Approximation of exit times for one-dimensional linear diffusion processes - Archive ouverte HAL
Article Dans Une Revue Computers & Mathematics with Applications Année : 2020

Approximation of exit times for one-dimensional linear diffusion processes

Résumé

In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm was already introduced in both the Brownian context and the Ornstein-Uhlenbeck context, that is for particular time-homogeneous diffusion processes. Here the aim is therefore to generalize this efficient numerical approach in order to obtain an approximation of both the exit time and position for a general linear diffusion. The main challenge of such a generalization is to handle with time-inhomogeneous diffusions. The efficiency of the method is described with particular care through theoretical results and numerical examples.
Fichier principal
Vignette du fichier
S0898122120302893.pdf (739.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03035854 , version 1 (23-08-2022)

Licence

Identifiants

Citer

Samuel Herrmann, Nicolas Massin. Approximation of exit times for one-dimensional linear diffusion processes. Computers & Mathematics with Applications, 2020, 80 (6), pp.1668-1682. ⟨10.1016/j.camwa.2020.07.023⟩. ⟨hal-03035854⟩
34 Consultations
97 Téléchargements

Altmetric

Partager

More