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Abstract

In order to approximate the exit time of a one-dimensional diffusion
process, we propose an algorithm based on a random walk. Such an al-
gorithm was already introduced in both the Brownian context and the
Ornstein-Uhlenbeck context, that is for particular time-homogeneous
diffusion processes. Here the aim is therefore to generalize this efficient
numerical approach in order to obtain an approximation of both the
exit time and position for a general linear diffusion. The main chal-
lenge of such a generalization is to handle with time-inhomogeneous
diffusions. The efficiency of the method is described with particular
care through theoretical results and numerical examples.

Key words and phrases: exit time, linear diffusion, random walk, gener-
alized spheroids, stochastic algorithm
2010 AMS subject classifications: primary: 65C05; secondary: 60J60,
60G40, 60G46.

1 Introduction

In many domains, the simulation of the first exit time for a diffusion plays a
crucial role. In reliability analysis, for instance, first passage times and exit
times are directly related to lifetimes of engineering systems. In order to
emphasize explicit expressions of the lifetime distribution, it is quite usual
to deal with simplified models like Ornstein-Uhlenbeck processes. Indeed
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they satisfy the mean reverting property which is essential for modeling
degradation processes. In mathematical finance studying barrier options
also requires to describe exit times since it is of prime interest to estimate
if the underlying stock price stays in a given interval. In the simple Black-
Scholes model, the distribution of the first exit time is well-known. In more
complex models corresponding to general diffusion processes, such an explicit
expression is not available and requires the use of numerical approximations.

Several methods have been introduced in order to approximate first exit
times. The classical and most common approximation method is the Eu-
ler–Maruyama scheme based on a time-discretization procedure. The exit
time of the diffusion process is in that case replaced by the exit time of
the scheme. The approximation is quite precise but requires to restrict the
study on a given fixed time interval on one hand and to describe precisely
the probability for the diffusion to exit inbetween two consecutive nodes of
the time grid on the other hand.

In this study, we aim to introduce a random walk in order to approximate
the diffusion exit time from a given interval. Let us introduce (Xt, t ≥ 0)
the unique solution of the stochastic differential equation:

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, t ≥ 0,

where (Wt, t ≥ 0) stands for a one-dimensional Brownian motion. Let us
also fix some interval I = [a, b] which strictly contains the starting position
X0 = x. We denote by T the diffusion first exit time:

T = inf{t ≥ 0 : Xt /∈ [a, b]}.

Our approach consists in constructing a random walk (Tn, Xn)n≥0 on R+×R
which corresponds to a skeleton of the Brownian paths. In other words,
the sequence (Tn, Xn) belongs to the graph of the trajectory. Moreover
we construct the walk in such a way that (Tn, Xn) converges as time elapses
towards the exit time and location (T , XT ). It suffices therefore to introduce
a stopping procedure in the algorithm to achieve the approximation scheme.
Of course, such an approach is interesting provided that (Tn, Xn) is easy to
simulate numerically. For the particular Brownian case, the distribution of
the exit time from an interval has a quite complicated expression which is
difficult to use for simulation purposes (see, for instance [18]) whereas the
exit distribution from particular time-dependent domains, for instance the
spheroids also called heat balls, can be precisely determined. These time-
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dependent domains are characterized by their boundaries:

ψ±(t) = ±

√
t log

(
d2

t

)
, for t ∈ [0, d2], (1.1)

where the parameter d > 0 corresponds to the size of the spheroid. The first
time the Brownian motion paths (t,Wt) exits from the domain
{(t, x) : |x| ≤ ψ+(t)}, denoted by τ , is well-known. Its probability density
function [10] is given by

p(t) =
1

d
√

2π

√
1

t
log

(
d2

t

)
, t ≥ 0. (1.2)

It is therefore easy to generate such an exit time since τ and d2Ue−N
2are

identically distributed. Here U and N are independent random variables,
U being uniformly distributed on [0, 1] and N being a standard gaussian
random variable. Let us notice that the boundaries of the spheroids satisfy
the following bound:

|ψ±(t)| 6 d√
e
, ∀t ∈ [0, d2]. (1.3)

This remark permits to explain the general idea of the algorithm. First we
consider (T0, X0) the starting time and position of the Brownian paths, that
is (0, x). Then we choose the largest parameter d possible such that the
spheroid starting in (T0, X0) is included in the domain R+ × [a, b]. We ob-
serve the first exit time of this spheroid and its corresponding exit location,
this couple is denoted by (T1, X1). Due to the translation invariance of the
Brownian motion, we can construct an iterative procedure, just considering
(T1, X1) like a starting time and position for the Brownian motion. So we
consider a new spheroid included in the interval and (T2, X2) shall correspond
to the exit of this second spheroid and so on. Step by step we construct a
random walk on spheroids also called WOMS algorithm (Walk On Moving
Spheres) which converges towards the exit time and position (T ,WT ). This
sequence is stopped as soon as the position Xn is close enough to the bound-
ary of the considered interval. The idea of this algorithm lies in the definition
of spherical processes and the walk on spheres introduced by Müller [12] and
used in the sequel by Motoo [11] and Sabelfeld [16] [17]. It permits also
in some more technical advanced way to simulate the first passage time for
Bessel processes [4].
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In this study, we focus our attention on diffusions which are strongly
related to the Brownian motion: they can be expressed as functionals of
the Brownian motion that is Xt = f(t,Wt). The idea is to use this link
to adapt the Brownian algorithm in an appropriate way. This link implies
changes on the time-dependent domains for which the exit problem can be
expressed in a simpler way. For these diffusion families, we present the ran-
dom walk algorithm (WOMS), describe the approximation error depending
on the stopping procedure and emphasize the efficiency of the method. We
describe the mean number of generalized spheroids necessary to obtain the
approximated exit time.

2 The algorithm

The Walk on Spheroids already introduced for the Ornstein-Uhlenbeck pro-
cess in [7] permits to approximate the exit time in an efficient way. We aim to
extend such numerical procedure to a wider class of stochastic processes. We
focus our attention to the family of L-class diffusions (linear-type diffusions)
which generalizes the Ornstein-Uhlenbeck processes. For such diffusions, all
the coefficients are time-dependent. Moreover they are based on a strong
relation with a one-dimensional Brownian motion.

2.1 L-class diffusions

This particular family of diffusions was already introduced in [19].

Definition 2.1 (L-class diffusions). We call L-class diffusion any solution
of

dXt = (α(t)Xt + β(t))dt+ σ̃(t)dWt t ≥ 0 and X0 = x0, (2.1)

where α, β and σ̃ are Hölder-continuous functions, σ̃ is furthermore positive
and (Wt)t≥0 is a one-dimensional Brownian motion.

Since α, β and σ̃ are measurable functions, the linear structure of the
differential equation (2.1) implies both the existence and the uniqueness of
a strong solution. Moreover the stochastic process does not explode a.s. if
the initial data X0 is square-integrable (see, for instance, Theorem 5.2.1 in
[14]). Here the starting position is always deterministic, consequently the
explosion phenomenon is never observed a.s.. It is possible to solve (2.1) in
a classical way (see, for instance, Section 5.6 about linear equations in [9]).
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Let us introduce

θ(t) := −
∫ t

0
α(s)ds. (2.2)

An application of Itô’s rule implies that the unique strong solution of (2.1)
is given by

Xt = X0 e
−θ(t) + e−θ(t)

∫ t

0
eθ(s)β(s)ds+ e−θ(t)

∫ t

0
eθ(s)σ̃(s)dWs, t ≥ 0.

This expression is actually not handy for the construction of the algorithm.
Moreover, for simulation purposes, it suffices to deal with a stochastic process
which has the same path distribution than the strong solution X, that means
to consider weak solutions of (2.1). For these reasons, we would like, as for
Ornstein-Uhlenbeck processes in [7], to transform the martingale part of the
diffusion into a time-changed Brownian motion. Let θ the function defined
in (2.2). Then the following process (Xt, t ≥ 0) based on the time-changed
Brownian motion

Xt = fL(t, x0 +Wρ(t)), ∀t ≥ 0, (2.3)

is the unique weak solution of (2.1) with

fL(t, x) =
σ̃(t)√
ρ′(t)

x+ c(t), c(t) = e−θ(t)
∫ t

0
β(s)eθ(s)ds

and ρ(t) =

∫ t

0
σ̃(s)2e2θ(s)ds. (2.4)

This statement is essentially based on Itô’s rule: it suffices to consider
fL(t, x0 +Mt) with the particular martingale Mt :=

∫ t
0

√
ρ′(s)dWs.

Remark 2.2. If the starting time associated to the study of the L-class diffu-
sion is not the origin but another time t0, then we also obtain an expression
similar to (2.3). Let Yt be the unique weak solution of

{
dYt=(α(t+ t0)Yt + β(t+ t0))dt+ σ̃(t+ t0)dWt, t ≥ 0
Y0 =Xt0 .

Then

Yt = fL(t+ t0, Xt0e
−

∫ t0
0 α(s)ds +Wρ(t+t0)−ρ(t0))− e

∫ t+t0
t0

α(s)dsc(t0). (2.5)
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2.2 Spheroids associated to a L-class diffusion process

Introducing the exit time of the spheroid.

We determine a specific spheroid for the diffusion by using the link with the
time-changed Brownian motion. The boundaries of the spheroid associated
to the diffusion starting at time t0 in x0 are denoted by ψL±(t; t0, x0) and the
corresponding exit time is

τ t0L = inf{t > 0 : Y L
t /∈ [ψL−(t; t0, x0), ψL+(t; t0, x0)]}.

Proposition 2.3. Let us consider the spheroid starting in (t0, Xt0) with
boundaries defined by

ψL±(t; t0, Xt0) = e−θ(t+t0) ψ±(ρ(t+ t0)− ρ(t0)) + c(t+ t0)

+ (Xt0 − c(t0))e
∫ t+t0
t0

α(s)ds

for all t ≥ 0, then the associated exit time satisfies

τ t0L
d
= ρ−1

L (τ + ρL(t0))− t0 (2.6)

where τ = inf{u > 0 : Wu /∈ [ψ−(t), ψ+(t)]}, ψ± being defined in (1.1).

Proof. By definition,

τ t0L = inf{t > 0 : Yt /∈ [ψL−(t; t0, Xt0), ψL+(t; t0, Xt0)]}

= inf
{
t > 0 : e−θ(t+t0)Wρ(t+t0)−ρ(t0) + c(t+ t0) + (Xt0 − c(t0))e

∫ t+t0
t0

α(s)ds

/∈ [ψL−(t; t0, Xt0), ψL+(t; t0, Xt0)]
}
.

Using ψL± introduced in the statement, we obtain the following expression
for τ t0L :

inf
{
t > 0 : Wρ(t+t0)−ρ(t0) /∈ [ψ−(ρ(t+ t0)− ρ(t0)), ψ+(ρ(t+ t0)− ρ(t0))]

}
= inf{ρ−1(u+ ρ(t0))− t0 > 0 : Wu /∈ [ψ−(u), ψ+(u)]}
= ρ−1

L (τ + ρL(t0))− t0,

where τ = inf{u > 0 : Wu /∈ [ψ−(u), ψ+(u)]}.
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Size determination of the spheroids

To define a WOMS algorithm for the L-class diffusions, we need to determine
a suitable size for the spheroids in order to stay fully contained in the con-
sidered interval. Such size can be chosen by describing both the minimum
and the maximum of the spheroid boundaries.
The size of the Brownian spheroid introduced in (1.1) depends on a scaling
parameter d > 0, the support of the associated boundaries ψ± being there-
fore equal to [0, d2]. Since the generalized spheroids used for L-class diffusion
are directly linked to the Brownian ones, the parameter d also changes their
size and the boundaries ψL± are defined on the support [0, ρ−1(d2+ρ(t0))−t0].
Let us now precise this parameter d.

Proposition 2.4. Let m > 0 and 0 < γ < 1. For any (x0, t0) ∈ [a, b]× R+

we define a parameter d = d(x0, t0) such that the spheroid associated to the
L-class diffusion starting in (t0, x0) is totally included in [aγ,x0 , bγ,x0 ]. Here
aγ,x0 and bγ,x0 stands for aγ,x = a+ γ(x− a) and bγ,x = b− γ(b− x). This
parameter is given by

d =


min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

(2.7)

where

∆m = e−θ(t0)e
∫ t0+m
t0

|α(s)|ds
(

1√
e

+

√∫ t0+m

t0

|β(s) + x0 α(s)|2
σ̃(s)2

ds

)
, (2.8)

and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = ∆m

√
ρ(t0 +m)− ρ(t0)

and
κ−(x0 − aγ,x0) = ∆m

√
ρ(t0 +m)− ρ(t0).

Remark 2.5. • The previous statement consists in finding d such that
d 6 1

∆m
(bγ,x0 − x0),

d 6 1
∆m

(x0 − aγ,x0),

d2 6 ρ(t0 +m)− ρ(t0).

The last condition in particular leads to t 6 m since ρ is a strictly
increasing function.
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• It is possible to let m depend on the couple (t0, x0) which should per-
mit to obtain bigger spheroids which are still included in the interval.
Nevertheless for numerical purposes, such a procedure slows down dras-
tically the algorithm we are going to present.

• The choice of the constant m is important, since it either slows down
or speeds up the algorithm.

• It is also possible to replace x0 by max(|a|, |b|) in the definition of ∆m

which therefore becomes independent of the starting position x0. Nev-
ertheless such a replacement slows down the algorithm.

Proof of Proposition 2.4. Let us first point out an upper bound for ψL+ start-
ing in (t0, x0). We first require that d2 6 ρ(t0 + m) − ρ(t0). Let us define
RL+(t) := ψL+(t; t0, x0)− x0. By definition

RL+(t) = e−θ(t0+t)

(
ψ+(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0

(
e
∫ t+t0
t0

α(u)du − 1

)
.

Recalling (1.3), we obtain

RL+(t) ≤ e−θ(t0+t)

(
d√
e

+

∫ t0+t

t0

β(s)eθ(s)ds

)
+ x0 e

−θ(t0+t)
(
eθ(t0) − eθ(t+t0)

)

RL+(t) 6 e−θ(t0+t)

(
d√
e

+

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0 e

−θ(t0+t)

(∫ t+t0

t0

α(s)e−
∫ s
0 α(u)du

)
6 e−θ(t0)+

∫ t0+t
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s) + x0 α(s)|
σ̃(s)

σ̃(s)e−
∫ s
0 α(u)duds

)
,

since σ̃ is a positive function. Using Cauchy-Schwarz’s inequality, we obtain
the following upper-bound for SL+(t) := eθ(t0)e−

∫ t0+t
t0

|α(s)|dsRL+(t):

SL+(t) ≤ d√
e

+

(∫ t0+t

t0

|β(s) + x0 α(s)|2

σ̃(s)2
ds

∫ t0+t

t0

σ̃(s)2e−2
∫ s
0 α(u)duds

)1/2

=
d√
e

+

(∫ t0+t

t0

|β(s) + x0 α(s)|2

σ̃(s)2
ds

)1/2

(ρ(t+ t0)− ρ(t0))1/2 .
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Using ρ(t0 + t)− ρ(t0) 6 d2 and t 6 m, leads to

RL+(t) 6 de−θ(t0)+
∫ t0+m
t0

|α(s)|ds
(

1√
e

+

√∫ t0+m

t0

|β(s) + x0 α(s)|2
σ̃(s)2

ds

)
= d∆m.

Under the condition d∆m+x0 6 bγ,x0 , we observe that the spheroid belongs
to the interval d∆m + x0 6 bγ,x0 . Therefore we shall choose

d 6
1

∆m
(bγ,x0 − x0). (2.9)

Let us now deal similarly with a lower-bound of ψL−. We define

RL−(t) := ψL−(t; t0, x0)− x0.

Hence

RL−(t) = e−θ(t0+t)

(
ψ−(ρ(t+ t0)− ρ(t0)) +

∫ t0+t

t0

β(s)e−
∫ s
0 α(u)duds

)
+ x0

(
e
∫ t+t0
t0

α(u)du − 1

)
> e−θ(t0+t)

(
− d√

e
+

∫ t0+t

t0

(β(s) + x0 α(s)) e−
∫ s
0 α(u)duds

)
> e−θ(t0+t)

(
− d√

e
−
∫ t0+t

t0

|β(s) + x0 α(s)|e−
∫ s
0 α(u)duds

)
> −e−θ(t0)e

∫ t0+m
t0

|α(s)|ds
(
d√
e

+

∫ t0+t

t0

|β(s) + x0 α(s)|e−
∫ s
0 α(u)duds

)
.

Using then the same arguments as for the upper bound, we obtain

ψL−(t; t0, x0) > −∆md+ x0.

The condition −∆md+ x0 > aγ,x0 is equivalent to

d 6
1

∆m
(x0 − aγ,x0). (2.10)

Combining (2.9), (2.10) and d2 6 ρ(t0+m)−ρ(t0), we deduce the announced
statement.
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2.3 WOMS algorithm for L-class diffusions

Let us present now the random walk on spheroids which permits to approx-
imate the L-class diffusion exit time.

Algorithmm (L-class WOMS)
Step 1. Initiate Z = x0 and Tε = 0

Step 2. While Z 6 b− ε and Z > a+ ε

Step 2.1 Simulate a couple of independent random variables (τL,B)
where τL denotes the exit time for the diffusion from the spheroid defined
by ψL± with coefficient d = d(Tε, Z) defined in (2.7) and B is Bernoulli
distributed B(1

2). The r.v. B indicates if the diffusion hits the lower
boundary. Due to symmetry properties, its average equals 1/2.

Step 2.2 If B = 1 then set Z ← ψL−(τL; Tε, Z)
otherwise set Z ← ψL+(τL; Tε, Z).

Step 2.3 Tε ← Tε + τL.

Outcome: Tε the approximated exit time from the interval [a, b] for the
diffusion (Xt, t ≥ 0).

As usual let us describe the efficiency of the algorithm. This algorithm
is particularly efficient since its averaged number of steps is of the order
| log(ε)| and since its outcome Tε converges towards the value of the exit
time as ε tends to 0. We present these two results in details in the follow-
ing subsections. Even if the statement of these results look like similar to
those presented in the Ornstein-Uhlenbeck context (see [7]), the situations
are clearly different since here the coefficients - and therefore the size of the
spheroids - are time-dependent.
Since the L-class diffusions are non homogeneous, the sequence (Zn)n of suc-
cessive exit positions, appearing in the algorithm, does not define a Markov
chain. We need therefore to consider both the successive times and posi-
tions (Tn, Xn) in order to deal with a Markov chain. Here Tn stands for the
cumulative time:

Tn =
n∑
k=1

τLk , n ≥ 1. (2.11)
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3 Properties of the algorithm

3.1 Average number of steps

In order to describe precisely the average number of steps in Algorithmm,
we introduce two crucial additional hypotheses.

Assumption 3.1. There exist q′ ∈ [0, 1[ and q ∈ [0, 1], Cσ̃,β > 0 and σ > 0
such that

|α(t)| = O((ln t)q
′
), for large values of t, (3.1)

and

σ 6 σ̃(t) 6 Cσ̃,β t
q/4, |β(t)| 6 Cσ̃,β t

q/4, for t large enough. (3.2)

Assumption 3.2. There exists χm > 0 such that, for any t large enough,

inf
s∈[t,t+m]

σ̃(s) > χm sup
s∈[t,t+m]

σ̃(s). (3.3)

Theorem 3.1. Let us assume that Assumptions 3.1 and 3.2 are satisfied for
a particular parameter m > 0. Then for any parameter q̃ > q, there exists a
constant Cq̃ > 0 such that Nε, the number of steps observed in Algorithmm

has the following upper-bound:

E[N1−q̃
ε ] 6 Cq̃| log(ε)|,

for any ε > 0 small enough.

In particular, for a L-class diffusion with bounded coefficients, we can
prove that E[Nε] 6 C0| log(ε)|, for ε small enough.

Let us notice that Algorithmm can be modified in order to approximate
the stopping time T ∧ Tmax where Tmax is a fixed time horizon. It suffices
in such a situation to observe the path skeleton (Tn, Xn)n≥0 up to the exit
from the domain [0, Tmax]× [a+ ε, b− ε]. The proof of Theorem 3.1 can be
adapted to this modified algorithm: there exists a constant C > 0 such that
the average number of spheroids satisfies

E[Nε] 6 C| log(ε)|,

for any ε > 0 small enough. Since this result only concerns the diffusion pro-
cess on the restricted time interval [0, Tmax], we don’t need any particular
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assumption on the large time behaviour of the coefficients α, β and σ̃. As-
sumption 3.1 and 3.2 are therefore not necessary for the modified algorithm.

We postpone the proof of Theorem 3.1 and present several preliminary
results. First we shall focus our attention on a comparison result between the
L-class diffusion and a particular autonomous diffusion. Secondly we describe
particular solutions of PDEs related to the diffusion generator. Finally we
prove Theorem 3.1 using the martingale theory.

A comparison result for SDEs

We introduce two different results: the first one permits to skip the diffusion
coefficient in (2.1) and the second one permits to replace the time-dependent
drift term by a constant drift.

Proposition 3.2. Let (Xt, t ≥ 0) the solution of the SDE (2.1). We define
the strictly increasing function γ by∫ γ(t)

0
σ̃2(s)ds = t, t ≥ 0.

Then Yt := Xγ(t) satisfies the following SDE

dYt =
( α(γ(t))

σ̃2(γ(t))
Yt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dBt, t ≥ 0, (3.4)

where (Bt)t≥0 is a one-dimensional Brownian motion.

Proof. Using the definition of Yt, we get

Yt = Xγ(t) = x+

∫ γ(t)

0

(
α(s)Xs + β(s)

)
ds+

∫ γ(t)

0
σ̃(s)dWs

= x+

∫ t

0

(
α(γ(s))Xγ(s) + β(γ(s))

)
γ′(s) ds+Bt

= x+

∫ t

0

(
α(γ(s))Ys + β(γ(s))

)
γ′(s) ds+Bt

where Bt =
∫ γ(t)

0 σ̃(s)dWs is a standard Brownian motion.

We obtain the following comparison result, its proof can be found in [20]
(Chapter VI).
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Proposition 3.3. Let T > 0 and let us define

µT := inf
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
.

Let (ZTt )t≥0 the Brownian motion with drift satisfying

ZTt = x+ µT t+Bt, t ≥ 0. (3.5)

Then (Yt) the solution of (3.4) with initial condition x satisfies

(ZTt ≤ Yt a.s., ∀t ≤ γ−1(T )) and (ZTγ(t) ≤ Xt a.s. ∀t ≤ T ).

Remark 3.4. Choosing rather the particular value

µT := sup
x∈[a,b], t≤γ−1(T )

{ α(γ(t))

σ̃2(γ(t))
x+

β(γ(t))

σ̃2(γ(t))

}
,

leads to (ZTt ≥ Yt a.s. for all t 6 γ−1(T )).

An Initial-Boundary Value problem

We consider a value problem which is directly linked to the L-class diffusions:
let F : (R+, [a, b])→ R be the solution of

∂F

∂t
+ (α(t)x+ β(t))

∂F

∂x
+

1

2
σ̃(t)2∂

2F

∂x2
= 0 (3.6)

with initial and boundary conditions F (0, x) = x, F (t, a) = a, F (t, b) = b.
It is well-known (see, for instance, [2], Chap.II) that F admits a proba-

bilistic representation. Indeed

F (t, x) = Ex[Xt∧T ], ∀t ≥ 0, ∀x ∈ [a, b], (3.7)

where (Xt, t ≥ 0) satisfies (2.1) and T stands for the first exit time from the
interval [a, b]. Let us just note that we don’t need at that moment to assume
or verify that the exit time T is almost surely finite. Obviously t∧T is finite
and this fact permits to properly define the probabilistic representation (3.7).
However it would be a nonsense to propose a numerical approximation of an
infinite stopping time. Hence, for the sake of completeness, we emphasize
the importance of both Assumption 3.1 and 3.2 which imply the finiteness
of T as a by-product of Theorem 3.1 and Theorem 3.8 (see Remark 3.9).
Let us now list some useful properties of the function F . Since the functions
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α, β and σ̃ in (2.1) are Hölder-continuous, we deduce that F , ∂F
∂t ,

∂F
∂x and

∂2F
∂x2

are also Hölder-continuous (see, for instance, Theorem 9 of Chapter 3
in [6]). A combination of classical arguments permits to prove the following
statement (see the working paper [8] for complement computations).

Lemma 3.5. The function x 7→ F (t, x) defined in (3.7) is increasing and
continuous on the set [a, b]. Moreover there exists κ > 0 such that ∂F∂x (t, x) >
κ, for all (t, x) ∈ R+ × [a, b].

Proposition 3.6. There exists two constants κa > 0 and κb > 0 such that

F (t, x)− a 6 κa(x− a) and b− F (t, x) 6 κb(b− x), (3.8)

for all (t, x) ∈ R+ × [a, b].

Proof. Let us recall the probabilistic representation: F (t, x) = E[Xx
t∧T ].

We set T = γ(1) and consider (ZTt ) the diffusion introduced in Remark
3.4 with initial condition ZT0 = Xx

0 = x. We construct a new continuous
diffusion process (Zt) which is equal to (ZTt ) on the time interval [0, 1] and
which satisfies the following SDE otherwise:

dZt =
( α(γ(t))

σ̃2(γ(t))
Zt +

β(γ(t))

σ̃2(γ(t))

)
dt+ dWt, t > 1.

Extending the comparison result of Remark 3.4, we know that Zt ≥ Xγ(t)

for all t ≥ 0. Hence

F (t, x)− a ≤ Ex[Zγ−1(t)∧T (Z) − a].

We split the study into two different cases :

• First case: γ−1(t) ≤ 1. The function f(x) = e−2µT x plays an important
role since f(Zt) is a martingale for t ≤ γ(1). Using twice the Lagrange
mean theorem combined with the optional stopping theorem implies

F (t, x)− a ≤ η1Ex
[
e−2µTZ

T
t∧T − e−2µT a

]
= η1

(
e−2µT x − e−2µT a

)
≤ κa(x− a),

where κa =
(

supx∈[a,b] f
′(x)

)(
infx∈[a,b] f

′(x)
)−1

.

14



• Second case: γ−1(t) > 1. We decompose F as follows

F (t, x)− a ≤ Ex[(Zγ−1(t)∧T (Z) − a)1{T (Z)>1}]

+ Ex[(Zγ−1(t)∧T (Z) − a)1{T (Z)≤1}]

≤ (b− a)Px(T (ZT ) > 1) + Ex[(ZT1∧T (ZT ) − a)1{T (ZT )≤1}]

≤ (b− a)Ex[T (Zµ)] + Ex[Zµ1∧T (Zµ)]− a.

The expression Ex[ZT
1∧T (ZT )

] − a can be bounded using similar ar-
guments (Lagrange’s mean and optional stopping theorems) as those
presented in the first part of the proof. Moreover, let us note that the
function g(x) := Ex[T (ZT )] is solution ([2], page 45, Theorem 1.2) of

1

2
g′′ + µT g

′ = −1 for x ∈]a, b[ and g(a) = g(b) = 0.

We recall that T = γ(1) and µT is defined in Remark 3.4. The explicit
solution of this equation is given by

g(x) =
(b− a)(e−2µT a − e−2µT x)

µT (e−2µT a − e−2µT b)
− (x− a)

µT
.

Applying once again Lagrange’s mean theorem, we obtain the existence
of a constant Cg > 0 such that g(x) 6 Cg(x−a) for all x ∈ [a, b]. Using
similar arguments (just replacing Remark 3.4 by Proposition 3.3), we
also prove that b− F (t, x) 6 κb(b− x).

Proof of Theorem 3.1.

We already presented all the necessary ingredients in order to prove the
statement of Theorem 3.1 which concerns the average number of steps.

Proof. Our choice for the bound of the average number of steps is based on
the martingale theory. We recall that F is defined by (3.7) and introduce
another important function H defined by H = V ◦ F with

V (x) = log

(
(x− a)(b− x)

γε(b− a− γε)

)
. (3.9)

Let us note that V is non negative on the whole interval [a + γε, b − γε].
Since F is a the solution of (3.6), the function H just introduced satisfies
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the following partial differential equation:

∂H

∂t
+ (α(t)x+ β(t))

∂H

∂x
+

1

2
σ̃(t)2∂

2H

∂x2
=

1

2
σ̃(t)2V ′′(F (t, x))

(
∂F

∂x
(t, x)

)2

.

(3.10)
Let us also recall that (Tn, Xn) defined in (2.11) is the sequence of successive
exit times and exit positions issued from Algorithmm.
We focus our attention on the sequence Zn = H(Xn) +G(n) with G(0) = 0.
Here G stands for a positive function, we are going to precise this function in
the sequel. This stochastic process is a super-martingale with respect to the
Brownian filtration (FTn)n∈N. Using Itô’s formula and the partial differential
equation satisfied by H, we obtain for Dn := E[Zn+1 − Zn|FTn ],

Dn = E
[∫ Tn+1

Tn

∂H

∂t
(s,Xs) + (α(s)Xs + β(s))

∂H

∂x
(s,Xs)

+
1

2
σ̃(s)2∂

2H

∂x2
(s,Xs)ds

∣∣∣∣FTn]
+ E[Mn+1 −Mn|FTn ] + (G(n+ 1)−G(n))

= E

[∫ Tn+1

Tn

1

2
σ̃(s)2V ′′(F (s,Xs))

(
∂F

∂x
(s,Xs)

)2

ds

∣∣∣∣∣FTn
]

+ (G(n+ 1)−G(n)),

where (Mn)n∈N =
(∫ Tn

0 σ̃(s)∂H∂x (s,Xs)dWs

)
n∈N

is a martingale. Using Lemma
3.5, Proposition 3.6 and the lower bound σ of σ̃ we obtain

Dn ≤ −
1

2
σ2κ2(I(a) + I(b)) +G(n+ 1)−G(n), (3.11)

where I(x) = E
[∫ Tn+1

Tn
1

κ2x(Xs−x)2
ds
∣∣∣FTn].

We aim to bound by below the previous integral by considering the shape of
the nth spheroid:

ψL+(t)− aγ,Xn 6 dn∆m +Xn − aγ,Xn
6 min(1, κ−)(Xn − aγ,Xn) +Xn − aγ,Xn
≤ 2(Xn − a). (3.12)
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This bound implies

I(a) > E
[∫ Tn+1

Tn

ds

4κ2
a(Xn − a)2

∣∣∣∣FTn] = E
[

Tn+1 − Tn
4κ2

a(Xn − a)2

∣∣∣∣FTn]
= E

[
ρ−1
L (ρL(Tn) + τn+1)

4κ2
a(Xn − a)2

∣∣∣∣∣FTn
]

where τn+1 is the Brownian exit time from the spheroid of parameter size
dn.

I(a) ≥ E
[

τn+1

4κ2
arn(Xn − a)2

∣∣∣∣FTn]
where rn is the maximum of the derivative ρ′ on the time interval [Tn, Tn+m]
which contains [Tn, ρ

−1
L (ρL(Tn) + τn+1)]. We note that τn+1 ∼ d2

nτ where τ
denotes the Brownian exit time from the Brownian spheroid of parameter 1.
Hence

I(a) ≥ d2
n

4κ2
arn(Xn − a)2

E[τ ].

Similarly to (3.12) we have bγ,Xn−ψL−(t) ≤ 2(b−Xn) and the same arguments
just presented lead to

I(b) = E
[∫ Tn+1

Tn

ds

κ2
b(b−Xs)2

∣∣∣∣FTn] > d2
n

4κ2
brn(b−Xn)2

E[τ ].

Setting κab = max(κa, κb), we obtain

Dn 6 − d2
n

rnκ2
ab

E[τ ]

(
1

(b−Xn)2
+

1

(Xn − a)2

)
+G(n+ 1)−G(n).

Let us first consider the case: Xn − a 6 b − Xn (the other case can be
studied in a similar way, it suffices to replace Xn − aγ,Xn by bγ,Xn − Xn).
Then dn = min(1,κ−)

∆m
(Xn − aγ,Xn) and

Dn 6 −2
d2
n

rnκ2
ab

E[τ ]
1

(Xn − a)2
+G(n+ 1)−G(n)

6 −min(1, κ−)2

rn∆2
mκ

2
ab

E[τ ] +G(n+ 1)−G(n).

We finally find G by seeking a lower bound of min(1,κ−)2

rn∆2
m

. We consider two
different cases:
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First case: κ− ≥ 1. We introduce αn, βn and σ̃n the maximum of |α|
respectively |β| and σ̃ on the time interval [0, nm]. The definition of ∆m

given by (2.8) and the definition of ρ by (2.4) lead to

∆2
mrn 6 e4

∫ Tn+m
Tn

|α(s)| dsσ̃2
n

 1√
e

+

√∫ Tn+m

Tn

|β(s)|2
σ̃(s)2

ds

2

6 e4mαn σ̃2
n

(
1√
e

+
√
m
βn
σ

)2

.

For the other case: κ− < 1

min(1, κ−)2

rn∆2
m

>
ρ(Tn +m)− ρ(Tn)

rn(b− a)2
=

∫m
0 ρ′(Tn + s)ds

rn(b− a)2
.

Using the definitions of ρ, rn and the continuity of σ̃, there exists t0 ∈
[Tn, Tn +m] such that rn = ρ′(t0) and therefore

ρ′(Tn + s)

rn
=
σ̃2(Tn + s)

σ̃2(t0)
e
−2

∫ Tn+s
t0

α(u) du ≥ σ̃2(Tn + s)

σ̃2(t0)
e−2|Tn+s−t0|αn

≥ σ̃2(Tn + s)

σ̃2(t0)
e−2mαn .

Since σ̃ satisfies Assumption 3.2, we obtain the following lower bound by
integrating with respect to the variable s,

min(1, κ−)2

rn∆2
m

≥ mχm
(b− a)2

e−2mαn .

Denoting ζn+1 the minimum of the two quantities previously computed, we
define recursively the sequence G(n) by

G(n+ 1)−G(n) = ζn+1, ∀n > 0, and G(0) = 0.

The sum of these increments leads to

n−1∑
i=0

G(i+ 1)−G(i) =

n∑
i=1

ζi = G(n)−G(0) = G(n).

For any parameter q̃ > q, Assumption 3.1 implies the existence of a constant
C̃ > 0 independent of ε such that

G(n) >
1

C̃

n∑
k=1

1

kq̃
>

1

C̃(1− q̃)
(n1−q̃ − 1), ∀n ≥ 1. (3.13)
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Moreover the particular choice of the function G permits to obtain Dn ≤ 0
for all n. Consequently Zn = H(n,Xn) + G(n) is a super-martingale. A
generalization of Proposition A.1 permits to obtain the upper bound

E[G(Nε)] ≤ H(0, x0) = V ◦ F (0, x0) = V (x0). (3.14)

Combining (3.13), (3.14) and the definition of the function V in (3.9) leads
to

E[N1−q̃
ε ] 6 C̃(1− q̃) log

(
(x0 − a)(b− x0)

γε(b− a− γε)

)
+ 1.

This bound corresponds to the announced result. In order to conclude the
proof, we just need to precise that Nε is a.s. finite, see Lemma 3.7. Such a
condition is required to apply the generalization of Proposition A.1.

Lemma 3.7. The stopping procedure Nε of Algorithmm is a.s. finite.
Moreover the outcome of the algorithm Tε is stochastically upper bounded by
T , the diffusion first exit time.

Proof. Step 1. We emphasize a link between a sample of a L-class diffu-
sion process and the Markov chain generated by the algorithm, denoted
((Tn, Xn))n∈N with (T0, X0) = (0, 0).
Let us consider a sample of a L-class diffusion. At the starting point of
this path, we create a spheroid of maximal size which belongs to the set
[a, b] × R+. The first intersection point of this spheroid and the path gives
us a first point (t1, z1). This construction implies that (t1, z1) and (T1, X1)
are identically distributed. Then considering (t1, z1) as a new starting point
we construct a spheroid of maximal size and denote by (t2, z2) the first in-
tersection point between this new spheroid and the diffusion path starting
in (t1, z1). Once again we get by construction that (t2, z2) and (T2, X2)
are identically distributed. We build step by step a sequence ((tn, zn))n∈N
of intersections between the considered sample and the spheroids in such a
way that the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0 are identically dis-
tributed.
If we introduce Nε the stopping time appearing in the stopping procedure
of the algorithm and Ñε = inf{n ∈ N, zn /∈ [a + ε, b − ε]}, the identity in
law of those random variables holds. By construction, tn 6 T for all n ∈ N,
where T stands for the diffusion first exit time from the interval [a, b]. This
inequality remains true when tn is replaced by the random stopping time
tÑε .
Since tÑε and tNε are identically distributed, we deduce that the outcome of
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Algorithmm is stochastically smaller than T .
Step 2. We prove now that Nε is a.s. finite. Using (2.11) and (2.6) we obtain

Tn = ρ−1
L (d2

1τ1 + d2
2τ2 + . . .+ d2

nτn),

where (τk)k>1 is a sequence of independent Brownian exit times from the
unit spheroid and dk represents the size of the spheroid (2.7) starting in
(Tk, Xk) and included in [a, b]. Let t0 > 0. Then

P(Tn 6 t0) = P(d2
1τ1 + d2

2τ2 + . . .+ d2
nτn 6 ρ−1

L (t0))

6 P

(
τ1 + τ2 + . . .+ τn 6

ρ−1
L (t0)

d(t0)

)
,

where d(t0) is defined by

d(t0) = inf
x∈[a+ε,b−ε], t6t0

d(x, t) > 0.

Since
n∑
k+1

τk tends to +∞ a.s.,

lim
n→+∞

P(Tn 6 t0) = P(T∞ 6 t0) = 0, ∀t0 > 0.

We deduce that limn→+∞ Tn = +∞ a.s. Combining this limiting result to

the first step of the proof, that is Tn
(d)

6 T , implies: Nε < +∞ a.s.

3.2 Bounds for the exit time distribution

The second important result in the study of the algorithm is the description
of the convergence. It is of prime interest to known how close the outcome
of the algorithm and the exit time of the L-class diffusion are. The conver-
gence result is essentially based on the strong relation between the Brownian
motion and the L-class diffusion.

Theorem 3.8. Let us denote by αt (respectively βt) the maximal value of the
function |α| (resp. |β|) on the interval [0, t]. We also introduce F the cumu-
lative distribution function of the L-class diffusion exit time from the interval
[a, b] and Fε the distribution function of the algorithm outcome. Then, for
any t ≥ 0 and any ρ > 1 there exists ε0 > 0 such that

(
1− ρ

√
ε

1 + βt
σ

)
Fε(t− ε) 6 F (t) 6 Fε(t), ∀ε ≤ ε0, (3.15)
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the constant σ being defined in (3.2). Moreover this convergence is uniform
on each compact subset of the time axis.

Remark 3.9. The combination of both Theorem 3.1 and Theorem 3.8 points
the finiteness of the diffusion exit time out. The first statement ensures
that Algorithmm requires a finite number of iterations almost surely (the
average number being finite). The second result explains how close the exit
time of the diffusion and the algorithm outcome are. In particular, as an
immediate consequence of (3.15), limt→∞ F (t) = 1. Of course, such a crucial
property is strongly related to the fact that the diffusion generator is uniformly
parabolic, see the condition (3.2).

Proof. As in Lemma 3.7, we build step by step a sequence ((tn, zn))n∈N
of intersections between the path of the L-class diffusion process and the
spheroids in such a way that the sequences ((tn, zn))n≥0 and ((Tn, Xn))n≥0

are identically distributed.
If we introduce Nε the stopping time appearing in the stopping procedure
of the algorithm and Ñε = inf{n ∈ N, zn /∈ [a + ε, b − ε]}, the identity in
law of those random variables holds. By construction, tn 6 T for all n ∈ N,
where T stands for the diffusion first exit time from the interval [a, b]. This
inequality remains true when tn is replaced by the random stopping time
tÑε . Hence

1− F (t) = P(T > t) = P(T > t, tÑε 6 t− δ) + P(T > t, tÑε > t− δ)
6 P(T > t, tÑε 6 t− δ) + 1− Fε(t− δ), ∀t ≥ 0. (3.16)

We focus our attention on the first term of the r.h.s. Using the strong Markov
property, we obtain

P(T > t, tÑε 6 t− δ) 6 Fε(t− δ) sup
(y,s)∈([a,a+ε]∪[b−ε,b])×[0,t−δ]

P(y,τ)(T > δ).

(3.17)
Let us consider the case y ∈ [b−ε, b] (the study of the other case y ∈ [a, a+ε]
is left to the reader since it suffices by symmetry to use exactly the same
arguments). We first note that, for any y ∈ [b− ε, b],

P(y,s)(T > δ) ≤ P(y,s)(Tb > δ) ≤ P(b−ε,s)(Tb > δ),

where Tb stands for the first passage time through the level b. Let us intro-
duce several notations: we denote the translated function αs(t) := α(s + t)
(similar definitions for σ̃s, βs and ρs are defined by using the translated func-
tions in (2.4)). The diffusion process on the time interval [s, s + δ] can be
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expressed using these translated functions. The condition Tb > δ is equiva-
lent to sup0≤r≤δXs+r < b and becomes, for all r ≤ δ,

b− ε+ e2
∫ r
0 αs(u) duWρs(r) + e

∫ r
0 αs(u) du

∫ r

0
βs(u)e−

∫ u
0 αs(w) dw du < b. (3.18)

Since s ∈ [0, t− δ] and r ≤ δ, we obtain the following bound:

ρs(δ) ≥ σ2 1− e−2αtδ

2αt
.

The inequality (3.18) implies

1√
ρs(δ)

sup
0≤r≤δ

Wρs(r) ≤
e2αtδ

√
1− e−2αtδ

√
2αt
σ

(ε+ βtδ) ≤ e3αtδ ε+ βtδ

σ
√
δ
.

The Désiré André reflexion principle for the Brownian motion implies that
the l.h.s of the previous inequality has the same distribution than the ab-
solute value of a standard gaussian random variable: |G|. Hence, for any
y ∈ [b− ε, b] and for any s ≤ t− δ:

P(Tb > δ) ≤ P
(
|G| ≤ e3αtδ ε+ βtδ

σ
√
δ

)
≤
√

2

π
e3αtδ ε+ βtδ

σ
√
δ
. (3.19)

It suffices to choose δ = ε in the previous inequality and to combine with
(3.16) in order to prove the statement of the theorem.

4 Numerical application

In order to illustrate the efficiency of Algorithmm, we present numerical
results associated to two particular linear diffusions.
Example 1 (periodic functions).

Let us consider (Xt)t≥0 the solution of (2.1) with

α(t) =
cos(t)

2 + sin(t)
, β(t) = cos(t), σ̃(t) = 2 + sin(t).

Let us just notice that α satisfies α(t) = σ̃′(t)
σ̃(t) , such a property simplifies the

link between the diffusion process and a standard one-dimensional Brownian
motion. In particular, we obtain a simple expression of the time change
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appearing in (2.3): ρ(t) = 4t. Indeed (2.4) implies

ρ(t) =

∫ t

0
(2 + sin(s))2e

−2
∫ s
0

cos(u)
2+sin(u)

du
ds

=

∫ t

0
(2 + sin(s))2e−2(log(2+sin(s))−log(2))ds = 4t.

Using Proposition 2.3, we determine the frontiers of the typical spheroid used
in Algorithmm.

Proposition 4.1. If we denote by ψL±(t; t0, Xt0) the spheroid starting in
(t0, Xt0), we obtain

ψL±(t; t0, Xt0) :=
2 + sin(t+ t0)

2

(
ψ±(4t) + 2 log

(2 + sin(t+ t0)

2 + sin(t0)

))
+
(2 + sin(t+ t0)

2 + sin(t0)

)
Xt0 . (4.1)

and the exit time τ t0 = inf{t > 0 : Xt /∈ [ψL−(t; t0, Xt0), ψL+(t; t0, Xt0)]}
satisfies

τ t0
d
=

1

4
τ (4.2)

where τ = inf{t > 0 : Wt /∈ [ψ−(t), ψ+(t)]}.

The random walk on spheroids is therefore built using the typical bound-
aries (4.1). At each step of the algorithm, we need to use a scale parameter d
in order to shrink or enlarge the spheroid size in such a way that the domains
always stay in the interval [a, b]. The general statement concerning the scale
parameter (2.7) can be improved for this particular example.

Let m > 0 and 0 < γ < 1. We recall that aγ,x0 and bγ,x0 are defined by
aγ,x = a+ γ(x− a) and bγ,x = b− γ(b− x). We choose the scale parameter
d in such a way that it satisfies

d =


min(1,κ+)

∆m
(bγ,x0 − x0) if b− x0 6 x0 − a

min(1,κ−)
∆m

(x0 − aγ,x0) if x0 − a 6 b− x0

with
∆m =

3

2

(
1√
e

+ (1 + max(|a|, |b|))
√
m

)
and κ± are defined by the following equations:

κ+(bγ,x0 − x0) = 2∆m

√
m and κ−(x0 − aγ,x0) = 2∆m

√
m.
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We just note that this particular value ∆m is an easy upper-bound of the
parameter emphasized in (2.8). We just adapted the choice of the parameters
to the particular diffusion studied in this section. Even if the procedure is
close to the method presented in Proposition 2.4, we notice that such a
particular choice of ∆m permits to point out a specific value m such that
both min(1, κ−) and min(1, κ+) are equal to 1. This value corresponds to

m =


√

1
e + 4

3(b− a)(1 + max(|a|, |b|)− 1√
e

2(1 + max(|a|, |b|))

2

.

Using Algorithmm as in Section 2.3 permits to approximate the first
diffusion exit time from the interval [a, b], see Figure 1 and Figure 2.

Figure 1: A sample of Algorithmm for the diffusion process starting at x = 4 in
the interval [3, 5] with ε = 10−2 and γ = 10−4 .
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Figure 2: Histogram of the outcome variable for the diffusion (4) with X0 =
1, [a, b] = [−1, 2], ε = 10−2 and γ = 10−4 (left). Average number of steps in
Algorithmm for the exit time of [−1, 2] (right, in logarithmic scale).

The CPU efficiency of such an algorithm shall be compared to the ef-
ficiency of classical approaches in the exit time approximation framework.
We focus on an improved Euler method based on the correction by means of
the sharp large deviations estimate of the exit probability (see the procedure
described in [1]). We observe the linear diffusion with periodic coefficients
starting in X0 = 1 until it exits from the interval [−1, 2]. The generation of
100 000 samples of this exit time requires 659 seconds for the improved Eu-
ler method (with the step size 10−4) whereas the corresponding generation
using the WOMS algorithm requires about 39 seconds for the corresponding
choice ε = 10−4 (here γ = 10−4).

Example 2 (polynomial decrease). Let us introduce a diffusion with a
polynomial decrease of the mean reversion. We consider (2.1) with

α(t) =
1

2

1

1 + t
, β(t) = 0, σ̃(t) = σ0.

Both the time-change function appearing in (2.3) and the typical spheroid
frontiers can be explicitly computed. We obtain: ρ(t) = σ2

0 log(1 + t) and
the following result due to Proposition 2.3.

Proposition 4.2. If we denote by ψL±(t; t0, Xt0) the spheroid starting in
(t0, Xt0), we have

ψL±(t; t0, Xt0) :=
√

1 + t0 + t ψ±(σ2
0(log(1 + t0 + t)− log(1 + t0)))

+

√
1 + t0 + t√

1 + t0
Xt0 . (4.3)

and the exit time τ t0 = inf{t > 0 : Xt /∈ [ψL−(t; t0, Xt0), ψL+(t; t0, Xt0)]}
satisfies

τ t0
d
= ρ−1(τ)(t0 + 1) (4.4)
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where τ = inf{t > 0 : Wt /∈ [ψ−(t), ψ+(t)]} and ρ−1(t) = exp
(
t
σ2
0

)
− 1.

These particular boundaries (4.3) are the basic components of the algo-
rithm. Of course we need to adjust at each step the size of the spheroid in
order to stay in the interval under consideration. The scale parameter d is
defined in (2.7) and depends on a fixed arbitrary parameter m > 0. In Ex-
ample 1, the parameter m was optimized in order to reduce the CPU time.
Here it is not an easy task to choose a suitable value of m. The algorithm
converges in Example 2 whatever the value of m (see Assumption 3.2), that
is why we set m = 1 for the numerical illustration. The generation of 10 000
samples using the improved Euler method requires 568 seconds (with steps
of size 10−4) while it takes only 16 seconds with Algorithmm (with the
corresponding choice ε = 10−4, γ = 10−4 and m = 1).

Figure 3: Histogram of the outcome variable for the diffusion (4) with X0 = 4,
[a, b] = [3, 5], m = 1, σ = 2, ε = 10−4 and γ = 10−4 (left). Average number of
steps in Algorithmm for the exit time of [3, 5] with m = 1 and σ0 = 2 (right, in
logarithmic scale).

Acknowledgment: The authors thank the referees for their interesting and
constructive remarks that improved the initial form of the paper.

A Potential theory and Markov chains

We introduce a result coming from the potential theory and using Markov
chains.
Let us consider a Markov chain (Xn)n∈N defined on a state space I decom-
posed into two distinct subsets K and ∂K, ∂K being the so-called frontier.
Let us define N = inf{n ∈ N, Xn ∈ ∂K} the hitting time of ∂K. We assume
that N is a.s. finite, then the following statement holds:

Proposition A.1. Let G be a positive increasing function. If there exists
a function U such that the sequence (H(n ∧ N,Xn∧N ))n∈N is non negative
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and if the sequence (H(n ∧ N,Xn∧N ) + G(n ∧ N))n∈N represents a super-
martingale adapted to the natural filtration of the considered Markov chain
(Xn), then

Ex[G(N)] 6 H(0, x), ∀x ∈ K.

The proof of this classical upper-bound is left to the reader, it is essen-
tially based on the optimal stopping theorem and on the monotone conver-
gence theorem (see, for instance, [13], p139).
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