordinates are denoted by

the indices {M, N, · · · }. In addition, we use the indices {µ, ν, · · · } and {a, b, · · · } to

denote the coordinates on S2 and R2 respectively. We consider the following Killing spinor

equations on S2 × R2:

∇µΥ =
1

2`
ΓµΓ5Υ , ∇aΥ = 0 , (2.8)

where the covariant derivatives are defined as

∇MΥ ≡
(
∂M +

1

4
ωPQM ΓPQ

)
Υ . (2.9)

We would like to emphasize that the non-covariant expression of Eq. (2.8) is crucial in

defining an N = 1 supersymmetry, which can be used to localize the theory, while other

choices of Killing spinor equations will not work.

The 4d Killing spinor Υ can be decomposed as two 4d Killing spinors:

Υ = Σ + Σ̃ , (2.10)

which can be further decomposed into 2d Killing spinors:

Σ = ε⊗ ζ+ , Σ̃ = ε̃⊗ ζ− , (2.11)

1We would like to thank Cyril Closset for very helpful discussions on this point.
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where ζ± are eigenvectors of σ3, which in practice are chosen to be

ζ+ =

(
1

0

)
, ζ− =

(
0

1

)
, (2.12)

while ε and ε̃ are the 2d Killing spinors on S2 satisfying

∇µε =
1

2`
σµσ3ε , ∇µε̃ = − 1

2`
σµσ3ε̃ . (2.13)

These equations are the same as a version of the 2d Killing spinor equations on S2 discussed

in [33, 34, 42]. They can be solved exactly, and the main results of the 2d Killing spinors

on S2 are also summarized in Appendix B. In this paper, we assume the Killing spinors ε

and ε̃ to be commuting spinors, and so are the 4d counter-parts Σ and Σ̃.

2.2 Vector Multiplet on S2 × R2

The N = 1 vector multiplet on Euclidean R4 consists of a gauge boson AM , a spinor Ξ and

a pseudo-scalar auxiliary field D, which are all in the adjoint representation of the gauge

group. In the Euclidean signature, all the fields in the vector multiplet are complexified.

The vector multiplet satisfies the following off-shell SUSY transformations on R4 [43]:

δAM = −1

2
Ῡ ΓMΞ ,

δΞ =
1

4
ΓMNFMNΥ +

i

2
Γ5DΥ ,

δD =
i

2
Ῡ Γ5ΓMDMΞ ,

(2.14)

where

DMΞ ≡ ∇MΞ + [AM , Ξ] . (2.15)

Υ is the 4d SUSY transformation parameter satisfying the Killing spinor equation (2.8),

and its Majorana conjugate is

Ῡ ≡ ΥTC4 (2.16)

with the 4d charge conjugation matrix C4. As discussed in e.g. Ref. [44], in the Euclidean

spacetime a spinor and its complex conjugate or Hermitian conjugate are independent,

and the spinors do not satisfy a reality condition. For a Majorana spinor in the Minkowski

signature, one has to perform a careful Wick rotation to obtain a consistent theory in the

Euclidean signature.

As we discussed before, we are interested in N = 1 theories on S2 × R2
ε. By changing

coordinates one can map the background S2×R2
ε into S2×R2. Hence, we can first construct

N = 1 theories on S2×R2, and then obtain the results in the original background S2×R2
ε

by a reverse change of coordinates.

Next, we consider the theory on S2×R2. We decompose the fields into the components

along S2 and the ones along R2, and then rewrite the transformations (2.14) in terms of

these components. Effectively, we will obtain a 2d gauge theory. This procedure shares
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the same spirit of the papers [31, 32], which is different from the standard dimensional

reduction. The difference is that for the dimensional reduction one assumes that the new

fields have no dependence of some spacetime directions, while in [31, 32] they rewrite the

original theory in terms of the lower-dimensional new fields keeping the dependence of the

reduced dimensions. This procedure is compatible with our choice of the Killing spinors

discussed in the previous subsection.

The original SUSY transformations (2.14) do not form a closed algebra on S2 × R2.

We have to modify the transformations (2.14) on R4 properly to obtain the following

transformations on S2 × R2:

δAM = −1

2
Ῡ ΓMΞ ,

δΞ =
1

4
ΓMNFMNΥ +

i

2
Γ5DΥ +

1

2
ΓMaAaDMΥ ,

δD =
i

2
Ῡ Γ5ΓMDMΞ +

i

2
(DMΥ)TC4Γ5ΓMΞ .

(2.17)

Assuming that Υ is a commuting spinor satisfying the 4d Killing spinor equation (2.8) ,

we obtain the following relations on S2 × R2:{
δΣ1 , δΣ2

}
= 0 ,

{
δ

Σ̃1
, δ

Σ̃2

}
= 0 , (2.18)

and {
δΣ, δΣ̃

}
Aµ = ξM∂MAµ −Dµ(ξMAM ) + (∂µξ

ν)Aν ,{
δΣ, δΣ̃

}
Aa = ξM∂MAa + [ξMAM , Aa] + Θa

bAb ,{
δΣ, δΣ̃

}
Ξ = ξM∂MΞ + [ξMAM , Ξ]− 1

4
ΘµνΓµνΞ +

1

4
ΘabΓ

abΞ ,{
δΣ, δΣ̃

}
D = ξM∂MD + [ξMAM , D] ,

(2.19)

where

δ = δΣ + δ
Σ̃

(2.20)

with δΣ and δ
Σ̃

denoting the transformations generated by the supercharges Σ and Σ̃

defined in Eq. (2.11) respectively, and consequently

δ2 =
{
δΣ, δΣ̃

}
, (2.21)

while

ξM ≡ 1

4
ῩΓMΥ , ΘMN ≡

1

4`
ῩΓMNΓ5Υ (2.22)

are the parameters of the translation and the Lorentz rotation respectively. From these

relations we see that Aa behaves like a scalar field on S2 but like a vector field on R2, which

is opposite for Aµ, while Ξ and D behave as a spinor and a scalar respectively both on S2

and on R2.

With our choice of the gamma matrices, we can also express δ2Ξ into the following

form:

δ2Ξ = ξM∂MΞ+[ξMAM , Ξ]− 1

4
ΘL
µνΓµνPRΞ+

1

4
ΘR
µνΓµνPLΞ+

1

4
ΘL
abΓ

abPRΞ− 1

4
ΘR
abΓ

abPLΞ ,

(2.23)
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where

ΘL
MN ≡

1

4`
ῩΓMNPLΥ , ΘR

MN ≡
1

4`
ῩΓMNPRΥ . (2.24)

Therefore,

δ2PLΞ = ξM∂M (PLΞ) + [ξMAM , PLΞ] +
1

4
ΘR
µνΓµνPLΞ− 1

4
ΘR
abΓ

abPLΞ ,

δ2PRΞ = ξM∂M (PRΞ) + [ξMAM , PRΞ]− 1

4
ΘL
µνΓµνPRΞ +

1

4
ΘL
abΓ

abPRΞ ,

(2.25)

where PL and PR denote the 4d projection operators, which are given by

PL ≡
1

2
(I + Γ5) , PR ≡

1

2
(I− Γ5) . (2.26)

In the above, we have constructed consistent SUSY transformations on S2 × R2 for

the N = 1 vector multiplet. The transformations and the algebra can also be expressed

in terms of the 2d fields explicitly, which in general also depend on the coordinates along

R2. However, if we assume that these 2d fields are independent of the coordinates along

R2, we obtain a 2d N = (2, 2) supersymmetry similar to the dimensional reduction proce-

dure. We mention in the following some relevant results, and more details can be found in

Appendix C.1.

We use the index µ to denote the coordinates along the S2-direction, and for the

R2-direction we define z = x3 + ix4 and z̄ = x3 − ix4. Then we can make the following

decompositions of the fields:

AM → Aµ with µ ∈ {1, 2}, Az =
1

2
(A3 − iA4), Az̄ =

1

2
(A3 + iA4) ,

Ξ = λ⊗ ζ+ + λ̃⊗ ζ− .
(2.27)

Consequently,

PLΞ = PLλ⊗ ζ+ + PRλ̃⊗ ζ− , PRΞ = PRλ⊗ ζ+ + PLλ̃⊗ ζ− , (2.28)

where PL and PR on the right-hand side are the 2d projection operators defined as

PL ≡
1

2
(I + σ3) , PR ≡

1

2
(I− σ3) . (2.29)

We do not use different notations to distinguish the 4d and the 2d projection operators,

which can be easily read off from the context.

Together with the decomposition of the 4d Killing spinor (2.11), we can also express

various parameters appearing in the 4d algebra in terms of the 2d Killing spinors:

Θ12 =
i

2`
ε̃TC2ε , Θ34 =

i

2`
ε̃TC2σ3ε ,

ΘL
12 = ΘL

34 =
i

2`
ε̃TC2PLε ,

ΘR
12 = −ΘR

34 = − i

2`
ε̃TC2PRε .

(2.30)
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The Lorentz rotations from the square of the SUSY transformations become more trans-

parent in terms of the 2d fields and the 2d parameters, so we express the supersymmetry

algebra relations (2.19) on S2 × R2 using the new fields and parameters as follows:{
δΣ, δΣ̃

}
Au = ξM∂MAu −Du

(
ξMAM

)
+ αAu ,{

δΣ, δΣ̃

}
Aū = ξM∂MAū −Dū

(
ξMAM

)
− αAū ,{

δΣ, δΣ̃

}
Az = ξM∂MAz + [ξMAM , Az] + ρAz ,{

δΣ, δΣ̃

}
Az̄ = ξM∂MAz̄ + [ξMAM , Az̄]− ρAz̄ ,{

δΣ, δΣ̃

}
PLλ = ξM∂MPLλ+ [ξMAM , PLλ] +

1

2
αPLλ+

1

2
ρPLλ ,{

δΣ, δΣ̃

}
PRλ̃ = ξM∂MPRλ̃+ [ξMAM , PRλ̃]− 1

2
αPRλ̃−

1

2
ρPRλ̃ ,{

δΣ, δΣ̃

}
PRλ = ξM∂MPRλ+ [ξMAM , PRλ]− 1

2
αPRλ+

1

2
ρPRλ ,{

δΣ, δΣ̃

}
PLλ̃ = ξM∂MPLλ̃+ [ξMAM , PLλ̃] +

1

2
αPLλ̃−

1

2
ρPLλ̃ ,{

δΣ, δΣ̃

}
D = ξM∂MD + [ξMAM , D] ,

(2.31)

where

Au ≡
1

2
(A1 − iA2) , Aū ≡

1

2
(A1 + iA2) ,

Du ≡
1

2
(D1 − iD2) , Dū ≡

1

2
(D1 + iD2) ,

(2.32)

and

α ≡ −iΘ12 =
1

2`
(ε̃TC2ε) , ρ ≡ iΘ34 = − 1

2`
(ε̃TC2σ3ε) (2.33)

play the role of the rotation parameters on S2 and on R2 respectively.

From the relations above, we can clearly see the spins of various fields on S2 and R2.

To summarize, for the vector multiplet on S2×R2 we find that the SUSY transformations

satisfy

δ2 = ξM ∂̃M + ξMAM + αJus + ρJzs , (2.34)

where Jus and Jzs denote the spins of the field on S2 and R2 respectively. The square of

the supersymmetry generates a Lorentz transformation, a gauge transformation, a vector

R-rotation by ρ and an axial R-rotation by α. As we will see later, it takes this universal

form for all fields.

2.3 Gauged (Anti-)Chiral Multiplet on S2 × R2

The gauged chiral multiplet on Euclidean R4 consists of a complex scalar Φ, a left-projected

spinor PLΨ and a complex auxiliary field F , while the gauged anti-chiral multiplet includes

a complex scalar Φ̄, a right-projected spinor PRΨ and a complex auxiliary field F̄ . In the

Euclidean signature, all the fields in the gauged (anti-)chiral multiplet are complexified.
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They have the following SUSY transformations on R4 [43]:

δΦ =
1√
2

ῩPLΨ ,

δPLΨ =
1√
2
PL(ΓMDMΦ + F )Υ ,

δF =
1√
2

ῩPRΓMDMΨ− ῩPRΞΦ ,

(2.35)

and

δΦ̄ =
1√
2

ῩPRΨ ,

δPRΨ =
1√
2
PR(ΓMDM Φ̄ + F̄ )Υ ,

δF̄ =
1√
2

ῩPLΓMDMΨ− ῩPLΞΦ̄ .

(2.36)

The modified transformations on S2 × R2 are

δΦ =
1√
2

ῩPLΨ ,

δPLΨ =
1√
2
PL(ΓMDMΦ + F )Υ +

q√
2

(PLΓMDMΥ)Φ ,

δF =
1√
2

ῩPRΓMDMΨ− ῩPRΞΦ +
q√
2

(DMΥ)TC4PRΓMΨ ,

(2.37)

and for the gauged anti-chiral multiplet (Φ̄, PRΨ, F̄ ):

δΦ̄ =
1√
2

ῩPRΨ ,

δPRΨ =
1√
2
PR(ΓMDM Φ̄ + F̄ )Υ +

q√
2

(PRΓMDMΥ)Φ̄ ,

δF̄ =
1√
2

ῩPLΓMDMΨ− ῩPLΞΦ̄ +
q√
2

(DMΥ)TC4PLΓMΨ .

(2.38)

Assuming that Υ is a commuting spinor satisfying the 4d Killing spinor equation (2.8), we

find that these modified transformations on S2 × R2 satisfy the following relations:{
δΣ1 , δΣ2

}
= 0 ,

{
δ

Σ̃1
, δ

Σ̃2

}
= 0 , (2.39)

and {
δΣ, δΣ̃

}
Φ = ξM∂MΦ + [ξMAM , Φ] ,{

δΣ, δΣ̃

}
PLΨ = ξM∂M (PLΨ) + [ξMAM , PLΨ] +

1

4
ΘR
µνΓµνPLΨ− 1

4
ΘR
abΓ

abPLΨ ,{
δΣ, δΣ̃

}
F = ξM∂MF + [ξMAM , F ] ,{

δΣ, δΣ̃

}
Φ̄ = ξM∂M Φ̄ + [ξMAM , Φ̄] ,{

δΣ, δΣ̃

}
PRΨ = ξM∂M (PRΨ) + [ξMAM , PRΨ]− 1

4
ΘL
µνΓµνPRΨ +

1

4
ΘL
abΓ

abPRΨ ,{
δΣ, δΣ̃

}
F̄ = ξM∂M F̄ + [ξMAM , F̄ ] .

(2.40)
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From these relations we see that PLΨ and PRΨ behave as spinors both on S2 and on R2,

while Φ, Φ̄, F and F̄ transform as scalars both on S2 and on R2.

In the above, we have constructed consistent SUSY transformations on S2×R2 for the

(anti-)chiral multiplet. Like the vector multiplet, the transformations and the algebra for

the (anti-)chiral multiplet can also be expressed in terms of the 2d fields explicitly, which

in general also depend on the coordinates along R2. If we assume that these 2d fields are

independent of the coordinates along R2, we obtain a 2d N = (2, 2) supersymmetry similar

to the dimensional reduction procedure. Besides some relevant results mentioned in the

following, more details can be found in Appendix C.2.

Like for the vector multiplet, we decompose the 4d fields into the 2d fields:

Φ→ φ , Φ̄→ φ̄ , F → F , F̄ → F̄ ,

PLΨ = PLψ ⊗ ζ+ + PRψ̃ ⊗ ζ− , PRΨ = PRψ ⊗ ζ+ + PLψ̃ ⊗ ζ− .
(2.41)

Based on our choice of the gamma matrices and the previously defined parameters, we

can express the SUSY algebra relations (2.40) on S2 × R2 in terms of the 2d fields and

parameters as follows:{
δΣ, δΣ̃

}
φ = ξM∂Mφ+ [ξMAM , φ] ,{

δΣ, δΣ̃

}
PLψ = ξM∂MPLψ + [ξMAM , PLψ] +

1

2
αPLψ +

1

2
ρPLψ ,{

δΣ, δΣ̃

}
PRψ̃ = ξM∂MPRψ̃ + [ξMAM , PRψ̃]− 1

2
αPRψ̃ −

1

2
ρPRψ̃ ,{

δΣ, δΣ̃

}
F = ξM∂MF + [ξMAM , F ] ,{

δΣ, δΣ̃

}
φ̄ = ξM∂M φ̄+ [ξMAM , φ̄] ,{

δΣ, δΣ̃

}
PRψ = ξM∂MPRψ + [ξMAM , PRψ]− 1

2
αPRψ +

1

2
ρPRψ ,{

δΣ, δΣ̃

}
PLψ̃ = ξM∂MPLψ̃ + [ξMAM , PLψ̃] +

1

2
αPLψ̃ −

1

2
ρPLψ̃ ,{

δΣ, δΣ̃

}
F̄ = ξM∂M F̄ + [ξMAM , F̄ ] .

(2.42)

From the relations above, we summarize that the SUSY transformations for the (anti-)chiral

multiplets also satisfy (2.34).

2.4 Supersymmetry on S2 × R2
ε

In the previous subsections, we have constructed the SUSY transformations for the vec-

tor multiplet and the gauged (anti-)chiral multiplet on S2 × R2. To obtain the SUSY

transformations on S2 × R2
ε, we have to apply an inverse change of coordinates due to

Eq. (2.4).

First, we choose the Killing spinors ε and ε̃ on S2 part of S2 × R2 to be

ε = (I + iσ3)e−iϕ̃/2

(
sin θ̃2
−i cos θ̃2

)
, ε̃ = (I + iσ3)eiϕ̃/2

(
cos θ̃2
−i sin θ̃2

)
, (2.43)

which are specific solutions to the Killing spinor equations (2.13) on S2 [33, 34]. We make

this choice, because ε and ε̃ will have definite chirality at the poles of S2.
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With these Killing spinors, we obtain the explicit expression of the Killing vector ξM :

ξ1 = 0 , ξ2 = −sin θ̃ , ξ3 = i cosϕ̃ sinθ̃ , ξ4 = i sinϕ̃ sinθ̃ . (2.44)

Hence, using the inverse vielbeins obtained from the vielbeins (2.6), we can express the

Killing vector in the coordinates (θ̃, ϕ̃, z, z̄) as follows:

ξM ∂̃M = −1

`
∂ϕ̃ + i cosϕ̃ sinθ̃(∂z + ∂z̄)− sinϕ̃ sinθ̃(∂z − ∂z̄) . (2.45)

After changing the coordinates (θ̃, ϕ̃, z, z̄) to (θ, ϕ, w, w̄) as discussed in Subsec-

tion 2.1, the background S2×R2 becomes S2×R2
ε. The SUSY algebra on S2×R2

ε formally

remains the same as (2.34), but there are a few changes.

First, the Killing spinors (2.43) on S2×R2 are no longer solutions to the Killing spinor

equations on S2 × R2
ε, unless we turn on a background gauge field to cancel the ω34 and

the ω43 components of the spin connection (2.3).

DMΣ =

(
∂M +

1

4
ωPQM ΓPQ − iVM

)
Σ , DM Σ̃ =

(
∂M +

1

4
ωPQM ΓPQ + iVM

)
Σ̃ , (2.46)

where we have introduced a background gauge field

VMdx
M =

1

2
ω34
Mdx

M =
1

2
`εdϕ . (2.47)

In Eqs. (2.46), the opposite signs in front of VM is due to the fact that Γ34 = I⊗ iσ3 acting

on Σ = ε ⊗ ζ+ and Σ̃ = ε̃ ⊗ ζ− has opposite eigenvalues. We will interpret VM as the

background gauge field for the R-symmetry, and correspondingly the Killing spinors Σ and

Σ̃ have opposite R-charges. For the physical fields in the theory, their R-charges turn out

to be a combination of the standard R-charges with their spins on R2
ε. In terms of the 2d

field components (2.11)(2.27)(2.41), we found a consistent R-charge assignment given in

Table 1. Introducing the background field VM can be viewed as a partial topological twist

on R2
ε.

PLε PRε PLε̃ PRε̃

−1 −1 +1 +1

Aµ Aw Aw̄ λ λ̃ D

0 −2 +2 −1 +1 0

φ PLψ PRψ̃ F φ̄ PRψ PLψ̃ F̄

q q − 1 q + 1 q −q −q − 1 −q + 1 −q

Table 1. R-charge Assignments for the 2-Component Fields

Second, in the coordinates (θ, ϕ, w, w̄), instead of (2.45) now ξM∂M is given by

ξM∂M = −1

`
∂ϕ − iε(w∂w − w̄∂w̄) + i cosϕ sinθ(∂w + ∂w̄)− sinϕ sinθ(∂w − ∂w̄) . (2.48)
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Note that ∂ϕ generates the U(1) rotation on S2, and (w∂w − w̄∂w̄) generates the U(1)

rotation on R2
ε. The Killing vector has two fixed points located at the north pole (θ = 0)

and at the south pole (θ = π) on S2, and both of them are located at the origin of R2
ε at

the same time. We would like to highlight that the expression (2.48) is one of the main

results of this paper, which is crucial to perform the localization for N = 1 gauge theories.

Moreover, besides the background gauge field VM corresponding to the R-symmetry, we

can introduce another background gauge field ÃIM corresponding to the flavor symmetry:

ÃIMdx
M = −`mIdϕ , (2.49)

where the index I ∈ {1, · · · , rank(GF )}. For a fixed I, ÃIM is in general a complex

background gauge field for a U(1) subgroup in the Cartan of the flavor symmetry GF . The

complex background gauge field has appeared in the literature before, in particular, the 3d

case has been studied in Ref. [45] in great detail. We denote the complex parameters mI

as the twisted masses.

Up to now we have used anti-Hermitian generators for the Lie algebra. In order to

be consistent with the literature, we will use the Hermitian generators in the following of

this paper, which can be obtained by simply replacing the gauge field AM with iAM and

similar for other background gauge fields. Hence, we can define a parameter Λ to denote

the gauge transformation:

Λ ≡ iξMAM , (2.50)

which will appear in the SUSY algebra relation (2.34) from now on.

The full covariant derivative acting on the fields should include the connections of the

background gauge fields VM and ÃIM . For instance, the full covariant derivative acting on

the spinor in the chiral multiplet is

DMΨI =
(
∇M + iAM + iRVM + iFIÃIM

)
ΨI . (2.51)

Correspondingly, the full SUSY algebra on S2 × R2
ε becomes

δ2 = ξM∂M + Λ + αJus + ρJws + iR ξMVM + iFI ξM ÃIM , (2.52)

where R and FI denote the R-charge and the I-th flavor charge respectively, while the

explicit expression of ξM∂M is given by Eq. (2.48). We can use the explicit expressions of

the Killing spinors (2.43) to compute the parameters:

α = − i
`

cosθ , ρ = − i
`
. (2.53)

A careful analysis shows that the R-charge assignments listed in Table 1 can be sepa-

rated into the q-dependent part R1 and the q-independent part R2. On the one hand, the

q-independent R-charges R2 are proportional to the spins in R2
ε, more precisely,

R2 = −2Jws . (2.54)
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On the other hand, due to the fact that the two background gauge fields VM and ÃIM are

proportional to each other, the q-dependent R-charges R1 can be absorbed into the twisted

masses, which means that for FI 6= 0 we can define new twisted masses m̃I as

m̃I ≡ mI −
εR1

2FI
. (2.55)

In the following, we choose FI = 1 for flavors in the fundamental representation, while FI =

0 for the adjoint representation. Hence, in the presence of fundamental chiral multiplets

the spins on R2
ε, i.e. Jws , do not need to show up in the SUSY algebra. In principle,

the R-charges can be affected by the superpotential. In this paper, we do not consider

superpotential for simplicity, and we will set q = 0 in the following. Using the explicit

expressions of α, ρ, VM and ÃIM , we can now express the SUSY algebra (2.52) as

δ2 = ξM∂M + Λ− i

`
cosθ Jus −

i

2
(ε− 1

`
)R2 + iFIm̃I . (2.56)

So far we have constructed a 4d N = 1 background explicitly. It would be nice to

obtain it in a more systematic way, similar to the 4d N = 1 backgrounds from supergravity

models [8–10] or the 4d N = 2 Ω-background introduced in [2, 46, 47]. However, as

discussed before it is crucial for our purpose to have a non-covariant expression (2.8) of the

Killing spinor equation, which does not fit into the framework of the N = 1 backgrounds

from supergravity models. Hence, we provide an explicit example beyond the class from

supergravity. Whether this example belongs to a larger class and can be obtained more

systematically, requires further studies in the future.

Finally in this section, let us make some comments on the global anomalies of the

theory, similar to the analysis in [12]. The U(1) flavor symmetries and the U(1) R-symmetry

can potentially have some cubic and mixed anomalies with the following coefficients:

Tr(Q3
R) = R3 , Tr(Q3

F ) = F3 , Tr(QR) = R , Tr(QF ) = F , (2.57)

as well as Tr(Q2
RQF ) and Tr(Q2

FQR). The violation of the classical conservation laws are

given by these anomaly coefficients and the topological densities:

P(F ) = εMNPQF̃MN F̃PQ , P(R) = εMNPQFRMNF
R
PQ , P(g) = εMNPQRMNRSRPQ

RS ,

(2.58)

where F̃MN and FRMN are the field strengths of the U(1) flavor symmetry and the U(1)

R-symmetry respectively. Using the background gauge fields VM (2.47) and ÃIM (2.49),

one can find by direct computations:

F̃MN = 0 = FRMN . (2.59)

Hence, the topological densities P(F ) and P(R) vanish. Similarly, one can show by direct

computation that the topological density P(g) also vanishes on the curved space S2 ×
R2. Hence, all the U(1) flavor symmetry and U(1) R-symmetry currents are conserved.

Therefore, we do not need to worry about the global anomalies for the gauge theories

constructed on the background discussed in this paper.
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3 Supersymmetric Action

3.1 δ-Exact Action and BPS Equations

To localize the N = 1 supersymmetric theories on S2 ×R2
ε, we should introduce a δ-exact

term to deform the original theory, which is obtained by generalizing the standard N = 1

gauge theory on R4 to S2 × R2 and is also δ-exact. Hence, the original theory together

with the deformation can be written into a δ-exact form:

Lexact = δV , (3.1)

which consists of several parts:

V = Vgauge + Vchiral + VH . (3.2)

Following the standard approach, we can choose

Vgauge =
1

2g2
YM

Tr
[
(δΞ)†Ξ

]
,

Vchiral =
1

2

[
(δPLΨ)†PLΨ + (δPRΨ)†PRΨ

]
,

VH =
i

2
Tr
[(

Σ†Γ5Ξ + Ξ†Γ5Σ̃
)
H(Φ, Φ̄)

]
,

(3.3)

where H(Φ, Φ̄) is a real function of Φ and Φ̄, and the dagger ( †) denotes the Hermitian

conjugate. We emphasize that although similar to [23, 33, 35] this particular form of VH
with the insertion of the Γ5-matrix as well as the separation of the supercharges Σ and

Σ̃ is carefully chosen and has not appeared in the literature before. Moreover, we choose

H(Φ, Φ̄) to be

H(Φ, Φ̄) = (Φ̄IΦI − η) , (3.4)

with the index I denoting the flavor, and η is the Fayet-Iliopoulos (FI) parameter, which

controls the size of the (anti-)vortices that will be discussed later in this section. The

standard N = 1 gauge theory on R4 can be recovered from the flat-space limit of (δVgauge +

δVchiral).

Based on the constructions above, the bosonic part of the δ-exact Lagrangian is given

by

L b
exact = (δVgauge)

b + (δVchiral)
b + (δVH)b , (3.5)

where

(δVgauge)
b =

1

2g2
YM

Tr
[
(δΞ)†(δΞ)

]
,

(δVchiral)
b =

1

2

[
(δPLΨ)†(δPLΨ) + (δPRΨ)†(δPRΨ)

]
,

(δVH)b =
i

2
Tr
[(

Σ†Γ5(δΞ) + (δΞ)†Γ5Σ̃
)

(Φ̄IΦI − η)
]
.

(3.6)

Using the choice of the Killing spinors (2.43), one can work out the explicit expressions of

these terms. Meanwhile, one needs some identities of the Killing spinors (2.43), which are

summarized in Appendix D.
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For simplicity, we first focus on an Abelian gauge theory, and the non-Abelian general-

ization will be discussed in Subsection 3.4. Because the fermionic part L f
exact is irrelevant

for our later discussions, we only list the explicit expressions of the bosonic part L b
exact in

the following:

L b
exact =

1

4g2
YM

FMNFMN −
1

2g2
YM

D2 +
1

2g2
YM`

2
(A2

3 +A2
4) +

1

g2
YM`

sin θ (F23A4 − F24A3)

− 1

8g2
YM

cos θ εMN
PQ FMNF

PQ − (F12 − cos θ F34 +D)(|ΦI |2 − η)

+ (DMΦI)†(DMΦI) +
(
F I − q

`
cos θΦI

)† (
F I − q

`
cos θΦI

)
+
q2 sin2θ

`2
(ΦI)†ΦI ,

(3.7)

where to obtain a positive semi-definite action we have assumed that D is an anti-hermitian

field, and we have imposed the following reality conditions:

Φ̄I = (ΦI)† , F̄ I = (F I)† . (3.8)

By integrating out the auxiliary fields D and F , we see that L b
exact can be written as

a sum of several squared terms:

L b
exact =

1

2g2
YM

(
F12 − cos θ F34 − g2

YM (|ΦI |2 − η)
)2

+
sin2θ

2g2
YM

(F34)2

+
1

2g2
YM

(F13 + cos θ F24)2 +
1

2g2
YM

(
sin θ F24 −

1

`
A3

)2

+
1

2g2
YM

(F14 − cos θ F23)2 +
1

2g2
YM

(
sin θ F23 +

1

`
A4

)2

+ (DūΦI)†(DūΦI) + (Dw̄ΦI)†(Dw̄ΦI) +
q2 sin2θ

`2
(ΦI)†ΦI , (3.9)

where

Dw̄ΦI ≡ 1

2
(D3 + iD4)ΦI . (3.10)

In fact, the term (Dw̄ΦI)†(Dw̄ΦI) in L b
exact can be replaced by (DwΦI)†(DwΦI), and they

differ by a total derivative term. Therefore, for q = 0 we obtain the BPS equations by

setting each squared term to be zero:

F12 − cos θ F34 − g2
YM (|ΦI |2 − η) = 0 , sin θ F34 = 0 , (3.11)

F13 + cos θ F24 = 0 , sin θ F24 −
1

`
A3 = 0 , (3.12)

F14 − cos θ F23 = 0 , sin θ F23 +
1

`
A4 = 0 , (3.13)

DūΦI = 0 ,
(
DwΦI = 0 or Dw̄ΦI = 0

)
, (3.14)

where for the last equation we have two choices, which correspond to anti-vortex and vortex

solutions respectively, as we will see in the next subsection. Note that in the flat-space

limit (`→∞) and near the poles, the system of equations reduce to the instanton-vortex

equations first found by [28] and extensively studied in [48]. The classical solutions to these

BPS equations will be discussed in the next subsection.
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3.2 Classical Solutions

In this subsection, we discuss the classical solutions to the BPS equations (3.11) ∼ (3.14).

First, the second equation of (3.11) leads to

F34 = 0 for 0 < θ < π . (3.15)

Assuming that A1 and A2 are independent of (w, w̄), Eq. (3.12) and Eq. (3.13) imply

1

`
∂θA3 = −1

`
cot θ A3 ,

1

`
∂θA4 = −1

`
cot θ A4 , (3.16)

which can be solved by

A3 =
f1(ϕ) g1(w, w̄)

sin θ
, A4 =

f2(ϕ) g2(w, w̄)

sin θ
, (3.17)

with arbitrary functions f1,2(ϕ) and g1,2(w, w̄). The consistency of F23 and F24 requires

f1(ϕ) = f ′2(ϕ) , f ′1(ϕ) = −f2(ϕ) , g1(w, w̄) = g2(w, w̄) , (3.18)

which can be solved by

f1(ϕ) = C1 cosϕ− C2 sinϕ , f2(ϕ) = C2 cosϕ+ C1 sinϕ , (3.19)

where C1 and C2 are constants. However, if we require A3 and A4 to be regular for

θ ∈ [0, π], there are only the trivial solution

Aw = Aw̄ = 0 ⇐⇒ A3 = A4 = 0 for 0 ≤ θ ≤ π . (3.20)

Consequently, the regular solutions also imply that

F34 = 0 for 0 ≤ θ ≤ π . (3.21)

For the non-Abelian case, there can also be non-trivial solutions for A3 and A4, but if

we restrict to continuous and regular configurations, Eq. (3.21) still holds. We cannot, at

present, rule out the existence of singular solutions such as a point-like instanton to our

BPS equation. If such solutions exist, they should also contribute to the partition function.

With trivial solutions for A3 and A4, the BPS equations reduce to the vortex equation

F12 − g2
YM (|ΦI |2 − η) = 0 . (3.22)

This one is the most important BPS equation, we will analyze it carefully in the following.

The vortex equation admits the so-called Higgs branch solutions

F12 = 0 , ΦI are constants with |ΦI | = √η . (3.23)

In this background, the equation Dw̄ΦI = 0 is automatically satisfied. Then in the gauge

Aθ = 0, we can solve the equation DūΦI = 0, which can be written more explicitly as[
1

`
∂θ +

i

` sin θ
(∂ϕ + iAϕ + iÃIϕ)− ε

sin θ
w∂w +

ε

sin θ
w̄∂w̄

]
ΦI = 0 . (3.24)
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For constant ΦI , the solution to this equation is

Aϕ = −ÃIϕ = ` m̃I . (3.25)

The Higgs branch solutions described above are valid for 0 ≤ θ ≤ π, including the poles of

S2.

With the solution (3.20), the equation Dw̄ΦI = 0 implies that ΦI are holomorphic

functions of w. For the k-vortex configuration in the I-th flavor on R2
ε, ΦI can be chosen

to be

ΦI = f(θ, ϕ)wk , ΦJ = 0 for J 6= I , (3.26)

where f(θ, ϕ) is a factor depending on the coordinates on S2. Similarly, the equation

DwΦI = 0 implies that ΦI are anti-holomorphic functions of w̄. For the k′-anti-vortex

configuration in the I-th flavor on R2
ε, ΦI can be chosen to be

ΦI = f(θ, ϕ) w̄k
′
, ΦJ = 0 for J 6= I . (3.27)

Besides the Higgs branch solutions, Eq. (3.22) also has infinite towers of vortex solu-

tions located at the poles of S2, which is a common feature for Higgs branch localization

on the spheres [33–38]. The new phenomenon in our case is that from the R2
ε point of view

all these vortices are also located at the origin of R2
ε at the same time.

We first consider the vortex solution throughout the whole S2, and list its asymptotic

behaviors at different points in the following. In principle, we can also consider the anti-

vortex solution throughout S2, but for the partition function this configuration effectively

corresponds to flipping the signs of the equivariant parameters.

• θ ≈ 0 (near the core of the vortex at the north pole):

ΦI ' (θ eiϕ)mwk , Aϕ ' `m̃I − k`ε (k ≥ 0) ; (3.28)

• θ ≈ π (near the core of the anti-vortex at the south pole):

ΦI ' (θ̂ eiϕ)nwk
′
, Aϕ ' `m̃I − k′`ε (k′ ≥ 0) ; (3.29)

• θ ≈ π
2 (on the northern hemisphere far from the core of the vortex):

ΦI ' √η eimϕwk , Aϕ ' `m̃I −m− k`ε (k ≥ 0) ; (3.30)

• θ ≈ π
2 (on the southern hemisphere far from the core of the anti-vortex):

ΦI ' √η einϕwk′ , Aϕ ' `m̃I − n− k′`ε (k′ ≥ 0) , (3.31)

where θ̂ ≡ π − θ, and the continuity of ΦI at the equator will impose

k = k′ . (3.32)

The integers m, n, k = k′ denote the numbers of vortices at the north pole of S2, vortices

at the south pole of S2, vortices at the origin of R2
ε respectively.
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In principle there can also be a configuration with a vortex solution (3.26) at the north

pole and an anti-vortex solution (3.27) at the south pole, or vice versa. More details of

these solutions can be found in Appendix D. Gluing the solutions from the north and

the south patches of S2 together, the continuity of ΦI at the equator will exclude all the

non-trivial configurations.

From these asymptotic solutions we can compute the fluxes through the northern and

the southern hemispheres respectively:

1

2π
FN =

1

2π

∫
north

dθdϕFθϕ = Aϕ

∣∣∣π/2
θ=0

= −m,

1

2π
FS =

1

2π

∫
south

dθdϕFθϕ = Aϕ

∣∣∣π
θ=π/2

= n .

(3.33)

Therefore, the total flux through S2 is

1

2π
FS2 =

1

2π
(FN + FS) = n−m. (3.34)

3.3 δ-Closed Action

Besides the δ-exact action discussed in Subsection 3.1, we can also introduce some δ-closed

terms.

As discussed in Appendix C, under certain assumptions the 4d N = 1 gauge theory

that we consider in this paper can also be formulated in terms of the 2d fields. Hence,

similar to Ref. [23], we can construct a δ-closed term from a twisted superpotential in the

2d superspace:

S
W̃

=
2

VR2
ε

∫
d2w

∫
d2u dθ̄ dθ W̃ , (3.35)

where VR2
ε

is the equivariant volume of R2
ε, and

W̃ = iτ0Σ , (3.36)

Σ = σ +
1

2
λuθū +

1

2
λ̄ūθ̄u + iFuūθūθ̄u . (3.37)

Hence, at the classical vortex solutions discussed in the previous subsection S
W̃

takes the

value:

S
W̃

= 2

∫
d2u dθ̄ dθ iτ0Σ = −iτ0

∫
dθ dϕFθϕ = 2iπτ0(m− n) , (3.38)

where

τ0 =
ϑ

2π
+ ir2d , (3.39)

with ϑ and r2d denoting the theta angle and the 2d FI parameter respectively. This 2d

coupling can be lifted to a 4d coupling by taking into account the volume factor of R2
ε via

Eq. (3.35), and consequently r2d can be related to the 4d gauge coupling:

τ0 =
ϑ

2π
+

4πi

g2
YM

. (3.40)

In the following, we will apply this expression to the δ-closed action (3.38).
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Besides the δ-closed term from the twisted superpotential discussed above, in principle

we can also introduce δ-closed terms from the superpotential as follows:

SW =

∫
d4x d2θW +

∫
d4x d2θ̄ W . (3.41)

Since these terms are also δ-exact, as long as they do not change the charge assignments

of the fields, they will not affect the result of the localization. In this paper, for simplicity

we will not consider the terms from the superpotential.

3.4 Non-Abelian Generalization

In Subsections 3.1 and 3.2, we have discussed the Abelian gauge theory and its classical

solutions. In order to discuss some non-perturbative effects, we have to generalize the

theory to the non-Abelian case.

Consider a theory with gauge group G of rank r on S2×R2
ε. It has NF chiral multiplets,

whose representations under the gauge group are
⊗NF

I=1 R
I .

Now, we should solve the non-Abelian version of the previously discussed Abelian BPS

equations (3.11) ∼ (3.14). The non-Abelian BPS equations are as follows:

Fα12 − cos θ Fα34 − g2
YM

(
(ΦI)†TαRIΦ

I − η
)

= 0 , sin θ Fα34 = 0 ,

Fα13 + cos θ Fα24 = 0 , sin θ Fα24 −
1

`
Aα3 = 0 ,

Fα14 − cos θ Fα23 = 0 , sin θ Fα23 +
1

`
Aα4 = 0 ,

DūΦI = 0 , (DwΦI = 0 or Dw̄ΦI = 0) ,

(3.42)

where α ∈ {1, · · · , dim(G)}, and Tα
RI

denotes the generator of the Lie group G in the

representation RI , while η is the FI parameter which is nonvanishing only for the U(1)

part of the gauge group. Although most of the equations above formally look the same

as their Abelian counter-parts, the Lie group structure is implied for the non-Abelian

generalization.

Before discussing the non-Abelian solutions, let us make a short note on the indices. We

use (I1, I2, · · · , Ir), (~µ1, ~µ2, · · · , ~µr) and (k1, k2, · · · , kr) to denote the flavor indices, the

weight vectors and the (anti-)vortex numbers at the origin of R2
ε corresponding to different

Cartan generators of the gauge group, which are labelled by the index i ∈ {1, · · · , r}. For

a fixed i, ~µi ∈ RIi denotes the r-dimensional weight vector of the representation RIi .

The classical solutions to the non-Abelian BPS equations can be obtained similar to

the Abelian solutions discussed in Subsection 3.2. We list them in the following. First, due

to the regularity of the classical gauge fields we still have for the non-Abelian case:

Aα3 = Aα4 = 0 . (3.43)

Consequently, the remaining non-trivial BPS equations are

2iFαuū + g2
YM

(
(ΦI)†TαRIΦ

I − η
)

= 0 , (3.44)
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DūΦI = 0 ,
(
DwΦI = 0 or Dw̄ΦI = 0

)
. (3.45)

Formally, these equations can be solved by [23]:

Aū = − i
2
~H · ∂ū~ω , ΦJ

ρ =
√
η exp

(
−1

2
~ρ · ~ω

)
hJρ , (3.46)

where J and ρ denote a general flavor and a general gauge group representation respectively,

and ~H are the Cartan generators, while ~ω = (ω1, ω2, · · · , ωr) are the profile functions,

whose explicit form will not be important. The factor hJρ is a polynomial given by

hJρ =

{ umi wki , for vortex with ~ρ = ~µi, J = Ii ;

uni w̄k
′
i , for anti-vortex with ~ρ = ~µi, J = Ii ;

0 , otherwise .

(3.47)

Like the Abelian case, in the non-Abelian case we also have the Higgs branch solutions and

the vortex solutions for the other components of the gauge field AαM and the scalar field

ΦJ . The Higgs branch solutions are characterized by

Fα12 = 0 , (ΦI)†TαRIΦ
I − η = 0 . (3.48)

The infinite towers of the vortex solutions are located at the north pole (θ = 0) and the

south pole (θ = π) on S2, while at the origin (w = 0) of R2 at the same time.

Similar to the discussions in Subsection 3.2, we consider a non-Abelian vortex solution

to Eq. (3.47) throughout the whole S2. Its asymptotic behaviors at different points are

listed as follows:

• θ ≈ 0 (near the core of the vortex at the north pole):

ΦIi ' (θ eiϕ)miwki , Aiϕ ' `m̃Ii − ki`ε (ki ≥ 0) ; (3.49)

• θ ≈ π (near the core of the anti-vortex at the south pole):

ΦIi ' (θ̂ eiϕ)niwk
′
i , Aiϕ ' `m̃Ii − k′i`ε (k′i ≥ 0) ; (3.50)

• θ ≈ π
2 (on the northern hemisphere far from the core of the vortex):

ΦIi ' √η eimiϕwki , Aiϕ ' `m̃Ii −mi − ki`ε (ki ≥ 0) ; (3.51)

• θ ≈ π
2 (on the southern hemisphere far from the core of the anti-vortex):

ΦIi ' √η einiϕwk′i , Aiϕ ' `m̃Ii − ni − k′i`ε (k′i ≥ 0) , (3.52)

where θ̂ ≡ π − θ, and the continuity of ΦIi at the equator will impose

ki = k′i . (3.53)

The integers mi, ni, ki = k′i denote the numbers of the vortices at the north pole of S2,

the vortices at the south pole of S2, the vortices at the origin of R2
ε for the i-th Cartan

generator respectively.

In principle there can also a configuration with a vortex solution at the north pole and

an anti-vortex solution at the south pole, or vice versa. Gluing the solutions from the north

and the south patches of S2 together, the continuity of ΦIi at the equator will exclude all

the non-trivial solutions.
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4 Supersymmetric Localization

4.1 1-Loop Determinants

The partition function is given by the classical solutions and the 1-loop determinants of

fluctuations around them. They can be conveniently computed using the index theorem

by summing over contributions at the fixed points. We list the results in the following, and

more details can be found in Appendix E.

We compute the index of the Dolbeault operator for the chiral multiplet. The Abelian

case is discussed in Appendix E, and now we generalize the results there to the non-Abelian

case. For the mi-vortices in the Ii-th flavor background the index at the north pole of S2

(θ = 0) becomes

indchiral
N = −

NF∑
J=1

∑
~ρ∈RJ

∑
p∈Z

e−ipε
∑
q≥0

e−iq/` e−i(ε−1/`)R2/2 eiFJm̃J ei~ρ·~σ
N
, (4.1)

where ~σN are constants defined by

~µi · ~σN ≡ −FIim̃Ii +
1

`
mi + kiε , (4.2)

and ~σN can be understood as a special value of the Coulomb branch parameter [23], whose

meaning will be clear in the “Coulomb branch” localization.2

For the ni-anti-vortices in the Ii-th flavor background the index at the south pole of

S2 (θ = π) becomes

indchiral
S =

NF∑
J=1

∑
~ρ∈RJ

∑
p∈Z

eipε
∑
q≥1

eiq/` e−i(ε−1/`)R2/2 eiFJm̃J ei~ρ·~σ
S
, (4.3)

where ~σS are constants defined by

~µi · ~σS ≡ −FIim̃Ii +
1

`
ni + kiε . (4.4)

In both Eq. (4.2) and Eq. (4.4), ~µi denotes the weight vectors in the representation RIi of

the gauge group, while ki can be absorbed into a redefinition of p, hence does not appear

in the final result.

Combining the indices (4.1) and (4.3), we obtain the 1-loop determinant for the generic

J-th chiral multiplet (J 6= Ii) around the vortex solution characterized by the (anti-)vortex

numbers (mi, ni) with the Ii-th flavor and the weight vector ~µi:(
Z

(mi,ni)
Ii, ~µi

)J-th chiral

1-loop
=
∏
~ρ∈RJ

∏
p∈Z

∏
q≥0

pε+ 1
` (q + 1)− 1

2(ε− 1
` )R2 + FJm̃J + ~ρ · ~σS

−pε− 1
` q −

1
2(ε− 1

` )R2 + FJm̃J + ~ρ · ~σN
. (4.5)

In the absence of superpotential, we will set the R-charge R2 = 0 for simplicity in the

following, which can be easily recovered for general R-charge assignments.

2We put “Coulomb branch” in quotation mark, because 4d N = 1 gauge theories do not have a standard

Coulomb branch like in N = 2 theories.
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Similar to the chiral multiplet, we can compute the indices of the de Rham operator

for the vector multiplet. The indices at the north and the south poles are

indvec
N =

1

2

∑
~α∈∆G

∑
p∈Z

e−ipε ei~α·~σ
N
, indvec

S =
1

2

∑
~α∈∆G

∑
p∈Z

eipε ei~α·~σ
S
. (4.6)

In Eq. (4.6), ~α takes value in the set ∆G of the root vectors of the gauge group, which

generalizes the Abelian case discussed in the previous section to the non-Abelian case. For

the Abelian case, i~α · ~σN and i~α · ~σS both vanish, and the sum over the roots can be

removed.

Combining the indices in (4.6), we obtain the 1-loop determinant for the vector multi-

plet around the vortex solution characterized by the (anti-)vortex numbers (mi, ni) in the

Ii-th flavor with the representation ~µi:(
Z

(mi,ni)
Ii

)vec

1-loop
=
∏
~α∈∆G

∏
p∈Z

[
− ipε+ i~α · ~σN

] 1
2
[
ipε+ i~α · ~σS

] 1
2
. (4.7)

Similar to Refs. [35, 49], the expression (4.7) can be regularized as(
Z

(mi,ni)
Ii

)vec

1-loop
=
∏
~α∈∆G

x−
|α(m−n)|

2

(
1− e

2πi
ε
α(m̃)x|α(m−n)|−α(m+n)

)
, (4.8)

where the parameter x is defined as

x ≡ e−
iπ
`ε . (4.9)

In Eq. (4.5), we considered a generic flavor J 6= Ii. As discussed in Ref. [23], for

J = Ii there is a subtlety about the contribution from the unphysical modes to the 1-loop

determinant, which we would like to clarify now.

As we discussed, the non-trivial BPS equations (3.44) (3.45) have the formal solutions

(3.46). The fluctuations around these solutions can be obtained by linearizing the solutions

(3.46):

δAū = e−
1
2
~H·~ω(i∂ūδΩ) e

1
2
~H·~ω , δΦJ

ρ =
√
η e−

1
2
~ρ·~ω [δhJ + δΩ · hJ

]
ρ
, (4.10)

where Ω(u, ū) is a g-valued function. The non-trivial BPS equation (3.45) includes both

the holomorphic case and the anti-holomorphic case. To simplify our discussions, let us

focus on the holomorphic case in the following, and the anti-holomorphic case is similar.

These fluctuations are invariant under the following transformations:

δhJ → δhJ + v(u,w, w̄)hJ , δΩ→ δΩ− v(u,w, w̄) , (4.11)

where v(u,w, w̄) is a g-valued regular function, which is holomorphic in u and has the

decomposition:

v(u,w, w̄) = ~P (u,w, w̄) · ~H +
∑
~α∈∆G

Q~α(u,w, w̄)E~α . (4.12)
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The transformations (4.11) introduce some unphysical modes, which should be removed

from the final result of the partition function.

Due to the decomposition given by Eq. (4.12), we distinguish the unphysical modes

caused by the Cartan part ∼ Hi and the off-diagonal part ∼ E~α. Because the unphysical

modes caused by the Cartan part are flavor-dependent, removing them will contribute to

the partition function of the chiral multiplet. On the contrary, since the off-diagonal part

of the unphysical modes is independent of the flavor, when removing these modes, the

possible additional contribution can be assigned to the vector multiplet partition function.

For the vortex solution in the Cartan part, due to hIi~µi ∼ umi , v(u) can be used to

remove all the powers ≥ mi in the expansion of δhIi~µi , i.e.,

for ~ρ = ~µi, J = Ii: δhIi~µi =

mi−1∑
q=0

cIi~µi, q(w, w̄)uq . (4.13)

Together with the modes around the anti-vortex solution in the Cartan part, the product

in the 1-loop determinant (4.5) for ~ρ = ~µi, J = Ii will be restricted to:∏
p∈Z

∏−ni−1
q=0

(
pε+ 1

` q + FIim̃Ii + ~µi · ~σS
)∏mi−1

q=0

(
−pε− 1

` q + FIim̃Ii + ~µi · ~σN
) =

∏
p∈Z

∏−ni−1
q=0

(
pε+ 1

` q + 1
`ni
)∏mi−1

q=0

(
−pε− 1

` q + 1
`mi

) , (4.14)

where we have used Eqs. (4.2) and (4.4), and the minus sign of −ni is due to the regularity

requirement of the configurations at the south pole (u =∞). However, for ni ≥ 0 the modes

around the anti-vortex cannot be removed by the redundancy (4.11), which is consistent

with the fact that the range of the infinite product in the numerator is empty for ni > 0.

Also, the range of the infinite product in the denominator is empty for mi = 0, hence the

expression above should not enter the perturbative part of the partition function.

Finally, the 1-loop determinant of the physical NF pairs of chiral and anti-chiral multi-

plets around the vortex solution characterized by the (anti-)vortex numbers (mi, ni) ∈ Z2
≥0

with the Ii-th flavor and the weight vector ~µi is given by(
Z

(mi,ni)
Ii, ~µi

)chiral

1-loop
=

 NF∏′

J=1

∏′

~ρ∈RJ

∏
p∈Z

∏
q≥0

pε+ 1
` (q + 1) + FJm̃J + ~ρ · ~σS

−pε− 1
` q + FJm̃J + ~ρ · ~σN


·

 r∏
i=1

∏
p∈Z

∏
q≥0

(
pε+ 1

` (q + 1) + 1
`ni
)∏mi−1

q=0

(
−pε− 1

` q + 1
`mi

)
 , (4.15)

where in the first line the prime on the products denotes the condition (J, ~ρ) 6= (Ii, ~µi).

Similar to Refs. [35, 49], the expression (4.15) can be regularized as(
Z

(mi,ni)
Ii, ~µi

)chiral

1-loop

=

 NF∏′

J=1

∏′

~ρ∈RJ

(
x1+ρ(n)+ρ(m)+2`FJm̃J e

2πi
ε
ρ(m̃)

) ρ(n)−ρ(m)
2

(
x2+2ρ(n)+2`FJm̃J e

2πi
ε
ρ(m̃); x2

)
∞(

x−2ρ(m)−2`FJm̃J e−
2πi
ε
ρ(m̃); x2

)
∞


·

[
r∏
i=1

x
1
2

(n2+n+ 1
6

)(x2+2n; x2)∞∏mi−1
q=0 sinh

[
iπ
`ε (q −mi)

]] , (4.16)
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where we used the q-Pochhammer symbol (a; q)n defined as

(a; q)n ≡
n−1∏
k=0

(1− a qk) , (4.17)

and the Hurwitz zeta function regularization:∑
q≥0

(q + x) = ζH(−1, x) = −1

2
(x2 − x+

1

6
) . (4.18)

There is another possible contribution to the 1-loop determinant of the vector multiplet,

which originates from the off-diagonal part of v(u,w, w̄) in Eq. (4.12). Consider a basis

for the off-diagonal part of v(u,w, w̄) given by uqg(w, w̄)E~α (q ≥ 0). The corresponding

unphysical modes are

δhJ = uqg(w, w̄)E~α · hJ , (4.19)

where g(w, w̄) is a regular function. The anti-holomorphic part has a similar expansion.

We should remove these unphysical modes in the partition function. Taking into ac-

count the expression of hJ given by Eq. (3.47), one can show that to remove the contribution

from the vortex solution is equivalent to multiplying the 1-loop determinant with

∏
~α∈∆G

∏
p∈Z

∞∏
q=0

(
−pε− 1

`
(q + α(m)) + ~α · ~σN

) 1
2

. (4.20)

To remove the contribution from the anti-vortex solution, we should also multiply the

1-loop determinant with

∏
~α∈∆G

∏
p∈Z

∞∏
q=0

(
1

pε+ 1
` (q − α(n)) + ~α · ~σS

) 1
2

. (4.21)

Up to a constant these two factors cancel each other. Therefore, in our case the unphysical

modes from the off-diagonal part do not contribute to the 1-loop determinant, and the

1-loop determinant of the physical vector multiplet is just given by Eqs. (4.7) and (4.8).

4.2 Vortex Partition Functions

Based on the results from the previous subsection, now we can write down the full partition

functions for 4d N = 1 gauge theories. For simplicity, in this subsection we consider two

special examples. The generalization to more complicated theories is straightforward.

For the Abelian case, we consider a U(1) gauge group with one vector multiplet and

NF pairs of chiral and anti-chiral multiplets. The full partition function of this 4d N = 1

gauge theory with (m,n) ∈ Z2
≥0 is

ZI =
∑
m,n

Zclass Z
vec
1-loop Z

chiral
1-loop (4.22)
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with

Zclass = e−2πi(m−n)τ0 ,

Zvec
1-loop = 1 ,

Zchiral
1-loop =

NF∏
J=1
J 6=I

(
x1+n+m−2`m̃IJ

)n−m
2

(
x2+2m−2`m̃IJ ; x2

)
∞(

x−2m+2`m̃IJ ; x2
)
∞

 ·
[

1∏m−1
q=0 sinh

[
iπ
`ε (q −m)

]] ,
(4.23)

where m̃IJ ≡ m̃I−m̃J . The full partition function can be decomposed into the perturbative

part and the vortex part:

ZI = (ZI)pert · (ZI)vortex , (4.24)

where

(ZI)pert = ZI

∣∣∣
m=n=0

. (4.25)

For the non-Abelian case, we consider a U(N) gauge group with one vector multiplet

and NF pairs of chiral and anti-chiral multiplets in the fundamental representation. The

full partition function of this 4d N = 1 gauge theory with (mi, ni) ∈ Z2
≥0 is

ZIi, ~µi =
∑
mi,ni

Zclass Z
vec
1-loop Z

chiral
1-loop (4.26)

with

Zclass =

N∏
i=1

e−2πi(mi−ni)τ0 ,

Zvec
1-loop =

N∏
i,j=1
i 6=j

x−
|(mi−ni)−(mj−nj)|

2

(
1− e

2πi
ε

(m̃Ii−m̃Ij )
x|(mi−ni)−(mj−nj)|−(mi+ni)+(mj+nj)

)
,

Zchiral
1-loop =

 N∏
i=1

NF∏
J=1
J 6=Ii

(
x1+ni+mi+2`(m̃J−m̃Ii )

) ρ(n)−ρ(m)
2

(
x2+2mi+2`(m̃J−m̃Ii ); x2

)
∞(

x−2mi−2`(m̃J−m̃Ii ); x2
)
∞


·

[
N∏
i=1

1∏mi−1
q=0 sinh

[
iπ
`ε (q −mi)

]] ,
(4.27)

where the fundamental weight vectors ~µi (i = 1, · · · , r) are chosen to be the standard basis

vectors of Rr, while for the root vector:

~α = ~µi − ~µj with 1 ≤ i 6= j ≤ r . (4.28)

Similar to the Abelian case, for the non-Abelian case the full partition function can also

be decomposed into the perturbative part and the vortex part:

ZIi, ~µi =
(
ZIi, ~µi

)
pert
·
(
ZIi, ~µi

)
vortex

, (4.29)
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where (
ZIi, ~µi

)
pert

= ZIi, ~µi

∣∣∣
mi=ni=0

. (4.30)

We would like to emphasize that the results of the partition functions discussed in

this section are discussed in the Higgs branch. In principle, the localization can also be

performed in the “Coulomb branch”, and the result can be expressed as an integral over

the Coulomb branch parameter σ, which should be equal to the one from the Higgs branch

discussed in this paper. We leave this study for future research.

4.3 Some Discussions

As pointed out in [50], the partition functions of N = 1 theories on curved manifolds suffer

from ambiguities, and the results depend on the renormalization scheme. However, for

certain N = 1 theories such as class Sk theories [51, 52] and some mass-deformed N = 1∗

theories, the partition functions can still be unambiguously defined.

In this paper we have chosen a scheme implicitly during our calculations. Nevertheless,

we can still compute within this scheme and extract some universal contributions indepen-

dent of the scheme. What has been computed in this paper can be viewed as building

blocks that can be used to construct arbitrary N = 1 theories within the chosen scheme.

The same treatment has been done in a previous work [5].

5 Seiberg Duality

In this section, we use the partition functions obtained in the previous section to check an

infrared duality between two theories. This is a duality first studied by Seiberg between a

4d N = 1 SU(N) gauge theory with NF (> N) flavors and an SU(NF −N) gauge theory

with NF flavors plus gauge singlets [53]. Later, many similar dualities have been discovered

in various dimensions by changing gauge groups and matter contents. For simplicity, we

will study the U(N) version of the original duality, which was first introduced in [54] using

brane constructions and later studied in [55] in more details. The U(N) Seiberg duality

can be related to the SU(N) Seiberg duality by gauging the U(1) baryonic symmetry.

Various Seiberg-like dualities have been extensively tested using the supersymmetric index

[39–41]. Here we will apply our partition functions to test the U(N) duality beyond the

supersymmetric index.

Technically, our approach is a 4d uplift of the test of the 2d Seiberg-like duality for

U(N) gauge theories in [33], in which the generalization to 2d SU(N) gauge theories has

also been discussed. In principle, we can also generalize the discussions in this section to

4d SU(N) gauge theories. For simplicity, we will skip this step and save it for the future

research.

The partition function of a U(N) gauge theory with NF pairs of fundamental chiral

and anti-chiral multiplets is given by Eq. (4.26) and Eq. (4.27). We observe that the full

partition function can also be factorized into the perturbative part, the vortex part and

the anti-vortex part as follows:

ZIi, ~µi = Zpert · Zv · Zav . (5.1)
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To test Seiberg duality, we should prove that each part on the right-hand side of the

equation above is invariant under the duality transformations:

− m̃D
T =

{
m̃T + 1

4` for fundamental in SU(NF ) ,

m̃T − 1
4` for anti-fundamental in SU(NF ) ,

(5.2)

~L↔ ~LD ,

where we adopt a slightly different notation as follows. Because NF > N , we can pick up

N out of NF flavors, which are previously labelled by the index Ii (i = 1, · · · , N). From

now on, let us denote a flavor J within the N selected ones by J ∈ ~L, otherwise J /∈ ~L. We

also use ~LD to denote the complement set of ~L. The shifts ∼ 1
` in the dual masses m̃D

T are

due to (2.55) and the R-charge assignment of the duality, while m̃T are unshifted masses

in the original theory. If we require that the expressions in (2.55) and (5.2) are equal for

a special case 1
` = ~ = −ε considered later in the paper, then we obtain NF /N = 2, which

strictly stays in the conformal window 3N/2 < NF < 3N . Hence, the duality map (5.2) is

consistent.

Some attention should be paid for the gauge couplings. Since Seiberg duality is an

electro-magnetic duality, there should be

gYM ∝
1

gDYM
. (5.3)

The gauge couplings and the theta angles only appear in the complex coupling τ0 (3.40)

in the classical part of partition function. In principle, τ0 should be renormalized, and

consequently the partition function depends on the energy scale. Since Seiberg duality is

an IR duality, as a test of Seiberg duality we should compare the partition functions of two

dual theories at the IR fixed point. We choose at the IR fixed point that

at IR fixed point: gDYM = gYM , ϑD = ϑ , (5.4)

which are not true for the dual theories in the UV. The precise relation between the

couplings in the UV should be obtained using the RG equation, and is consistent with

(5.3).

Let us first consider the perturbative part of the partition function, Zpert. In the new

notation, it can be written as

Zpert =

 ∏
I,J∈~L
I 6=J

∏
p∈Z

(pε+ m̃I − m̃J)

 ·
∏
T∈~L

NF∏
S=1
S 6=T

∏
p∈Z

∏
q≥0

pε+ (q + 1)1
` + m̃S − m̃T

pε+ q 1
` − m̃S + m̃T

 . (5.5)

The second product of the expression above can be further factorized into two products

due to ∏
T∈~L

NF∏
S=1
S 6=T

=
∏
S,T∈~L
S 6=T

∏
T∈~L
S/∈~L

. (5.6)
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The product with S, T ∈ ~L (S 6= T ) exactly cancels the first product in Eq. (5.5). Hence,

Zpert is equal to the product with T ∈ ~L, S /∈ ~L, i.e.,

Zpert =
∏
T∈~L
S/∈~L

∏
p∈Z

∏
q≥0

pε+ (q + 1)1
` + m̃S − m̃T

pε+ q 1
` − m̃S + m̃T

. (5.7)

This expression can be regularized using the sinh function and the q-Pochhammer symbol

as before. After the transformations (5.2), it becomes the combination of the W-boson and

the fundamental chiral multiplets in the dual theory. Moreover, the dual theory should

also receive the contribution from the gauge singlets

Zsinglet =

NF∏
S,T=1

∏
p∈Z

∏
q≥0

pε+ (q + 1)1
` + m̃D

S − m̃D
T

pε+ q 1
` − m̃

D
S + m̃D

T

=

NF∏
S,T=1

∏
p∈Z

∏
q≥0

pε+ (q + 1)1
` − (m̃S + 1

4`) + (m̃T − 1
4`)

pε+ q 1
` + (m̃S + 1

4`)− (m̃T − 1
4`)

, (5.8)

which contributes a trivial factor to the partition function of the dual theory. Hence, the

perturbative partition function of the dual theory is exactly equal to (5.7).

Now let us consider the vortex and the anti-vortex parts of the partition function,

which are given by

Zv =
∑
~m

e2πiτ0|~m|

 ∏
~α∈∆G

∏
p∈Z

 pε+ ~α · ~σN

pε+ ~α · ~σN
∣∣∣
mi=0


1
2

 ·
 N∏
i=1

∏
p∈Z

mi−1∏
q=0

1

pε+ 1
` (q −mi)



·

 N∏
i=1

NF∏
J=1
J 6=Ii

∏
p∈Z

∏
q≥0

pε+ 1
` q − m̃J + m̃Ii

pε+ 1
` q − m̃J + m̃Ii − 1

`mi

 , (5.9)

Zav =
∑
~n

e−2πiτ0|~n|

 ∏
~α∈∆G

∏
p∈Z

 pε+ ~α · ~σS

pε+ ~α · ~σS
∣∣∣
ni=0


1
2

 ·
 N∏
i=1

∏
p∈Z

∞∏
q=0

pε+ 1
` (q + 1) + 1

`ni

pε+ 1
` (q + 1)



·

 N∏
i=1

NF∏
J=1
J 6=Ii

∏
p∈Z

∏
q≥0

pε+ 1
` (q + 1) + m̃J − m̃Ii + 1

`ni

pε+ 1
` (q + 1) + m̃J − m̃Ii

 . (5.10)

After a few steps, Zv with mi > 0 can be simplified as

Zv =

∞∑
m=0

e2πiτ0mZmv (5.11)
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with m ≡ |~m| and

Zmv =
∑
~m∈ZN≥0

|~m|=m

∏N
i,j=1
i 6=j

∏
p∈Z

(
pε+m̃Ii−

1
`
mi−m̃Ij+ 1

`
mj

pε+m̃Ii−m̃Ij

) 1
2

∏N
i=1

∏NF
J=1

∏
p∈Z

(
1
`

)mi (p`ε− `m̃J + `m̃Ii −mi)mi

, (5.12)

where we used the Pochhammer symbol, which is defined as

(x)m ≡
m−1∏
k=0

(x+ k) . (5.13)

Similarly, Zav with ni > 0 can be rewritten as

Zav =

∞∑
n=0

e−2πiτ0nZnav (5.14)

with n ≡ |~n| and

Znav =
∑
~n∈ZN≥0

|~n|=n

∏N
i,j=1
i 6=j

∏
p∈Z

(
pε+m̃Ii−

1
`
ni−m̃Ij+ 1

`
nj

pε+m̃Ii−m̃Ij

) 1
2

∏N
i=1

∏NF
J=1

∏
p∈Z

(
−1
`

)ni (p`ε− `m̃J + `m̃Ii − ni)ni
. (5.15)

In the following let us focus on the vortex part of the partition function, i.e. Zv. The

anti-vortex part Zav can be treated similarly.

We observe that the expression (5.12) is very similar to the vortex partition function

on S2 studied in Refs. [33, 34], and the only difference is that in our case there is an

extra product over p ∈ Z. In principle, we can regularize this infinite product and test

the 4d Seiberg duality directly, however, it is technically easier to keep the unregularized

infinite product, so that the problem of testing the 4d Seiberg duality becomes a problem

of testing the 2d Seiberg-like duality. Hence, we can apply the same trick as in Ref. [33] to

test Seiberg duality in the following.

Applying the following identity of the Pochhammer symbol

(a− n)m(−a−m)n =

(
1 +

m− n
a

)−1

(a+ 1)m(−a+ 1)n , (5.16)

in the new notation we can rewrite the numerator of the summand in Eq. (5.12) as

(−1)(N−1)m
∏
S,T∈~L
S 6=T

∏
p∈Z

(p`ε+ `m̃ST −mS)mS
(p`ε+ `m̃ST −mS)mT

, (5.17)

and the denominator as

∏
S∈~L

∏
T∈~L

∏
p∈Z

(p`ε+ `m̃ST −mS)mS

 ·
∏
T /∈~L

∏
p∈Z

(p`ε+ `m̃ST −mS)mS

 . (5.18)

– 29 –



Using Eqs. (5.17) and (5.18), we can express Eq. (5.12) as

Zmv =
∑
~m∈ZN≥0

|~m|=m

(−1)(N−1)m
∏
S∈~L

1[∏
T∈~L

∏
p∈Z(p`ε+ `m̃ST −mS)mT

]
· 1[∏

T /∈~L
∏
p∈Z(p`ε+ `m̃ST −mS)mS

] , (5.19)

which can be regularized as

Zmv =
∑
~m∈ZN≥0

|~m|=m

(−1)(N−1)m bANFm
∏
S∈~L

1[∏
T∈~L sin(`bm̃ST − bmS)(b,mT )

]
· 1[∏

T /∈~L sin(`bm̃ST − bmS)(b,mS)

] , (5.20)

where b ≡ π
`ε , and A is the regularized value of

∑
p∈Z 1. We have also introduced the

modified sine-Pochhammer symbol:

sin(x)(a,m) ≡
m−1∏
k=0

sin(x+ a k) . (5.21)

Because 1
sin(x) has a simple pole at x = 0, we can rewrite the expression (5.20) into a

contour integral:

Zmv =
(−1)(N−1)m bANFm

m! [sin(b)]m

∫
C

 m∏
j=1

dϕj
2πi

 m∏
i<j

(sin(`bϕi − `bϕj))2

sin(`bϕi − `bϕj + b) · sin(`bϕi − `bϕj − b)


·

 m∏
j=1

1∏
S∈~L sin(`bϕj − `bm̃S) ·

∏
T /∈~L sin(`bm̃T − `bϕj − b)

 . (5.22)

where the contour C is chosen in the following way. First, we assume that the parameter 1
` ,

the masses m̃S∈~L and m̃T /∈~L have small positive imaginary parts, and the imaginary part

of 1
` is larger than the ones for the masses. Consequently, we find in the upper half-plane

the following poles:

m̃S , m̃S +
1

`
, · · · , m̃S + (mS − 1)

1

`
(S ∈ ~L) . (5.23)

Second, since 1
sin(x) has poles at x = lπ with l ∈ Z,

m̃S + lπ , m̃S +
1

`
+ lπ , · · · , m̃S + (mS − 1)

1

`
+ lπ (S ∈ ~L) (5.24)

are also poles in the upper plane. We take the contour C along the real axis and closed in

the upper plane, but then we deform it in such a way that it encloses only the poles with

l = 0, i.e. the poles given by Eq. (5.23).
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We observe that the contour integral (5.22) can be viewed as a trigonometric version

of the contour integral discussed in Ref. [33]. Similar to that case, the contour integral

(5.22) has no poles at infinity when NF > 1. We define the integration variables for the

dual theory as

ϕDj = −ϕj −
1

`
, (5.25)

and the other parameters in the dual theory are still related to the ones in the original

theory through the duality transformations (5.2). In terms of the dual integration variables

and parameters, the contour integral (5.22) can be rewritten as

Zmv =
(−1)(N−1)m bANFm

m! [sin(b)]m

∫
CD

 m∏
j=1

dϕDj
2πi


 m∏
i<j

(
sin(`bϕDi − `bϕDj )

)2

sin(`bϕDi − `bϕDj + b) · sin(`bϕDi − `bϕDj − b)


·

 m∏
j=1

1∏
T /∈~L sin(`bϕDj − `bm̃D

T ) ·
∏
S∈~L sin(`bm̃D

S − `bϕDj − b)

 , (5.26)

where the contour CD is now chosen to be along the real axis and closed in the upper

half-plane, and then deformed in such a way that it picks up only the poles at

m̃D
T , m̃

D
T +

1

`
, · · · , m̃D

T + (mT − 1)
1

`
(T ∈ ~LD) . (5.27)

Now the expression (5.26) describes the vortex part of the partition function of an N = 1

gauge theory on S2 × R2
ε with NF flavors and a gauge group U(NF −N).

Combining the perturbative part, the vortex part and the anti-vortex part of the

partition function on S2 × R2
ε, we conclude that at the IR fixed point

ZU(N)(gYM , ϑ, m̃i) = ZU(NF−N)(g
D
YM , ϑ

D , m̃D
i ) . (5.28)

The original 4d Seiberg duality has special unitary gauge groups instead of the unitary

gauge groups. In principle, we can apply the approaches in Refs. [33, 54] to obtain the

results for the special unitary gauge groups from our results. It is more convenient to use

the integral expression of the partition function obtained in the “Coulomb branch”. Also,

using the N = 1 partition functions on S2 × R2
ε we can also consider other dualities. We

would like to leave these for future work.

6 Comparison with Nekrasov Partition Functions

Because S2×R2
ε approaches the 4d Ω-background near the poles of S2, we expect that our

results can be interpreted as a product of two partition functions on the Ω-background, each

from one patch of S2×R2
ε. This picture is consistent with previous works in the literature

[3, 56, 57]. Because N = 2 theories can be formulated in terms of N = 1 multiplets,

from these elementary building blocks we should be able to construct the N = 2 partition

functions on the Ω-background, also known as the Nekrasov partition function [2, 46, 47].
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There is a technical subtlety. Due to the SUSY algebra given by Eqs. (2.56) and (2.48),

all the eigenmodes eipψ to the operator ∂ψ on R2
ε should contribute to the 1-loop deter-

minant, which corresponds to the product over p ∈ Z in Eqs. (4.5) and (4.15). However,

to compare with the Nekrasov partition functions, we should focus on the vortex sector

without anti-vortices on R2
ε. Hence, the products should now be taken over p ≥ 0 instead

of p ∈ Z due to the expansion in the basis of holomorphic functions {1, w, w2, · · · }.
After taking care of this subtlety, we can propose the N = 1 partition functions on

the Ω-background, and then compare them with the N = 2 Nekrasov partition functions.

To do so, we need to identify the parameters (1/`, ε) from S2 × R2
ε with the equivariant

parameters (ε1, ε2) of the Ω-background, i.e.,

ε1 ≡ ±
1

`
, ε2 ≡ ε , (6.1)

and also the twisted masses with the Coulomb branch parameters:

ai ≡ −m̃Ii . (6.2)

Note that in a general Ω-background, (ε1, ε2) can be complex. Here we identify (ε1, ε2)

with the real parameters in our theory, and conjecture that the results can be analytically

continued to complex parameters.

With these identifications, let us first consider the N = 2 vector multiplet, which can

be decomposed into an N = 1 vector multiplet and an adjoint chiral multiplet. From

Eq. (4.5) and the expressions (4.7) (4.20) with
∏
p∈Z replaced by

∏
p≥0, we first propose

the following expressions for the partition functions of the N = 1 adjoint chiral and the

vector multiplets on the Ω-background:

Zadj
Ω =

∏
i 6=j

∏
p≥0

∏
q≥0

[
(q + 1)ε1 + pε2 + σi − σj

] 1
2
, (6.3)

Zvec
Ω =

∏
i 6=j

∏
p≥0

(pε2 + σi − σj)
1
2

 ·
∏
i 6=j

∏
p≥0

∏
q≥0

(qε1 + pε2 + σi − σj)
1
2

 . (6.4)

Therefore,

Zadj
Ω · Zvec

Ω =
∏
i 6=j

∏
p≥0

∏
q≥0

[
qε1 + pε2 + σi − σj

]
, (6.5)

where σi (i = 1, · · · , r) include the contributions from vortices on R2
ε:

σi = −m̃Ii + ki ε . (6.6)

Moreover, we make a partition of the vortex number ki:

k1
i ≥ k2

i ≥ · · · ≥ k
l(ki)
i ≥ kl(ki)+1

i = k
l(ki)+2
i = · · · = 0 , (6.7)

which form r Young diagrams for i = 1, · · · , r, and l(ki) denotes the length of the i-th

Young diagram. We treat kqi (q ≥ 1) with different q’s as solutions in different sectors, and

ki =
∞∑
q=1

kqi , k0
i = 0 . (6.8)
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Hence, in the q-sector we have

σi = ai + kqi ε2 . (6.9)

Consequently, Eq. (6.5) becomes

Zadj
Ω · Zvec

Ω =

r∏
i,j=1

(i,p)6=(j,q)

∏
p≥0

∏
q≥0

[
qε1 + pε2 + ai − aj + kq+1

i ε2 − kp+1
j ε2

]
. (6.10)

When −ε1 = ~ = ε2, by setting the vortex numbers to zero and applying a regularization

similar to Ref. [2] using the Barnes double zeta function ζ2(s;x|ε1, ε2) defined in (F.1), we

can also extract the perturbative part of the partition function from Eq. (6.10):

exp

 r∑
i,j=1

γ~(ai − aj)

 , (6.11)

where γ~(x) ≡ d
ds

∣∣
s=0

ζ2(s;x|−~, ~). This is the same as the perturbative partition function

for theN = 2 vector multiplet [2, 46, 47]. 3 After subtracting the perturbative contribution

from the expression above, what remains is

r∏
i,j=1

(i,p) 6=(j,q)

∏
p≥0

∏
q≥0

ai − aj + ~(kq+1
i − kp+1

j + p− q)
ai − aj + ~(p− q)

=

r∏
i,j=1

(i,p) 6=(j,q)

∏
p≥1

∏
q≥1

ai − aj + ~(kqi − k
p
j + p− q)

ai − aj + ~(p− q)
, (6.12)

which is exactly the same as the instanton partition function for the N = 2 vector multiplet

[2, 46, 47].

Let us move on to discuss the hypermultiplet, which can be decomposed into a pair

of chiral and anti-chiral multiplets. To be precise, the partition functions of the chiral

multiplet obtained in Section 4 consists of the contributions from both the chiral and the

anti-chiral multiplets. Hence, we expect that the partition function obtained before for the

(anti-)chiral multiplet should coincide with the one for the hypermultiplet.

From Eq. (4.5) we read off the partition function on the Ω-background for the funda-

mental (anti-)chiral multiplet:

Z
fun (anti-)chiral
Ω =

r∏
i=1

∏
p≥0

∏
q≥0

1

−qε1 − pε2 + m̃J + σi
, (6.13)

where now the constants σi are given by

σi = −m̃Ii +
1

`
mi (6.14)

3We notice that there is a little discrepancy among literatures. Our results are the same as the ones

obtained in Ref. [47], which differs from the ones used in Ref. [58] by some shifts of ε1,2.
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with the partition of the vortex number mi:

m1
i ≥ m2

i ≥ · · · ≥ m
l(mi)
i ≥ ml(mi)+1

i = m
l(mi)+2
i = · · · = 0 , (6.15)

and

mi =
∞∑
p=1

mp
i , m0

i = 0 . (6.16)

Hence, in the p-sector we have

σi = ai −mp
i ε1 . (6.17)

We perform a regularization for the infinite product (6.13) as follows:

Z
fun (anti-)chiral
Ω =

r∏
i=1

∏
p≥1

∏
q≥0

1

~(q − p+ 1) + m̃J + ai +mp
i ~
, (6.18)

where we have applied −ε1 = ~ = ε2, and used the expression (6.17) for the constants σi
in the p-sector of the partition (6.15). Moreover, by setting the vortex numbers to zero

and applying a regularization similar to Ref. [2], we can also extract the perturbative part

of the partition function from Eq. (6.13):

exp

(
−

r∑
i=1

γ~(m̃J + ai)

)
, (6.19)

which is consistent with the result in Ref. [47], although there is a sign typo there. After

subtracting the perturbative contribution from the expression (6.18), what remains is

r∏
i=1

∏
p≥1

∏
q≥0

~(q − p+ 1) + m̃J + ai
~(q − p+ 1) + m̃J + ai +mp

i ~

=
r∏
i=1

∏
p≥1

Γ
(
m̃J+ai

~ +mp
i + 1− p

)
Γ
(
m̃J+ai

~ + 1− p
) , (6.20)

where we have performed a partial regularization using∏
q≥0

1

q + x
' Γ(x)√

2π
. (6.21)

The expression (6.20) is exactly the same as the instanton partition function for the hy-

permultiplet in the fundamental representation [47].

To summarize, we have made some conjectures for the N = 1 partition functions on

the Ω-background based on the results from previous sections on S2×R2
ε, and then checked

their relation with the N = 2 Nekrasov partition functions. These conjectures should be

tested using a direct N = 1 instanton counting approach in the future.
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7 Discussions

In this paper we have discussed 4d N = 1 gauge theories on S2 × R2
ε, and computed their

partition functions using supersymmetric localization. We provided a non-index partition

function test for Seiberg duality. Moreover, under some assumptions we have compared

our conjectured N = 1 partition functions on the Ω-background with the N = 2 Nekrasov

partition functions.

We have shown that under reasonable assumptions, the BPS equations admit vortex

solutions at the poles of S2 and at the origin of R2
ε. We have computed the 1-loop determi-

nants of fluctuations around these configurations. However, the instanton-vortex equations

suggest the possibility that point-like instanton solutions may exist. It will be important

to further study whether the equations admit extra solutions other than the ones we found,

and their contributions to the partition function.

There are some natural generalizations and applications of our work.

1. In this paper, we performed the Higgs branch localization and the final result is writ-

ten as a sum over vortex configurations. We should be able to perform the “Coulomb

branch” localization to obtain an integral expression of the partition function.

2. The generalization to other backgrounds (e.g. D2 × R2
ε, S

2 × S2) and other matter

contents, for instance the anti-fundamental chiral multiplet and the (anti-)symmetric

tensor field, should be straightforward. With these new ingredients we can rigorously

test more conjectured dualities.

3. We hope that our work can shed light on the still-mysterious rigid N = 1 theories

on curved space. For example, it gives us hints to previously intractable cases (e.g.

N = 1 localization on S2×S2), and also helps us better understand some notoriously

hard cases (e.g. N = 1 localization on S4) and conceptual issues like the ambiguity of

the sphere partition function [50]. The study can also provide us with more rigorous

tests of the AdS/CFT correspondence in the same spirit of [4, 59].

4. More mathematically, it would be nice to localize N = 1 gauge theories on generic

toric 4-manifolds, just like for N = 2 gauge theories [60, 61].

5. We can compute the partition functions of N = 1 superconformal field theories and

study their anomalies [62], which complements previous studies using superconformal

indices [63, 64].

6. Just as the N = 2 prepotential can be computed from the Nekrasov partition func-

tion, we expect the free energy of our N = 1 partition function to be related to the

effective superpotential. This should be compared with other approaches such as

[65, 66].

7. Some N = 1 theories flow to known N = 2 theories under renormalization group

flows. The superconformal indices of the Minahan-Nemeschansky theories [67, 68]
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and the Argyres-Douglas theories have been computed in this way [69–71]. By fol-

lowing such RG flows, we can also compute the non-index partition functions of

non-Lagrangian theories.

8. There have been recent progress in obtaining 4d N = 1 gauge theories from 6d

N = (1, 0) theory with fluxes [72, 73]. We believe that these new ideas can provide

us with a more direct 4d N = 1 instanton counting. Eventually, we should be able to

study the 4d N = 1 gauge theories directly on the Ω-background based on the recent

progress.

9. Our results, in particular the relations with the Nekrasov partition functions, can

facilitate recent studies on the conjectured N = 1 AGT relation [51, 52].

The topics listed above are under investigation and results will be published elsewhere.
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A Convention

We follow closely the notations introduced in the book by Freedman and Van Proeyen [43].

For the 4d Euclidean space R4, the gamma matrices are chosen to be

Γµ = σµ ⊗ I with µ ∈ {1, 2} , Γ3 = σ3 ⊗ σ1 , Γ4 = σ3 ⊗ σ2 , (A.1)
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where σi (i = 1, 2, 3) are the Pauli matrices, which play the role of the 2d gamma matrices.

The 4d and the 2d charge conjugation matrices are related by

C4 = C2 ⊗ σ1 , (A.2)

and they satisfy

C4 ΓM C−1
4 = −ΓTM , C2 σµC

−1
2 = −σTµ , C2 σ3C

−1
2 = −σT3 , (A.3)

with M ∈ {1, · · · , 4} and µ ∈ {1, 2}. In practice, we can choose C2 to be iσ2. With the

choice above, the matrix Γ5 is given by

Γ5 = −Γ1 Γ2 Γ3 Γ4 = σ3 ⊗ σ3 . (A.4)

Moreover, for later convenience we obtain explicitly the following expressions :

Γµν = σµν ⊗ I , Γµ3 = σµσ3 ⊗ σ1 , Γµ4 = σµσ3 ⊗ σ2 , Γ34 = I⊗ iσ3 . (A.5)

In this paper, we use both the 4d and the 2d commuting Killing spinors. The 4d

commuting spinors satisfy the following Fierz identity:

(λ̄Aχ)(ψ̄Bϕ) =
1

4
(λ̄ABϕ)(ψ̄χ) +

1

4
(λ̄AΓMBϕ)(ψ̄ΓMχ)

− 1

8
(λ̄AΓMNBϕ)(ψ̄ΓMNχ)− 1

4
(λ̄AΓMΓ5Bϕ)(ψ̄ΓMΓ5χ)

+
1

4
(λ̄AΓ5Bϕ)(ψ̄Γ5χ) , (A.6)

and the 2d commuting spinors satisfy the following Fierz identity:

(εη)χ =
1

2
η (εχ) +

1

2
σ3 η (εσ3χ) +

1

2
σµη (εσµχ) . (A.7)

For the 4d and 2d anti-commuting spinors, the corresponding Fierz identities are just the

expressions above with a global minus sign on the right-hand side.

In our convention, the transpose of a bilinear of commuting spinors has an extra minus

sign, i.e.,

(εTMη)T = −ηTMT ε . (A.8)

B Killing Spinors on S2

To define the theory on S2 × R2 and still preserve N = 1 supersymmetry, we require that

Υ satisfy the following equations:

∇µΥ = ± 1

2`
ΓµΓ5Υ , ∇zΥ = 0 = ∇z̄Υ , (B.1)

where ` denotes the radius of S2. In this paper, we make the following choice of the sign:

∇µΥ =
1

2`
ΓµΓ5Υ , ∇zΥ = 0 = ∇z̄Υ . (B.2)

– 37 –



Under the decomposition (2.11), the Killing spinor equations above can be written in terms

of the 2d Killing spinors:

∇µε =
1

2`
σµσ3 ε , ∇zε = 0 = ∇z̄ε ,

∇µε̃ = − 1

2`
σµσ3 ε̃ , ∇z ε̃ = 0 = ∇z̄ ε̃ ,

(B.3)

where ε and ε̃ are Killing spinors on S2.

The Killing spinor equation on S2 has an alternative expression:

∇µε′± = ± i

2`
σµε
′
± . (B.4)

The general solution ε′+ is given by

ε′+ = b1 e
−iϕ

2

(
sin θ2
−i cos θ2

)
+ b2 e

iϕ
2

(
cos θ2
i sin θ2

)
, (B.5)

where b1 and b2 are two complex constants. The other solution ε′− can be obtained by

ε′− = σ3ε
′
+. The conjugate spinors ε′c ≡ C−1

2 ε′∗ satisfies

∇µε′c = ∓ i

2`
σµε
′c . (B.6)

Moreover, σ3 ε
′ satisfies the same equations above as ε′c.

From the Killing spinors ε′± on S2 satisfying (B.4), one can construct

ε± = (I + iσ3)ε′± , (B.7)

which satisfy the other Killing spinor equations (B.3) on S2.

C 2D N = (2, 2) Supersymmetry

C.1 Vector Multiplet

As discussed in Subsection 2.2, under certain assumptions we can rewrite the 4d N = 1

supersymmetry in terms of 2d fields with N = (2, 2) supersymmetry, similar to the one

studied in Refs. [33, 34, 42].

The index µ denotes the coordinates along the S2-direction, while z = x3 + ix4 and

z̄ = x3 − ix4 denote the R2 directions. The fields in the 4d vector multiplet can be

decomposed into the 2d fields in the following way:

AM → Aµ with µ ∈ {1, 2}, Az =
1

2
(A3 − iA4), Az̄ =

1

2
(A3 + iA4) , (C.1)

Ξ = λ⊗ ζ+ + λ̃⊗ ζ− . (C.2)

In principle, these 2d fields also depend on the coordinates (z, z̄) along the R2 direc-

tions, which implies their origin of the 4d N = 1 supersymmetry constructed Section 2.

However, we can further require that they are independent of the coordinates (z, z̄), then
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we will obtain a 2d N = (2, 2) supersymmetry, similar to the one from dimensional re-

duction. Under these assumptions, we obtain the supersymmetry transformations for the

vector multiplet on R4 as follows:

δAµ = −1

2
εTC2σµλ̃−

1

2
ε̃TC2σµλ ,

δAz = −1

2
εTC2σ3λ ,

δAz̄ = −1

2
ε̃TC2σ3λ̃ ,

δλ =
1

4
Fµν σ

µνε+ Fµzσ
µσ3ε̃+ Fzz̄ ε+

i

2
Dσ3 ε ,

δλ̃ =
1

4
Fµν σ

µν ε̃+ Fµz̄σ
µσ3ε− Fzz̄ ε̃−

i

2
Dσ3 ε̃ ,

δD = − i
2
εTC2σ3σ

µDµλ̃+
i

2
ε̃TC2σ3σ

µDµλ− iεTC2Dz̄λ+ iε̃TC2Dzλ̃ ,

(C.3)

where the auxiliary field D is assumed to be anti-hermitian. These transformations on R4

satisfy the following SUSY algebra relations:

{δε1 , δε2} = 0 = {δε̃1 , δε̃2} , (C.4)

and

{δε, δε̃}Aµ = ξν∂νAµ −Dµ(ξνAν) ,

{δε, δε̃}Az = ξν∂νAz −Dz(ξ
νAν) ,

{δε, δε̃}Az̄ = ξν∂νAz̄ −Dz̄(ξ
νAν) ,

{δε, δε̃}λ = ξν∂νλ+ [ξνAν , λ] ,

{δε, δε̃}λ̃ = ξν∂ν λ̃+ [ξνAν , λ̃] ,

{δε, δε̃}D = ξν∂νD + [ξνAν , D] ,

(C.5)

where

ξµ ≡ 1

2
(ε̃TC2σ

µε) . (C.6)

To obtain these commutation relations, we use the fact that ε and ε̃ are two independent

solutions to the same 2d Killing spinor equation, and

ε1 ∝ ε2 , ε̃1 ∝ ε̃2 , (C.7)

which are all constant spinors for R2. Moreover, we need the Fierz identity for the 2d

commuting spinors (A.7).

To define a consistent supersymmetry on S2×R2, we first see that the transformations

(C.3) on R4 do not form a closed algebra on the space S2×R2. To obtain a closed algebra,

we have to add additional terms to δλ, δλ̃ and δD, which are

δ′λ = −bAzσµσ3Dµε̃ ,

δ′λ̃ = −b̃Az̄σµσ3Dµε ,

δ′D =
iã

2
(Dµε)

TC2σ3σ
µλ̃− ia

2
(Dµε̃)

TC2σ3σ
µλ ,

(C.8)
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while the other transformations remain the same. Moreover, due to the non-trivial 2d

Killing spinor equations there are some additional terms appearing in δFµν , δFµz and

δFµz̄. By requiring the closure of the algebra on S2 × R2, one can fix the constants in the

additional terms δ′λ, δ′λ̃ and δ′D to be

a = ã = b = b̃ = −1 . (C.9)

Hence, the new SUSY transformations on S2 × R2 become

δAµ = −1

2
εTC2σµλ̃−

1

2
ε̃TC2σµλ ,

δAz = −1

2
εTC2σ3λ ,

δAz̄ = −1

2
ε̃TC2σ3λ̃ ,

δλ =
1

4
Fµν σ

µνε+ Fµzσ
µσ3ε̃+ Fzz̄ ε+

i

2
Dσ3 ε+Azσ

µσ3Dµε̃ ,

δλ̃ =
1

4
Fµν σ

µν ε̃+ Fµz̄σ
µσ3ε− Fzz̄ ε̃−

i

2
Dσ3 ε̃+Az̄σ

µσ3Dµε ,

δD = − i
2
εTC2σ3σ

µDµλ̃+
i

2
ε̃TC2σ3σ

µDµλ− iεTC2Dz̄λ+ iε̃TC2Dzλ̃

− i

2
(Dµε)

TC2σ3σ
µλ̃+

i

2
(Dµε̃)

TC2σ3σ
µλ .

(C.10)

The commutation relations of these transformations on S2 × R2 are

{δε1 , δε2} = 0 = {δε̃1 , δε̃2} , (C.11)

and

{δε, δε̃}Au = ξν∂νAu −Du

(
ξMAM

)
+ αAu ,

{δε, δε̃}Aū = ξν∂νAū −Dū

(
ξMAM

)
− αAū ,

{δε, δε̃}Az = ξν∂νAz + [ξMAM , Az] + ρAz ,

{δε, δε̃}Az̄ = ξν∂νAz̄ + [ξMAM , Az̄]− ρAz̄ ,

{δε, δε̃}PLλ = ξν∂νPLλ+ [ξMAM , PLλ] +
1

2
αPLλ+

1

2
ρPLλ ,

{δε, δε̃}PRλ̃ = ξν∂νPRλ̃+ [ξMAM , PRλ̃]− 1

2
αPRλ̃−

1

2
ρPRλ̃ ,

{δε, δε̃}PRλ = ξν∂νPRλ+ [ξMAM , PRλ]− 1

2
αPRλ+

1

2
ρPRλ ,

{δε, δε̃}PLλ̃ = ξν∂νPLλ̃+ [ξMAM , PLλ̃] +
1

2
αPLλ̃−

1

2
ρPLλ̃ ,

{δε, δε̃}D = ξν∂νD + [ξMAM , D] .

(C.12)

C.2 Gauged (Anti-)Chiral Multiplet

Similar to the vector multiplet, we apply the following decomposition of the spinor to the

chiral multiplet:

Ψ = ψ ⊗ ζ+ + ψ̃ ⊗ ζ− . (C.13)
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Consequently,

PLΨ = PLψ ⊗ ζ+ + PRψ̃ ⊗ ζ− , (C.14)

where PL on the left-hand side denotes the 4d projection operator, while PL,R on the

right-hand side stand for the 2d projection operators.

Unlike in the main text, now we assume that the 2d fields are independent of the coor-

dinates (z, z̄) along the R2 directions, then we will obtain a 2d N = (2, 2) supersymmetry,

similar to the one from dimensional reduction. Under these assumptions, we obtain the

SUSY transformations for the chiral multiplet on R4 in terms of the 2d fields:

δφ =
1√
2

(ε̃TC2PLψ + εTC2PRψ̃) ,

δPLψ =
1√
2

(PLσ
µε)Dµφ+

√
2(PLε̃)Dzφ+

1√
2

(PLε)F ,

δPRψ̃ =
1√
2

(PRσ
µε̃)Dµφ−

√
2(PRε)Dz̄φ+

1√
2

(PRε̃)F ,

δF =
1√
2

(ε̃TC2σ
µDµPLψ + εTC2σ

µDµPRψ̃) +
√

2(ε̃TC2σ3DzPRψ̃ + εTC2σ3Dz̄PLψ)

− (ε̃TC2PRλ+ εTC2PLλ̃)φ ,

(C.15)

where φ and F denote the 2d scalar field and the auxiliary field respectively, and the 2d

projection operators are in Eq. (2.29).

The transformations above satisfy the following commutation relations:

{δε1 , δε2} = 0 = {δε̃1 , δε̃2} , (C.16)

and

{δε, δε̃}φ = ξµDµφ ,

{δε, δε̃}ψ = ξµDµψ ,

{δε, δε̃}ψ̃ = ξµDµψ̃ ,

{δε, δε̃}F = ξµDµF .

(C.17)

In order to define the chiral multiplet consistently on S2 × R2, similar to the vector

multiplet, we have to introduce some additional terms to the transformations δψ, δψ̃ and

δF :

δ′ψ = − c√
2

(PLσ
µDµε)φ ,

δ′ψ̃ = − c̃√
2

(PRσ
µDµε̃)φ ,

δ′F = − d√
2

(Dµε̃)
TC2σ

µψ − d̃√
2

(Dµε)
TC2σ

µψ̃ ,

(C.18)

while the transformation δφ remains the same as Eq. (C.15). By requiring the closure of

the SUSY algebra, one can fix the constants c, c̃, d and d̃:

c = c̃ = d = d̃ = −q , (C.19)
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where q is a constant. Therefore, the SUSY transformations of the chiral multiplet on

S2 × R2 become

δφ =
1√
2

(ε̃TC2PLψ + εTC2PRψ̃) ,

δPLψ =
1√
2

(PLσ
µε)Dµφ+

√
2(PLε̃)Dzφ+

1√
2

(PLε)F +
q√
2

(PLσ
µDµε)φ ,

δPRψ̃ =
1√
2

(PRσ
µε̃)Dµφ−

√
2(PRε)Dz̄φ+

1√
2

(PRε̃)F +
q√
2

(PRσ
µDµε̃)φ ,

δF =
1√
2

(ε̃TC2σ
µDµPLψ + εTC2σ

µDµPRψ̃) +
√

2(ε̃TC2σ3DzPRψ̃ + εTC2σ3Dz̄PLψ)

− (ε̃TC2PRλ+ εTC2PLλ̃)φ+
q√
2

(Dµε̃)
TC2σ

µPLψ +
q√
2

(Dµε)
TC2σ

µPRψ̃ .

(C.20)

The corresponding commutation relations are

{δε1 , δε2} = 0 = {δε̃1 , δε̃2} , (C.21)

and

{δε, δε̃}φ = ξν∂νφ+ [ξMAM , φ] ,

{δε, δε̃}PLψ = ξν∂νPLψ + [ξMAM , PLψ] +
1

2
αPLψ +

1

2
ρPLψ ,

{δε, δε̃}PRψ̃ = ξν∂νPRψ̃ + [ξMAM , PRψ̃]− 1

2
αPRψ̃ −

1

2
ρPRψ̃ ,

{δε, δε̃}F = ξν∂νF + [ξMAM , F ] ,

(C.22)

where ξM , ρ and α are defined the same as before.

For the anti-chiral multiplet (Φ̄, PRΨ, F̄ ) on R4, the SUSY transformations are given

by Eqs. (2.36). We can apply the same decomposition (C.13) and consequently

PRΨ = PRψ ⊗ ζ+ + PLψ̃ ⊗ ζ− . (C.23)

Different from the main text, if we assume that these 2d fields are independent of the

coordinates (z, z̄) along the R2 directions, we obtain the SUSY transformations for the

anti-chiral multiplet on S2 × R2 as follows:

δφ̄ =
1√
2

(εTC2PLψ̃ + ε̃TC2PRψ) ,

δPRψ =
1√
2

(PRσ
µε)Dµφ̄−

√
2(PRε̃)Dzφ̄+

1√
2

(PRε)F̄ +
q√
2

(PRσ
µDµε)φ̄ ,

δPLψ̃ =
1√
2

(PLσ
µε̃)Dµφ̄+

√
2(PLε)Dz̄φ̄+

1√
2

(PLε̃)F̄ +
q√
2

(PLσ
µDµε̃)φ̄ ,

δF̄ =
1√
2

(εTC2σ
µDµPLψ̃ + ε̃TC2σ

µDµPRψ) +
√

2(εTC2σ3Dz̄PRψ + ε̃TC2σ3DzPLψ̃)

− (εTC2PRλ̃+ ε̃TC2PLλ)φ̄+
q√
2

(Dµε)
TC2σ

µPLψ̃ +
q√
2

(Dµε̃)
TC2σ

µPRψ .

(C.24)
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The transformations satisfy the commutation relations:

{δε1 , δε2} = 0 = {δε̃1 , δε̃2} , (C.25)

and

{δε, δε̃}φ̄ = ξν∂ν φ̄+ [ξMAM , φ̄] ,

{δε, δε̃}PRψ = ξν∂νPRψ + [ξMAM , PRψ]− 1

2
αPRψ +

1

2
ρPRψ ,

{δε, δε̃}PLψ̃ = ξν∂νPLψ̃ + [ξMAM , PLψ̃] +
1

2
αPLψ̃ −

1

2
ρPLψ̃ ,

{δε, δε̃}F̄ = ξν∂νF̄ + [ξMAM , F̄ ] .

(C.26)

D BPS Equations and Classical Solutions

Using the explicit expressions of the commuting Killing spinors (2.43), we obtain the fol-

lowing identities for the commuting Killing spinors Σ and Σ̃, which are useful in computing

the δ-exact part of the action in Subsection 3.1:

Σ†Σ = Σ̃†Σ̃ = 2 , Σ̃†Σ = Σ†Σ̃ = 0 ,

Σ†Γ5Σ = Σ̃†Γ5Σ̃ = −2 cos θ , Σ̃†Γ5Σ = Σ†Γ5Σ̃ = 0 ,

Σ†ΓMΣ = Σ̃†ΓM Σ̃ = −2 sin θ δM1 , Σ̃†ΓMΣ = Σ†ΓM Σ̃ = 0 ,

Σ†ΓMΓ5Σ = −Σ̃†ΓMΓ5Σ̃ = −2i sin θ δM2 ,

Σ̃†ΓMΓ5Σ = 2 sin θ e−iϕ δM3 + 2i sin θ e−iϕ δM4 ,

Σ†ΓMΓ5Σ̃ = −2 sin θ eiϕ δM3 + 2i sin θ eiϕ δM4 ,

Σ†ΓµνΣ = −2i cos θ εµν , Σ†ΓµaΣ = 0 , Σ†Σ34Σ = 2i ,

Σ̃†ΓµνΣ̃ = 2i cos θ εµν , Σ̃†ΓµaΣ̃ = 0 , Σ̃†Γ34Σ̃ = −2i ,

Σ̃†ΓµνΣ = 0 , Σ̃†Γ34Σ = 0 , (D.1)

Σ̃†ΓµaΣ =

{
2 cos θ e−iϕδµ1 − 2i e−iϕδµ2 , for a = 3 ,

2i cos θ e−iϕδµ1 + 2 e−iϕδµ2 , for a = 4 ,

Σ†ΓµνΣ̃ = 0 , Σ†Γ34Σ̃ = 0 ,

Σ†ΓµaΣ̃ =

{
−2 cos θ eiϕδµ1 − 2i eiϕδµ2 , for a = 3 ,

2i cos θ eiϕδµ1 − 2 eiϕδµ2 , for a = 4 ,

Σ†ΓµνΓ5Σ = 2iεµν , Σ†ΓµaΓ5Σ = 0 , Σ†Γ34Γ5Σ = −2i cos θ ,

Σ̃†ΓµνΓ5Σ̃ = −2iεµν , Σ̃†ΓµaΓ5Σ̃ = 0 , Σ̃†Γ34Γ5Σ̃ = 2i cos θ ,

Σ̃†ΓµνΓ5Σ = 0 , Σ̃†Γ34Γ5Σ = 0 ,

Σ̃†ΓµaΓ5Σ =

{
−2 e−iϕ δµ1 + 2i cos θ e−iϕ δµ2 , for a = 3 ,

−2i e−iϕ δµ1 − 2 cos θ e−iϕ δµ2 , for a = 4 ,
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Σ†ΓµνΓ5Σ̃ = 0 , Σ†Γ34Γ5Σ̃ = 0 ,

Σ†ΓµaΓ5Σ̃ =

{
2 eiϕ δµ1 + 2i cos θ eiϕ δµ2 , for a = 3 ,

−2i eiϕ δµ1 + 2 cos θ eiϕ δµ2 , for a = 4 .

By applying the identities above, we obtain the δ-exact part of the action (3.7) and

consequently the BPS equations (3.11) ∼ (3.14). In Subsection 3.2, we have discussed how

to obtain the classical solutions to some of the BPS equations. In the following of this

appendix, we focus on Eq. (3.22):

F12 − g2
YM (|ΦI |2 − η) = 0 (D.2)

and one of the equations in Eq. (3.14):

DūΦI = 0 , (D.3)

and we discuss their (anti-)vortex solutions.

First, in the explicit coordinates Eqs. (D.2) and (D.3) become

1

`2 sin θ
Fθϕ − g2

YM (|ΦI |2 − η) = 0 , (D.4)[
1

`
∂θ +

i

sin θ
(∂ϕ + iAϕ + iÃIϕ)− ε

sin θ
w ∂w +

ε

sin θ
w̄ ∂w̄

]
ΦI = 0 . (D.5)

In Section 3.2, we have considered the vortex solution throughout the whole S2, but

we have also mentioned that there can be a configuration with a vortex solution at the

north pole and an anti-vortex solution at the south pole. In this appendix let us consider

this configuration in detail. To obtain the (anti-)vortex solutions (3.26) (3.27), we try to

solve these two equations in different regions:

• θ ≈ 0 (near the core of the vortex at the north pole):

In this case, we consider a vortex solution located at the north pole of S2 and at the

same time at the origin of R2
ε. The vortex solution is given by

ΦI ' (θ eiϕ)mwk , Aϕ ' `m̃I − k`ε (k ≥ 0) , (D.6)

where k ≥ 0 is required by the regularity of the solution at w = 0. They solve

Eq. (D.5) exactly. For Eq. (D.4), to ensure a non-vanishing field strength at the

north pole, we need to tune the FI paramter η → ∞, which corresponds to a point-

like vortex. The explicit form of the field strength Fθϕ is irrelevant.

• θ ≈ π (near the core of the anti-vortex at the south pole):

In this case, we consider an anti-vortex solution located at the south pole of S2 and

at the same time at the origin of R2
ε. The anti-vortex solution is given by

ΦI ' (θ̂ eiϕ)nw̄k
′
, Aϕ ' `m̃I + k′`ε (k′ ≥ 0) , (D.7)

where θ̂ ≡ π − θ , and k′ ≥ 0 is required by the regularity of the solution at w = 0.

Similar to the previous case, they solve Eq. (D.5) exactly, and for Eq. (D.4) one has

to tune the FI paramter η →∞, which corresponds to a point-like anti-vortex at the

south pole.
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• θ ≈ π
2 (on the northern hemisphere far from the core of the vortex):

In this case, we consider the solution on the northern hemisphere far from the core

of the vortex located at the north pole of S2, which is given by

ΦI ' √η eimϕwk , Aϕ ' `m̃I −m− k`ε (k ≥ 0) . (D.8)

They solve Eq. (D.5) exactly, but cannot solve Eq. (D.4) exactly unless k = 0.

• θ ≈ π
2 (on the southern hemisphere far from the core of the anti-vortex):

In this case, we consider the solution on the southern hemisphere far from the core

of the anti-vortex located at the south pole of S2, which is given by

ΦI ' √η einϕw̄k′ , Aϕ ' `m̃I − n+ k′`ε (k′ ≥ 0) . (D.9)

They solve Eq. (D.5) exactly, but cannot solve Eq. (D.4) exactly unless k′ = 0.

Comparing the solutions of the last two cases, we find that in order to glue the solutions

from the two hemispheres together, regularity requires that

k = k′ = 0 , (D.10)

which is consistent with the requirement discussed before that the solutions solve Eq. (D.4)

exactly at k = k′ = 0. Hence, a vortex solution located at the north pole of S2 and an

anti-vortex solution located at the south pole of S2 can be glued together through a gauge

transformation along the equator (θ = π
2 ), but these configurations are trivial on the R2

ε-

plane.

E 1-Loop Determinants via Index Theorem

In this appendix, we apply the index theorem to compute the 1-loop determinant of the

partition function around the classical solutions. The method is similar to the one used in

Refs. [33, 35, 36].

First, the complex coordinate w on R2
ε can be parametrized as

w = r eiψ . (E.1)

From Eqs. (2.48) and (2.56) we see that the square of the supersymmetry that we con-

structed on S2 × R2
ε is

δ2 = −1

`
∂ϕ − ε∂ψ + i cosϕ sinθ(∂w + ∂w̄)− sinϕ sinθ(∂w − ∂w̄)

+ Λ− i

`
cosθ Jus −

i

2
(ε− 1

`
)R2 + iFIm̃I , (E.2)

which has fixed points (θ, w) = (0, 0) and (π, 0), corresponding to the north and the south

poles of S2 together with the origin of R2
ε. Hence, we can consider the indices at these

fixed points to obtain the 1-loop determinants.
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First, the term −ε∂ψ in the algebra (E.2) generates a rotation on R2
ε around the origin,

which contributes a sum
∑

p∈Z e
−ipε to the index.

For the chiral multiplet, at the north pole (θ = 0) the SUSY transformation is of the

form Dθ + i
θDϕ ∼ Dū with u = θ eiϕ. The index is the one for the Dolbeault operator with

inverted grading, i.e. −1/(1− u). Hence, by expanding −1/(1− u) in terms of t = eiϕ and

using the equivariant parameter −1/`, we obtain the index for the chiral multiplet at the

north pole:

indchiral
N = −

∑
p∈Z

e−ipε
∑
q≥0

e−iq/` e−i(ε−1/`)R2/2 eiFJm̃J eΛN , (E.3)

where J denotes an arbitrary flavor, and

ΛN = − i
`
Aϕ = −iFIm̃I +

i

`
m+ ikε , (E.4)

with m and k denoting the numbers of vortices located at the north pole of S2 and at the

origin of R2
ε respectively.

Similarly, at the south pole (θ = π), the SUSY transformation is of the form Dθ̂ +
i
θ̂
Dϕ ∼ Dū with θ̂ = π − θ and u = θ̂ eiϕ. The index is still the one for the Dolbeault

operator with inverted grading, i.e. −1/(1− u). Hence, by expanding −1/(1− u) in terms

of t = e−iϕ and using the equivariant parameter −1/`, we obtain the index for the chiral

multiplet at the south pole:

indchiral
S =

∑
p∈Z

eipε
∑
q≥1

eiq/` e−i(ε−1/`)R2/2 eiFJm̃J eΛS , (E.5)

where J denotes an arbitrary flavor, and

ΛS = − i
`
Aϕ = −iFIm̃I +

i

`
n+ ikε , (E.6)

with n and k denoting the number of vortices located at the south pole of S2 and at the

origin of R2
ε respectively. Both the index at the north pole (E.3) and the index at the

south pole (E.5) are generalized to the non-Abelian case, which are Eqs. (4.1) and (4.3)

respectively.

For the vector multiplet, its index is given by the one of the de Rham operator. Hence,

we obtain the indices at the north and the south poles as follows:

indvec
N =

1

2

∑
~α∈∆G

∑
p∈Z

e−ipε ei~α·~σ
N
, indvec

S =
1

2

∑
~α∈∆G

∑
p∈Z

eipε ei~α·~σ
S
, (E.7)

where ~α denotes the root vectors of the gauge group, and the constants ~σN,S are given by

Eqs. (4.2) and (4.4).

F Special Functions

In this appendix let us summarize some relevant facts about the double gamma function

Γ2(x|ε1, ε2) from the math literature.
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First, the Barnes double zeta function is defined as

ζ2(s; x|ε1, ε2) =
1

Γ(s)

∫ ∞
0

dt

t
ts

e−tx

(1− e−ε1t)(1− e−ε2t)
. (F.1)

The double gamma function is then defined as

Γ2(x|ε1, ε2) = exp
d

ds

∣∣∣∣
0

ζ2(s; x|ε1, ε2) . (F.2)

The function ζ2(s; x|ε1, ε2) can be viewed as the regularization of the infinite sum:

ζ2(s; x|ε1, ε2) =
∑
m,n≥0

(x+mε1 + nε2)−s . (F.3)

The function Γ2(x|ε1, ε2) is analytic in x except at the poles

x = −(mε1 + nε2) (m, n ∈ Z≥0) . (F.4)

Hence, Γ2(x|ε1, ε2) can be viewed as a regularized infinite product depending on the signs

of ε1, ε2:

Γ2(x|ε1, ε2) ∝



∏
m,n≥0

(x+mε1 + nε2)−1 , for ε1 > 0, ε2 > 0 ;

∏
m,n≥0

(x+mε1 − (n+ 1)ε2) , for ε1 > 0, ε2 < 0 ;

∏
m,n≥0

(x− (m+ 1)ε1 + nε2) , for ε1 < 0, ε2 > 0 ;

∏
m,n≥0

(x− (m+ 1)ε1 − (n+ 1)ε2)−1 , for ε1 < 0, ε2 < 0 .

(F.5)
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