Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties

Résumé

We extend the decomposition theorem for numerically K-trivial varieties with log terminal singularities to the Kähler setting. Along the way we prove that all such varieties admit a strong locally trivial algebraic approximation, thus completing the numerically K-trivial case of a conjecture of Campana and Peternell.
Fichier principal
Vignette du fichier
BBD_Kahler.pdf (561.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03035501 , version 1 (02-12-2020)
hal-03035501 , version 2 (10-02-2022)

Identifiants

  • HAL Id : hal-03035501 , version 1

Citer

Benjamin Bakker, Henri Guenancia, Christian Lehn. Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties. 2020. ⟨hal-03035501v1⟩
74 Consultations
149 Téléchargements

Partager

More