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Algebraic approximation and the decomposition theorem

for Kähler Calabi–Yau varieties

Benjamin Bakker, Henri Guenancia, and Christian Lehn

Abstract. We extend the decomposition theorem for numerically K-trivial vari-

eties with log terminal singularities to the Kähler setting. Along the way we prove

that all such varieties admit a strong locally trivial algebraic approximation, thus

completing the numerically K-trivial case of a conjecture of Campana and Peternell.
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1. Introduction

For a compact Kähler manifold X with vanishing first Chern class, the Beauville–

Bogomolov theorem [Bog78, Bea83] tells us that a (finite) étale cover of X splits

as a product of a complex torus, irreducible symplectic manifolds, and irreducible

Calabi–Yau manifolds. Work of Druel–Greb–Guenancia–Höring–Kebekus–Peternell

[GKKP11, DG18, Dru18, GGK19, HP19] over the past decade has culminated in an

analog of this theorem for projective varieties with log terminal singularities and nu-

merically trivial canonical class, see [HP19, Theorem 1.5].

Our main result is a generalization of the decomposition theorem to the Kähler

setting:

Theorem A. Let X be a numerically K-trivial compact Kähler variety with log ter-

minal singularities. Then there is a quasi-étale cover X̃ −→ X such that X̃ splits as a
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product

X̃ = T ×
∏
i

Yi ×
∏
j

Zj

where T is a complex torus, the Yi are irreducible1 Calabi–Yau varieties, and the Zj

are irreducible holomorphic symplectic varieties.

A morphism X̃ −→ X of normal complex spaces is quasi-étale if it is étale on the com-

plement of an analytic subset which is locally of codimension at least 2 in X̃ and a cover

if it is finite surjective. For convenience, we reproduce the definitions of irreducible

Calabi–Yau and irreducible holomorphic symplectic varieties due to Greb–Kebekus–

Peternell [GKP16b, Definition 8.16] here. Recall that if X is a normal complex variety,

the sheaf of reflexive p-forms Ω
[p]
X may be equivalently thought of as either the reflexive

hull (Ωp
X)∨∨ or the push-forward j∗Ω

p
Xreg from the regular locus j : Xreg −→ X. If X

furthermore has rational singularities, it admits a third interpretation as π∗Ω
p
Y for any

resolution π : Y −→ X by Kebekus–Schnell [KS18, Corollary 1.8].

Definition 1.1. Let X be a compact Kähler variety with rational singularities. We call

X irreducible holomorphic symplectic (IHS) if for all quasi-étale covers q : X̃ −→ X, the

algebra H0(X̃,Ω
[•]
X̃

) is generated by a holomorphic symplectic form σ̃ ∈ H0(X̃,Ω
[2]

X̃
).

We call X irreducible Calabi–Yau (ICY) if for all quasi-étale covers q : X̃ −→ X,

the algebra H0(X̃,Ω
[•]
X̃

) is generated by a nowhere vanishing reflexive form in degree

dimX.

Note that this is equivalent to the definition in [GKP16b]: in the presence of a

reflexive form of degree dimX the singularities of X are rational if and only if they

are canonical by [Elk81, Théorème 1] and [KS18, Corollary 1.8].

The proof of the decomposition theorem in the projective case uses algebraic tech-

niques (particularly regarding integrability of algebraic foliations, even though the us-

age of characteristic p methods can be avoided by a recent paper of Campana [Cam20])

which at the moment cannot be directly generalized to the analytic category. Instead,

we reduce to the projective case via locally trivial deformations. A crucial ingredi-

ent is therefore the following theorem, which resolves the numerically K-trivial case

of a conjecture of Campana–Peternell2 saying that Kähler minimal models admit an

algebraic approximation:

Theorem B. Any X as in Theorem A admits a strong locally trivial algebraic approx-

imation: there is a locally trivial family X −→ S over a smooth base S specializing to

X over s0 ∈ S such that points s ∈ S for which Xs is projective are analytically dense

near s0. �

1Greb–Kebekus–Peternell use the term Calabi–Yau for the irreducible factors in the decomposition

of the second type, but it seems natural to call them irreducible Calabi–Yau.
2The conjecture has been attributed to Campana and Peternell in [CHL19]. The authors are

grateful to Thomas Peternell for bringing this conjecture to our attention.
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It is natural to ask whether the Bogomolov–Tian–Todorov theorem holds in this

context—that is, whether locally trivial deformations of numerically K-trivial X as in

the theorem are always unobstructed (which would be sufficient to prove Theorem B,

see [GS20]). On the one hand, flat deformations of such X are known to be poten-

tially obstructed by an example of Gross [Gro97a]. On the other hand, the proof of

unobstructedness in the smooth case is fundamentally Hodge-theoretic, and from this

perspective locally trivial deformations are more natural as they are topologically triv-

ial (see [AV19, Proposition 6.1]). While some special cases have been established (see

[BL16, BL18, GS20]), it is as yet unclear whether a locally trivial Bogomolov–Tian–

Todorov theorem should hold.

The main difficulty in the proof of Theorem B is therefore to produce sufficiently

many unobstructed deformations, and to achieve this we show that deformations along

split symplectic foliations are always unobstructed. As in the proof of the correspond-

ing result for symplectic varieties [BL18], a crucial role is played by the degeneration

of reflexive Hodge-to-de Rham in low degrees [BL16]. The results of [Gue16] extending

to the Kähler category the existence of the holonomy splitting of TX into foliations

(up to a quasi-étale cover) can then be used to show that X always admits a split

symplectic foliation which accounts for all of its 2-forms, and this is what guarantees

that most fibers are projective, by the singular version of the Green–Voisin criterion

of [GS20]. The general results we prove about locally trivial deformations along folia-

tions (Section 2) and the existence of simultaneous resolutions in locally trivial families

(Corollary 2.23) are of independent interest as well.

With Theorem B in hand, to prove Theorem A we must show that the product struc-

ture at the dense set of projective fibers implies that the special fiber X has a product

structure too. By cycle-theoretic arguments the leaves of the foliations on projective

fibers deform to nearby fibers, and thanks to the properness of a suitable (component

of a) Douady space, one obtains closed limits leaves of the expected dimension on X.

These limits correspond, at least generically, to the closure of the leaves defined by

the polystable decomposition of TX . In particular, they are rather well understood on

Xreg. In order to control their behavior near Xsing and prove Theorem A, we show

that the limit decomposition of H2(X,R) induces a splitting of the Kähler–Einstein

metric in some strong sense, and this allows us to control the limit leaves purely on

the level of cohomology.

Patrick Graf informed us that he independently obtained a Kähler version of the

decomposition theorem in dimension at most four.

1.2. Outline.

• Section 2. We collect some background on locally trivial deformations, de-

fine locally trivial deformations along foliations, and prove unobstructedness

of deformations along split symplectic foliations.
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• Section 3. We recall the precise notions of K-triviality and prove Theorem B.

We derive some first applications about fundamental groups and deformation

of the irreducible building blocks.

• Section 4. We recall some foundational aspects of relative Douady spaces and

show that local product decompositions can be spread out over Zariski open

sets.

• Section 5. A locally trivial family X −→ ∆ which is a product over ∆∗ admits a

limit product decomposition on cohomology. We deduce from that a splitting

for the relative tangent sheaf.

• Section 6. We prove that the Kähler–Einstein metric in the limit splits off two

positive currents with bounded local potentials.

• Section 7. Building upon the previous results, we prove a global splitting

result for locally trivial families X −→ ∆ that are a product over ∆∗, under

some additional conditions.

• Section 8. We proceed to checking that the assumptions in the splitting the-

orem from the previous section are fulfilled in our geometric setting, thereby

proving Theorem A.
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Claudon, Stéphane Druel, Patrick Graf, Vincent Guedj, Stefan Kebekus, Mihai Păun,
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HERMETIC. Christian Lehn was supported by the DFG through the research grants
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Notation and Conventions. A resolution of singularities of a variety X is a proper

surjective bimeromorphic morphism π : Y −→ X from a nonsingular variety Y . The

term variety will denote an integral separated scheme of finite type over C in the

algebraic setting or an irreducible and reduced separated complex space in the complex

analytic setting. For a field k, an algebraic k-scheme is a scheme of finite type over k.

We will denote by ∆ := {z ∈ C | |z| < 1} the complex unit disk and by ∆∗ := ∆ \ {0}
the punctured disk.

2. Locally trivial deformations along foliations and resolutions

Throughout we define Artk to be the category of local artinian k-algebras. To

simplify the notation, we agree that k will denote an algebraically closed field when

speaking about schemes and k = C when speaking about complex spaces.

2.1. Locally trivial deformations. We begin with some background on locally triv-

ial deformations.
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Definition 2.2. Let f : X −→ S be a morphism of complex spaces (or algebraic

schemes3). We say:

(1) X is locally trivial over S if there is a cover Xi of X , a cover Si of S such that

Xi −→ S factors through Si, complex spaces (or schemes) Xi, and diagrams

Xi

��

∼= // Xi × Si

{{
Si

where the diagonal map is the projection.

(2) X is formally locally trivial over S if for any T = SpecA −→ S with A ∈ Artk

the base-change XT −→ T is locally trivial.

Remark 2.3.

(1) Of course, over an artinian base, the notions of formal local triviality and local

triviality are equivalent.

(2) In the analytic category, by results of Artin [Art68, Theorem (1.5)(ii)], X/S is

locally trivial if and only if ÔX ,x ∼= ÔXs,x ⊗C ÔS,f(x) as ÔS,f(x)-algebras for all

points x ∈ X . Thus, in the analytic category X/S is locally trivial if and only

if it is formally locally trivial. In the algebraic category, local triviality is in

general much stronger than formal local triviality over nonartinian bases.

Definition 2.4. Let X/k be a complex space (or an algebraic scheme). The locally

trivial deformation functor F lt
X : Artk −→ Sets is defined as follows: F lt

X(A) is the set

isomorphism classes of locally trivial families X/ SpecA together with a k-morphism

X −→ X which is an isomorphism modulo mA. Here, we consider isomorphism classes

for isomorphisms which are the identity modulo mA.

We recall that locally trivial deformations are controlled by the tangent sheaf TX/S :=

HomOX (Ω1
X/S ,OX ). This will be made precise in a way that can be adapted easily to

deformations preserving a foliation in Section 2.10. For A in Artk let

GX(A) := AutA(OX ⊗k A)

be the sheaf of A-algebra automorphisms of OX ⊗k A, and let UX(A) ⊂ GX(A) be

the subsheaf of automorphisms which are the identity modulo mA.

The following proposition is immediate:

Proposition 2.5. Let X/k be a complex space (or an algebraic scheme) and F lt
X its

locally trivial deformation functor. Then we have a natural identification:

F lt
X(A) = Ȟ1(X,UX(A)).

3or algebraic spaces, if we use the étale topology in the sequel.
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Note that in characteristic zero we have an isomorphism of sheaves of pointed sets

exp : TX ⊗k mA −→ UX(A)

where TX ⊗k A is given the obvious structure of a sheaf of A-linear Lie algebras. For

any small extension

0 −→ J −→ A′ −→ A −→ 0

with A,A′ ∈ Artk the first row of the following commutative diagram is then exact:

(2.1)

0 TX ⊗k J TX ⊗k mA′ TX ⊗k mA 0

0 TX ⊗k J UX(A′) UX(A) 1.

exp exp

exp

Here the horizontal maps are morphisms of sheaves of groups and the right and center

vertical maps are isomorphisms of sheaves of pointed sets.

It follows that the bottom row is exact. Moreover, as the top row is exact on global

sections, it follows that the bottom row is exact on global sections as well.

Corollary 2.6. Assume char(k) = 0 and suppose X/k is a separated complex space

(or a separated algebraic scheme). Then the following hold.

(1) The functor F lt
X admits a tangent-obstruction theory with tangent space equal

to H1(X,TX) and obstructions in H2(X,TX).

(2) For any family X/S = SpecA in F lt
X(A), the lifts of X/S to F lt

X(A[ε]) are

canonically parametrized by a functorial quotient of H1(X , TX/S).

Remark 2.7. It follows that F lt
X satisfies Schlessinger’s axioms (H1)-(H3), see [Sch68,

Theorem 2.11]. Note that while F lt
X may not satisfy (H4), it does satisfy axiom (H5)

of [Gro97b, § 1], since the fibered coproduct of two deformations may be constructed

by taking the fibered direct product of the sheaves of rings. Thus, the deformation

module T 1(X/S) has the structure of an A-module, and in part (2) we mean that

it is a quotient of H1(X , TX/S) as an A-module which is compatible with restriction

maps. If X/S has no automorphisms restricting to the identity on the special fiber,

then H1(X , TX/S) −→ T 1(X/S) will be an isomorphism. These remarks likewise hold

for the other deformation functors defined in Section 2.10.

Proof of Corollary 2.6. The following lemma describes how much of the long exact

sequence survives in the cohomology of UX(A):

Lemma 2.8. Let

(2.2) 0 −→ T −→ G′ −→ G −→ 1

be an exact sequence of sheaves of groups on a topological space where T is abelian.

(1) If T is central in G, then we have a sequence

Ȟ1(X,T ) Ȟ1(X,G′) Ȟ1(X,G) Ȟ2(X,T )δ

where
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(a) The natural action of Ȟ1(X,T ) on Ȟ1(X,G′) is transitive on fibers;

(b) The image of Ȟ1(X,G′) −→ Ȟ1(X,G) is the inverse image of 0 under δ.

(2) If (2.2) is split exact, then for each α ∈ Ȟ1(X,G) the natural action of

Ȟ1(X,Tα) on the fiber of the map

Ȟ1(X,G′) Ȟ1(X,G)

above α is transitive, where Tα is the sheaf obtained from T by twisting by α.

Proof. Easily checked with Čech cochains. �

Now, the first claim is immediate upon taking the long exact sequence on Čech

cohomology of the second row of (2.1) using the first part of the lemma (where we

used separatedness to identify Čech cohomology with sheaf cohomology). For the

second part, we have a split exact sequence

(2.3) 0 TX ⊗k A UX(A[ε]) UX(A) 1
exp

and the claim follows from the second part of the lemma, as the stabilizer of an element

(X ′/S′) under the action of H1(X , TX/S) is easily seen to be an A-submodule. Note

that for α = (X/S) ∈ Ȟ1(X,UX(A)) we naturally have (TX×S/S)α = TX/S . �

Remark 2.9. We would like to make a couple of remarks regarding (2.1).

(1) The restriction morphism UX(A′) −→ UX(A) may fail to be surjective in char-

acteristic p. If we take X = Spec k[x]/(xp), A = k[ε]/(εp), and A′ = k[ε]/(εp+1),

the automorphism x 7→ x+ ε of X × SpecA does not lift.

(2) Let A′ −→ A be a small extension in Artk, let X ′ −→ SpecA′ be flat, and X :=

X ′ ×SpecA′ SpecA. The same argument shows that AutA′(X ′) −→ AutA(X ) is

surjective whenever TX ′/A′ −→ TX/A is. Example 2.6.8(i) in [Ser06] shows that

for A′ = k[t]/t3 −→ k[t]/t2 = A and X ′ = k[x, y, t]/(xy−t, t3) the automorphism

of X determined by x 7→ x + tx and y 7→ y does not lift to X ′. But neither

does the vector field t
∂

∂x
∈ TX/A.

2.10. Locally trivial deformations along foliations. The above results now easily

extend to the situation of deformations along a foliation.

Proposition 2.11. Assume char(k) = 0 and suppose X/k is a separated complex

space (or a separated algebraic scheme) with a foliation E ⊂ TX . For A ∈ Artk set

UE(A) := exp(E ⊗k mA) ⊂ UX(A). Then

(1) F lt
E (A) := Ȟ1(X,UE(A)) admits a tangent-obstruction theory with tangent

space H1(X,E) and obstructions in H2(X,E).

(2) Associated to any family X/S = SpecA in F lt
E (A) there is a functorial foliation

EX/S ⊂ TX/S which locally agrees with the trivial extension of E on any local

trivialization of the UE(A)-cocycle representing X/S. The lifts of X/S to

F lt
E (A[ε]) are canonically parametrized by a functorial quotient of H1(X , EX/S).
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We somewhat abusively refer to sections of F lt
E as (X/S) ∈ F lt

E (A) even though the

natural map F lt
E −→ F lt

X may not be injective on sections.

Remark 2.12. Note that the functor F lt
E is not the functor of locally trivial deformations

for which E lifts locally trivially: there may well be sections of UX(A) which stabilize

E ⊗k A but do not come from exponentiating E ⊗k mA. Indeed, take X = Y ×Z with

the induced splitting

TX = π∗1TY ⊕ π∗2TZ
and E = π∗1TY . Then any locally trivial deformation of the two factors will obviously

yield a locally trivial deformation of X for which the two foliations lift locally trivially,

but such a deformation does not in general come from a section of F lt
E . Moreover, in

this case, the gluing maps for a section of F lt
E are not required to preserve π∗2TZ—that

is, they are not required to be constant in the Z direction.

In view of the above remark, we also introduce a functor of deformations along a

foliation which preserve a splitting.

Definition 2.13. Let X/k be a complex space (or an algebraic scheme) and assume

we have a splitting TX = E⊕P where E is a foliation. For A ∈ Artk and S := SpecA

we define F lt
E,P (A) to be the set of (X/S) ∈ F lt

E (A) together with a lift PX/S ⊂ TX/S

of P for which TX/S = EX/S ⊕ PX/S , up to the obvious notion of isomorphism. We

usually write (X/S) ∈ F lt
E,P (A) when we mean (X/S, PX/S) ∈ F lt

E,P (A).

Note that choices of a split complement to EX/S ⊂ TX/S naturally form a pseudo-

torsor4 for HomOX (EX/S , TX/S/EX/S). Thus, on a local trivialization of the UE(A)-

cocycle representing X/S over a cover Ui, the sheaf PX/S is locally identified with

(1 + fi)(P |Ui ⊗C A) ⊂ TUi ⊗C A for some fi ∈ H0(Ui,HomOX (P,E))⊗C mA.

Given a locally trivial deformation X/S over an artinian base S, the relative tangent

sheaf TX/S acts via the adjoint representation on TX/S , and for (X/S) ∈ F lt
E,P (A) and

any local section e of EX/S we locally obtain an OX -linear map adP (e) : PX/S −→
TX/S/PX/S ∼= EX/S . We define a two-term complex

MX/S := [EX/S
adP−−→ HomOX (PX/S , EX/S)]

supported in degrees [0, 1]. For simplicity we write M := MX/k.

Proposition 2.14. Assume char(k) = 0 and suppose X/k is a separated complex space

(or a separated algebraic scheme) with a splitting TX = E ⊕ P where E is a foliation.

Then

(1) The functor F lt
E,P admits a tangent-obstruction theory with tangent space equal

to H1(X,M) and obstructions in H2(X,M).

(2) For any (X/S) ∈ F lt
E,P (A), the lifts of X/S to F lt

E,P (A[ε]) are canonically

parametrized by a functorial quotient of H1(X ,MX/S).

4that is, a torsor if nonempty.
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Before the proof it will be useful to explicitly describe the Čech hypercohomology

of two-term complexes. For a two-term complex K = [A
f−→ B] of sheaves on a

topological space supported in degrees [0, 1] and a cover U = {Ui}, by taking the total

Čech complex we see that the Čech cochains and coboundary operators are given by

Ck(U,K) = Ck(U,A)⊕ Ck−1(U,B)

δ(a, b) = (δa, δb+ (−1)deg af(a)).

We write

Zk(U,K) := ker
(
Ck(U,K)

δ−→ Ck+1(U,K)
)

Bk(U,K) := im
(
Ck−1(U,K)

δ−→ Ck(U,K)
)

for the k-cocycles and k-coboundaries.

Proof of Proposition 2.14. Both parts are easily seen via Čech cohomology. By Propo-

sition 2.11, any (X/S) ∈ F lt
E (A) is trivialized on a Stein open cover {Ui} of X. As

nilpotent thickenings of Stein spaces are Stein, we may compute (hyper)cohomology

in the following using Čech cohomology with the cover {Ui}.
For the tangent space claim in the first part, take a small extension A′ −→ A with

kernel J , and assume (X ′/S′), (X ′′, S′) ∈ F lt
E,P (A′) both lift (X/S) ∈ F lt

E,P (A). If

X ′/S′ is given by gluing data g′ij on Uij , then X ′′/S′ is given by gluing data g′ij(1−eij)
for a 1-cocycle e valued in E ⊗C J , by Proposition 2.11. With respect to those local

trivializations we have PX ′/S′ = (1 + f ′i)(P ⊗C A
′), and therefore PX ′′/S = (1 + f ′i +

vi)(P ⊗C A
′) for a 0-cochain v valued in HomOX (P,E) ⊗C J . Now for the PX ′/S′ to

glue we must have that (1− f ′j)g′ij(1 + f ′i) preserves P , and likewise for the PX ′′/S′ to

glue we must have that

(1− f ′j − vj)g′ij(1− eij)(1 + f ′i + vi) = (1− f ′j)g′ij(1 + f ′i) + (−eij + vi − vj)

preserves P , and therefore that adP (e) = δv. Working backward, Z1(U,M)⊗C J nat-

urally acts transitively on the set of lifts of (X/S) ∈ F lt
E,P (A), and the 1-coboundaries

are easily seen to act trivially.

For the obstruction space claim in the first part, take (X/S) ∈ F lt
E,P (A) with glu-

ing data gij and such that PX/S is locally identified with (1 + fi)(P ⊗C A). Choose

arbitrary lifts g′ij of gij and f ′i of fi. Then taking 1 + eijk = g′−1
ik g′jkg

′
ij and −vij ∈

H0(Uij ,HomOX (P,E)⊗CJ) the map induced by (1−f ′j)g′ij(1+f ′i), (e, v) is easily seen

to be a 2-cocycle for M ⊗C J and to have cohomology class in H2(X,M)⊗C J which

is independent of the choices. If its a coboundary (e, v) = δ(x, y), then g′ij(1 − xij)
satisfies the cocycle condition and thus gives gluing data for a lift (X ′/S′) ∈ F lt

E (A′),

and further vij = −xij + yi − yj , so the (1 + fi + yi)(P ⊗C A) glue.

The second part follows by the same sort of computation as the proof of the tangent

space claim in the first part, and is left to the reader. �
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By Schlessinger’s criterion [Sch68, Theorem 2.11], Proposition 2.5, Proposition 2.11,

and Proposition 2.14, when X/k is proper, the functors F lt
X , F lt

E , and F lt
E,P all admit

miniversal formal families in the category of formal complex spaces (or formal algebraic

schemes), and we denote by D̂ef
lt

(X), D̂ef
lt

E(X), and D̂ef
lt

E,P (X) the bases of such a

miniversal formal family, which is unique up to (not necessarily unique) isomorphism.

Corollary 2.15. In the setup of the proposition, assume further that X/k is proper.

Then there are maps

D̂ef
lt

E,P (X) −→ D̂ef
lt

E(X) −→ D̂ef
lt

(X)

of formal spaces whose derivatives are the natural maps

H1(X,MX) −→ H1(X,E) −→ H1(X,TX).

2.16. Kuranishi spaces for locally trivial deformations. We recall some results

in the analytic category realizing formal deformation-theoretic objects as completions

of germs.

Theorem 2.17 (Grauert, Douady). For any compact complex space Z there exists a

miniversal deformation Z −→ Def(Z) over a germ Def(Z) which is a versal deforma-

tion of all of its fibers.

Proof. This is [Gra74, Hauptsatz, p 140], see also [Dou74, Théorème principal, p 598].

�

The family Z −→ Def(Z) is called the Kuranishi family and Def(Z) is called Ku-

ranishi space. If Z is a complex space satisfying H0(Z, TZ) = 0, then every miniversal

deformation is universal.

We recall the analog of Theorem 2.17 for locally trivial deformations.

Theorem 2.18 (Flenner–Kosarew). For a miniversal deformation Z −→ Def(Z) of

a compact complex space Z there exists a closed complex subspace Def lt(Z) ⊂ Def(Z)

of the Kuranishi space such that

Z ×Def(Z) Def lt(Z) −→ Def lt(Z)

is a locally trivial deformation of Z and is miniversal for locally trivial deformations

of Z.

Proof. This is [FK87, (0.3) Corollary]. �

2.19. Locally trivial resolutions.

Definition 2.20. Let S,X ,Y be complex spaces (or finite type algebraic schemes),

X −→ S and Y −→ S morphisms, and f : Y −→ X an S-morphism. We say:
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(1) f is locally trivial over S if there is a cover Xi of X , a cover Si of S, and

morphisms gi : Yi −→ Xi together with diagrams (over S)

Yi
f |Yi

��

∼= // Yi × Si
gi×id
��

Xi
∼= // Xi × Si

where Yi = f−1(Xi).
(2) f is formally locally trivial over S if for any T = SpecA −→ S with A ∈ Artk

the base-change fT : YT −→ XT is locally trivial over T .

If f is (formally) locally trivial and fiberwise a resolution, we say it is a (formally)

locally trivial resolution (over S).

Let X,Y/k be separated complex spaces (or separated finite type algebraic schemes)

and π : Y −→ X a k-morphism. There is a naturally defined deformation functor

F lt
Y/X : Artk −→ Sets of locally trivial deformations X/S and Y/S of X and Y , re-

spectively, together with a locally trivial deformation Y −→ X of π. Let UY/X(A) ⊂
π∗UY (A)×UX(A) be the sheaf of subgroups whose sections over U ⊂ X are pairs of

A-automorphisms (f, g) making the following square commute over SpecA

YU × SpecA YU × SpecA

U × SpecA U × SpecA

f

g

where YU = π−1(U). We have a natural identification

F lt
Y/X(A) = Ȟ1(X,UY/X(A)).

There is also a natural map of functors F lt
Y/X −→ F lt

X coming from the projection map

UY/X(A) −→ UX(A).

Proposition 2.21. Let π : Y −→ X be a morphism for which π∗TY ∼= TX via the

natural map. Then for all A ∈ Artk the natural map UY/X(A) −→ UX(A) is an

isomorphism.

Proof. Obvious by induction on small extensions using the condition π∗TY ∼= TX . �

Corollary 2.22. In the setup of the proposition, F lt
Y/X

∼=−→ F lt
X via the natural map.

By [GKK10, Corollary 4.7], for a reduced and normal complex space X, a log resolu-

tion π : Y −→ X for which π∗TY = TX always exists, cf. also [W lo09, Theorem 2.0.1].

We deduce:

Corollary 2.23. Let X be a normal compact complex variety and let X −→ Def lt(X)

be a miniversal locally trivial deformation. Then there is a locally trivial log resolution

π̄ : Y −→ X such that π̄∗TY/Deflt(X) = TX/Deflt(X).
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Note that by this we mean π̄ : Y −→ X is a locally trivial resolution which is fiberwise

a log resolution, which by the local triviality of π̄ is equivalent to the special fiber being

a log resolution. Moreover, it follows that the inclusion D −→ Y of the exceptional

divisor (and even the map D −→ X ) is locally trivial.

Proof. Set S = Def lt(X) and take a log resolution π : Y −→ X for which π∗TY = TX .

From the proposition, we have a formal deformation Ŷ −→ Ŝ of Y and a locally trivial

formal deformation π̂ : Ŷ −→ X̂ of π over Ŝ. We may trivialize X/S on a Stein cover

Xi of X so that we have analytic gluing maps gij as in the right side of the diagram

below

Yi|j × Ŝ Yj|i × Ŝ Yi|j × S Yj|i × S

Xi|j × Ŝ Xj|i × Ŝ Xi|j × S Xj|i × S

π×id

φij

π×id π×id

fij

π×id

ĝij gij

where Xi|j := Xi ×X Xj , Xi|j := Xi|j ×X S, Yi|j := π−1(Xi|j), and all morphisms

are S-morphisms. By the proposition, the resulting cocycle (Xi, ĝij) of UX(ÔS) :=

lim←−UX(OS/mk
S) gives a cocycle for UY/X(ÔS) (analogously defined), as in the left

part of the diagram. As π is an isomorphism on a Zariski open set and the Yj|i × S
are separated, the fij in the diagram on the right are locally uniquely determined,

and if they exist they satisfy the cocycle condition. By [Art68, Theorem (1.5)(ii)], the

fij exist locally, and so by the previous remark we obtain a locally trivial resolution

π̄ : Y −→ X . Since the φij in the left diagram are also uniquely determined by ĝij , the

map Y −→ X in fact completes to Ŷ −→ X̂ . �

Recall that the Fujiki class C consists of all those compact complex varieties which

are meromorphically dominated by a compact Kähler manifold, see [Fuj79, §1]. Recall

also that a normal complex variety X has rational singularities if for some (hence any)

resolution π : Y −→ X we have Rqπ∗OY = 0 for q > 0.

Corollary 2.24. Let X −→ S be a locally trivial family of normal varieties of Fujiki

class C with rational singularities. Then for all p the function s 7→ h0(Xs,Ω
[p]
Xs

) is

locally constant.

Proof. Let Y −→ X be a locally trivial resolution. By Kebekus–Schnell [KS18, Corol-

lary 1.8] we have h0(Ys,Ω
p
Ys

) = h0(Xs,Ω
[p]
Xs

), and so the claim follows from the local

constancy of Hodge numbers in smooth families. �

Remark 2.25. Corollary 2.22 in particular applies to the following situation. Suppose

that Y is a compact normal variety and that there is a holomorphic symplectic form

σ ∈ H0(Y reg,Ω2
Y reg) on the regular part. If π : Y −→ X is a proper bimeromorphic

map to a normal variety X with rational singularities, then σ induces a symplectic

form on Xreg and vector fields lift from X to Y as 1-forms do by Kebekus–Schnell

[KS18, Corollary 1.8]. In particular, we obtain an analog of Corollary 2.23, i.e. the

existence of a locally trivial deformation Y −→ X of π over Def lt(X). Interesting cases
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where this applies are when π : Y −→ X is a Q-factorial terminalization or just any

crepant partial resolution of a singular symplectic variety X. This greatly simplifies

the deformation theory of [BL16, Section 4], in particular, it allows to prove an analog

of [BL16, Proposition 4.5] for arbitrary crepant bimeromorphic morphisms.

2.26. Deformations along split symplectic foliations. In this section we show

that locally trivial deformations along split symplectic foliations (in the sense of Sec-

tion 2.10) are unobstructed. The following definition will be useful,

Definition 2.27. Let X/S be a locally trivial family of normal varieties. Given

τ ∈ H0(X ,Ω[p]
X/S), we define the radical

rad(τ) := {t ∈ TX/S | ιtτ = 0} ⊂ TX/S .

Remark 2.28. Note that if τ is a reflexive p-form on a normal compact variety X of

Fujiki class C with rational singularities, then P = rad(τ) is automatically a foliation.

Indeed, for any u, v ∈ P we have

ι[u,v]τ = Luιvτ︸ ︷︷ ︸
=0

−ιvLuτ

= −ιvιudτ − ιvdιuτ = −ιvιudτ = 0.

since dτ = 0 by Kebekus–Schnell [KS18, Corollary 1.8]. In particular, any splitting of

TX into OX -modules of trivial determinant is a splitting into foliations.

The precise setting for the main results of this section (Proposition 2.30 and Corol-

lary 2.32) is as follows:

Setting 2.29. Let X/C be a compact variety of Fujiki class C with rational singular-

ities. Assume we have chosen a reflexive form σ ∈ H0(X,Ω
[2]
X ) and that we have a

splitting

TX = E ⊕ P

where

(i) E is a foliation and

(ii) rad(σ) = P .

Proposition 2.30. Assume Setting 2.29. Then F lt
E,P is unobstructed.

Proof. For X/S in F lt
E,P (A), the deformation module of F lt

E,P is canonically a functo-

rial quotient of H1(X ,MX/S) by Proposition 2.14. We will use the T 1-lifting criterion

of [Ran92, Kaw92, Kaw97]. While F lt
E,P is not necessarily pro-representable, by Re-

mark 2.7 we may use the version in [Gro97b, Theorem 1.8]. The claim follows once

we know for any (X/S) ∈ F lt
E,P (A) and any lift (X ′/S′) ∈ F lt

E,P (A′) through a small

extension A′ −→ A that the restriction map

H1(X ′,MX ′/S′) −→ H1(X ,MX/S)

is surjective.
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Step 1. For any A ∈ ArtC and for any (X/S) ∈ F lt
E,P (A) there exists a lift σS ∈

H0(X ,Ω[2]
X/S) of σ for which rad(σS) = PX/S .

It suffices to assume the existence of σS for X/S and show it can be lifted to any lift

X ′/S′ of X/S through a small extension A′ −→ A. Let π̄′ : Y ′ −→ X ′ be a simultaneous

locally trivial resolution with special fiber π : Y −→ X as in Corollary 2.23. By

Kebekus–Schnell [KS18, Corollary 1.8] we have π∗Ω
2
Y = Ω

[2]
X via the natural map.

By local triviality we then have π̄′∗Ω
2
Y ′/S′ = Ω

[2]
X ′/S′ via the natural map, as both are

flat and the natural map is an isomorphism on the special fiber. By Deligne [Del68,

Théorème 5.5] (see also e.g. [BL18, Lemma 2.4] for the necessary changes in the

analytic category), H0(X ′,Ω[2]
X ′/S′) = H0(Y ′,Ω2

Y ′/S′) is free and compatible with base-

change, and it follows that the restriction map H0(X ′,Ω[2]
X ′/S′) −→ H0(X ,Ω[2]

X/S) is

surjective. The restriction map respects the splitting

Ω
[2]
X ′/S′ =

∧[2]E∨X ′/S′ ⊕
(
E∨X ′/S′ [⊗]P∨X ′/S

)
⊕
∧[2] P∨X ′/S′

and likewise over S. It follows that the claimed σS′ exists.

Step 2. For any A ∈ ArtC, any (X/S) ∈ F lt
E,P (A), and any lift (X ′/S′) ∈ F lt

E,P (A′)

through a small extension A′ −→ A the restriction map

H1(X ′, EX ′/S′) −→ H1(X , EX/S)

is surjective.

Taking σS′ as in the previous step and σS its restriction to X , we have a commutative

diagram

H1(X ′, EX ′/S′) H1(X ′, TX ′/S′) H1(X ′,Ω[1]
X ′/S′) H1(X ′, E∨X ′/S′)

H1(X , EX/S) H1(X , TX/S) H1(X ,Ω[1]
X/S) H1(X , E∨X/S)

σS′

σS

where the vertical maps are restriction maps, the first horizontal maps are induced

by the canonical inclusion EX ′/S′ −→ TX ′/S′ (and likewise for X/S), and the third

horizontal maps are induced by the canonical quotient Ω
[1]
X ′/S′ −→ E∨X ′/S′ .

From [BL16, Lemma 2.4] the third vertical map is surjective, and from the splitting

Ω
[1]
X/S = E∨X/S ⊕ P

∨
X/S the fourth vertical map is surjective. The compositions of the

three maps in each row are both isomorphisms by the properties of σS′ and PX ′/S′ ,

and the claim follows.

Step 3. For any (X/S) ∈ F lt
E,P (A) the natural sequence

0 −→ HomOX (PX/S , EX/S) −→ H1(X ,MX/S) −→ H1(X , EX/S) −→ 0

is exact.
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Using the long exact sequence associated to the triangle

MX/S −→ EX/S
adP−−→ HomOX (PX/S , EX/S) −→MX/S [1]

its sufficient to show that the induced map

adP : Hq(X , EX/S) −→ Hq(X ,HomOX (PX/S , EX/S))

vanishes for q = 0, 1. Together with the degeneration of reflexive Hodge-to-de Rham

Hq(X ,Ω[p]
X/S)⇒ Hp+q(X ,Ω[•]

X/S) in the range p+q ≤ 2 [BL16, Lemma 2.4], it is enough

to show the following:

Claim. Choose σS as in Step 1. Then we have a commutative diagram

(2.4)

EX/S HomOX (PX/S , EX/S)

Ω
[1]
X/S Ω

[2]
X/S

adP

d

where the left vertical map is t 7→ ιtσS and the right vertical map associates to a form

α the map f ∈ HomOX (PX/S , EX/S) such that σS(f(u), v) = −α(u, v) for u ∈ PX/S
and v ∈ EX/S .

Note that we have identifications EX/S ∼= E∨X/S (via σS), and

Ω
[2]
X/S
∼=
∧[2]EX/S ⊕ (EX/S[⊗]P∨X/S)⊕

∧[2] P∨X/S

under which the right vertical map of (2.4) is projection onto the middle factor (up to

a sign).

Proof of the Claim. We need to show for sections t, e of EX/S and p of PX/S that

(dιtσS)(p, e) = −σS([t, p], e).

On the one hand, since σS is closed (again by the low degree degeneration of reflexive

Hodge-to-de Rham), we have

LtσS = dιtσS .

On the other hand, since σS vanishes on PX/S we have

(LtσS)(p, e) = t. σS(p, e)︸ ︷︷ ︸
=0

−σS(Ltp, e)− σS(p, Lte)︸ ︷︷ ︸
=0

= −σS([t, p], e).

�

Step 4. Final step of the proof.

Now for X ′/S′ lifting X/S, we have a natural diagram

0 HomOX′ (PX ′/S′ , EX ′/S′) H1(X ,MX ′/S′) H1(X ′, EX ′/S′) 0

0 HomOX (PX/S , EX/S) H1(X ,MX/S) H1(X , EX/S) 0
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where the vertical maps are restrictions. The right vertical map is surjective by Step

2, while the left vertical map is surjective since HomOX′ (PX ′/S′ , EX ′/S′) is a summand

of H0(X ′,Ω[2]
X ′/S′) (after choosing a lift σS′) that is compatible with the restriction map

H0(X ′,Ω[2]
X ′/S′) −→ H0(X ,Ω[2]

X/S), which is surjective as in Step 1. The rows are exact

by Step 3, and it follows that the middle vertical map is surjective, thus completing

the proof. �

Remark 2.31. What is important in Proposition 2.30 is that P is the radical of a 2-

form. If P = rad(τ) for a higher degree reflexive p-form τ , then if p = rank(E) we may

realize EX/S as a factor of Ω
[p−1]
X/S and the map adP : EX/S −→ HomOX (PX/S , EX/S)

factors through d : Ω
[p−1]
X/S −→ Ω

[p]
X/S . Reflexive Hodge-to-de Rham does not however

degenerate in general in higher degrees (although see [Dan91, Theorem 3.4] and [Ste77,

(1.12) Theorem] for some special cases over a point).

Corollary 2.32. Assume Setting 2.29. Then F lt
E,P −→ F lt

E is formally smooth and

the functor F lt
E is unobstructed. In particular, there exists a locally trivial defor-

mation X −→ (H1(X,E), 0) of X whose Kodaira–Spencer map is the natural map

H1(X,E) −→ H1(X,TX).

Proof. As F lt
E,P −→ F lt

E is surjective on tangent spaces by Step 3 of the proof of the

proposition and F lt
E,P is unobstructed, it follows easily by induction on small exten-

sions that F lt
E,P −→ F lt

E is surjective on sections. The unobstructedness of F lt
E,P then

immediately implies that F lt
E is unobstructed. By Corollary 2.15 we have a map on

the level of formal spaces ̂(H1(X,E), 0) −→ D̂ef
lt

(X) with the required derivative, and

by Artin approximation [Art68, Theorem (1.2)] there is a map on the level of analytic

germs with the required derivative. �

Remark 2.33. Corollary 2.32 in particular says that in Setting 2.29 and for any (X/S) ∈
F lt
E (A) the splitting TX = E ⊕ P lifts to a splitting TX/S = EX/S ⊕ PX/S . One can

by a similar argument show the following refinement. In Setting 2.29, further assume

that we have chosen reflexive forms σ(i) ∈ H0(X,Ω
[2]
X ) and that

(iii) E =
⊕
E(i) and for each i we have rad(σ(i)) = E(6=i) ⊕ P where E(6=i) :=⊕

j 6=iE
(j).

Then the functor F lt
E(1),...,E(k),P

of locally trivially deformations along E together with

a lift of the splitting is unobstructed, and therefore for every (X/S) ∈ F lt
E (A) the

splitting TX =
⊕
E(i) ⊕ P lifts. The proof is largely the same, with the obstructions

to lifting E
(i)
X/S now governed by the map

EX/S HomOX (E
(i)
X/S , E

(6=i)
X/S)

ad
E(i)
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with the analogous notation, since EX/S is stable under the adjoint action of EX/S .

The key point is once again that we have a factorization

EX/S HomOX (E
(i)
X/S , E

(6=i)
X/S)

Ω
[1]
X/S Ω

[2]
X/S

ad
E(i)

d

where the left vertical map is now t 7→ ιtσ
(6=i)
S where σ

( 6=i)
S :=

∑
j 6=i σ

(j)
S . We leave the

details to the interested reader. This provides an alternative to the use of Proposi-

tion 5.1 in the proof of Theorem A.

3. K-trivial varieties and strong approximations

Let us fix terminology. Recall that a normal n-dimensional variety X with ratio-

nal singularities is Cohen–Macaulay and therefore the dualizing complex ω•X is quasi-

isomorphic to the shifted sheaf ωX [n] where ωX is the double dual of det Ω1
X . We

denote the reflexive powers by ω
[m]
X := (ω⊗mX )∨∨.

Definition 3.1. A numerically K-trivial variety is a normal complex variety X with

rational singularities such that ω
[m]
X is a line bundle for some m > 0 and c1(ωX) = 0

as an element of H2(X,Q). If ωX satisfies ω
[m]
X
∼= OX for some m > 0 we say that X

is K-torsion. We say X is K-trivial if ω∨∨X
∼= OX .

Remark 3.2. Let X be a compact Kähler space with log terminal singularities. By

[CGP19, Corollary 1.18], numerical K-triviality is equivalent to X being K-torsion.

A closer look at the proof shows that the results also holds if X is merely in Fujiki

class C . Note that by normality, ω
[m]
X
∼= OX if and only if ωmXreg

∼= OXreg . Moreover,

by the result of Kebekus–Schnell ([KS18, Corollary 1.8]), if X is normal with rational

singularities and ω∨∨X
∼= OX , then it has canonical singularities (and is in particular

K-trivial in the above sense).

It is easy to construct examples of numerically K-trivial varieties in the sense of

Definition 3.1. For example, any anti-canonical divisor with rational singularities in

a Gorenstein variety is K-trivial. Kähler varieties with symplectic singularities in

the sense of Beauville provide some other examples (in particular, see the primitive

symplectic varieties of [BL18]).

3.3. Proof of Theorem B. We are now ready to prove Theorem B. Given the results

of Section 2.26, the main step is to show the following:

Lemma 3.4. Let X be a numerically K-trivial compact Kähler variety with log ter-

minal singularities. Then there exists a splitting TX = E ⊕ P where E is a foliation

such that

(1) every reflexive 2-form H0(X,Ω
[2]
X ) vanishes on P ;
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(2) there is a reflexive 2-form σ ∈ H0(X,Ω
[2]
X ) which is nondegenerate on E.

Proof. We fix a Kähler class on X and consider the (unique) singular Ricci flat metric ω

in that class. By [CGGN20, Theorem C], there is a Galois quasi-étale cover π : X̃ −→ X

such that

T
X̃

= F ⊕
⊕
i∈I

Ci ⊕
⊕
j∈J

Sj .

is a splitting into foliations that are parallel with respect to π∗ω on X̃reg. Moreover,

F |
X̃reg is flat, the Ci|X̃reg have holonomy SU(rank(Ci)), and the Sj |X̃reg have holonomy

Sp(rank(Sj)/2). Let G be the Galois group; it preserves the Kähler–Einstein metric

π∗ω. Now we have

H0(X̃,Ω
[2]

X̃
) = H0(X̃,

∧[2]F∨)⊕
⊕
j∈J

H0(X̃,
∧[2]S∨j )

= H0(X̃,
∧[2]F∨)⊕

⊕
j∈J

CσJ .

Since G fixes F and permutes the Sj ’s, it follows that H0(X̃,
∧[2] F∨) and U :=

⊕
j Cσj

are G-subrepresentations of H0(X̃,Ω
[2]

X̃
). Let JE ⊂ J be the subset of indices for which

there is a σ ∈ UG with a nonzero σj coefficient. Let JP := J \ JE . Clearly, the action

of G on J by permutations preserves JE and JP .

The common radical of H0(X̃,
∧[2] F∨)G inside F defines a G-invariant subfoliation

V ⊂ F which admits a G-invariant complementary foliation W ⊂ F , namely the

orthogonal complement with respect to the flat hermitian metric induced by π∗ω on

F |
X̃reg .

Consider the splitting

(3.1) T
X̃

=

W ⊕⊕
j∈JE

Sj

⊕
V ⊕⊕

i∈I
Ci ⊕

⊕
j∈JP

Sj

 .

A sufficiently general element of H0(X̃,Ω
[2]

X̃
)G will be nondegenerate on the first factor

(as each of the σj are nondegenerate on Sj), while every invariant reflexive 2-form

will vanish on the second factor. Each of the two factors of (3.1) is G-invariant, and

therefore descends to the desired splitting. Note that each factor is parallel and hence

a foliation (but see also Remark 2.28). �

By the lemma, we are in Setting 2.29, and therefore Corollary 2.32 applies. In view

of Graf–Schwald [GS20, Theorem 3.1], the proof is completed by the following:

Lemma 3.5. For X as in the previous lemma, suppose there is a splitting TX = E⊕P
such that every reflexive 2-form vanishes on P . Then for any Kähler class ω on X,

the contraction map

ιω : H1(X,E) −→ H2(X,OX)

is surjective.
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Proof. Set n := dimX; one may assume n > 1. The contraction map

ιω : H1(X,TX) −→ H2(X,OX)

is already surjective by [GS20, Theorem 4.1], and the proof of the lemma follows by a

similar computation. We have a perfect pairing

H0(X,Ω
[2]
X )⊗H2(X,OX) −→ C : (α, β) 7→

ˆ
X
ωn−2 ∧ α ∧ β

and so ιω is identified with the surjective map f : H1(X,TX) −→ H0(X,Ω
[2]
X )∨ given

by

f(t) : α 7→
ˆ
X
ωn−2 ∧ α ∧ ιt(ω) = − 1

n− 1

ˆ
X
ωn−1 ∧ ιt(α)

using that ωn−1 ∧ α = 0 and

ιt(ω
n−1 ∧ α) = (n− 1)ωn−2 ∧ ιt(ω) ∧ α+ ωn−1 ∧ ιt(α).

Now any α ∈ H0(X,Ω
[2]
X ) vanishes on P , so f kills H1(X,P ), whence the lemma. �

The proof of Theorem B is now complete. �

3.6. Quasi-étale covers in families and applications. In this section we deduce

some first consequences of Theorem B. We refer to the introduction for the definitions

of quasi-étale maps and quasi-étale covers. We first prove two lemmas asserting that

quasi-étale covers can be spread out in locally trivial families, and that the resulting

families are also locally trivial. Because it is all we will need, for simplicity we only

consider families over the disk ∆.

Recall that a quasi-étale cover restricts to an étale cover of Xreg, and conversely any

étale cover of Xreg can be extended to a quasi-étale cover of X [DG94, Thm. 3.4].

Lemma 3.7. Let π : X −→ ∆ be a locally trivial family of normal varieties.

(1) Let f : Y −→ X be a quasi-étale cover. Then for any t ∈ ∆, f induces a

quasi-étale cover ft : Yt −→ Xt.

(2) Conversely, let t ∈ ∆ and let ft : Yt −→ Xt be a étale cover. Then there exists

a finite, quasi-étale cover f : Y −→ X such that f |Yt = ft.

Proof. The first part is straightforward; by Nagata’s purity of branch locus, f is étale

over X reg hence ft is étale over X reg∩Xt = Xreg
t . As for the second assertion, note that

the canonical morphism π1(Xreg
t ) −→ π1(X reg) induced by the inclusion Xreg

t ↪→ X reg

is actually isomorphic since π is topologically trivial. In particular, any étale cover

Y reg
t −→ Xreg

t is the restriction of an étale cover Yreg −→ X reg over ∆. �

Lemma 3.8. Let π : X −→ ∆ be a locally trivial family of normal varieties and

f : Y −→ X a quasi-étale cover. Then f ◦ π : Y −→ ∆ is locally trivial.
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Proof. Let U ⊂ X be an (Euclidean) open set such that the top arrow below is an

isomorphism

(X0 ∩ U)×∆ U

∆

∼=

pr2
π

Performing a base change by f |f−1(U), we get over ∆

((X0 ∩ U)×∆)×U f−1(U) f−1(U)

(X0 ∩ U)×∆ X|U

∼=

g f

∼=

For simplicity, set U0 := U ×X0, V := U0×U f−1(U) and V ◦ := g−1(U reg
0 ×∆) so that

the diagram above becomes

V ◦ V f−1(U)

U reg
0 ×∆ U0 ×∆ X|U

g|V ◦

∼=

g f

∼=

The map g|V ◦ : V ◦ −→ U reg
0 ×∆ is étale and ∆ is simply connected, so there exists an

étale cover r◦ : W ◦ −→ U reg
0 and an isomorphism of (étale) covers

W ◦ ×∆ V ◦

U reg
0 ×∆ U reg

0 ×∆

∼=

r◦×id g|V ◦

By [DG94, Theorem 3.4], one can find a normal Kähler space W with a finite cover

r : W −→ U0 extending r◦. By the uniqueness statement of loc. cit., the cover

r × id : W × ∆ −→ U0 × ∆ is isomorphic to g : V −→ U0 × ∆. This shows that

Y|f−1(U) −→ ∆ is trivial, hence Y −→ ∆ is locally trivial. �

Corollary 3.9. Let X be a numerically K-trivial variety with log terminal singularities.

Then X admits a maximally quasi-étale cover X̃ −→ X; i.e. the natural morphism

π̂1(X̃reg) −→ π̂1(X̃) is an isomorphism.

Proof. This is an immediate consequence of Theorem B combined with [GKP16a,

Theorem 1.5] and Lemma 3.7 above. �

Recall that forX a compact Kähler variety with rational singularities, the augmented

irregularity q̃(X) [CGGN20, Definition 2.1] is

q̃(X) = max
{
h1(X̃,O

X̃
) = h0(X̃,Ω

[1]

X̃
) | X̃ −→ X quasi-étale cover

}
.

Corollary 3.10. Let X −→ ∆ be a locally trivial deformation of a K-trivial Kähler

variety X with canonical singularities. Then the augmented irregularity q̃(Xt) is con-

stant, and one fiber is IHS (resp. ICY) if and only if every fiber is IHS (resp. ICY).
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Proof. The first statement is immediate from the lemmas and Corollary 2.24.

For the second part, assume that one fiber, say X0, is ICY or IHS. This implies

that q̃(X0) = 0, and q̃(Xt) = 0 for all t. We fix t ∈ ∆. By [CGGN20, Theorem C

& Proposition 6.9] and Corollary 3.9, there exists a quasi-étale cover X̃t −→ Xt such

that the tangent sheaf of X̃t has a decomposition T
X̃t

= (⊕i∈ICi) ⊕ (⊕j∈JSj) where

Ci (resp. Sj) is of ICY type (resp. IHS type). By the lemmas above, one can find

X̃ −→ X quasi-étale extending X̃t −→ Xt and inducing a locally trivial deformation.

If one can show that T
X̃t

has a single summand, then X̃t will be either ICY or IHS

by [CGGN20, Corollary E] and the type of X̃t will then be determined by the Hodge

numbers t 7→ h0(X̃t,Ω
[p]
Xt

) which are independent of t, cf. Corollary 2.24. By the same

argument, Xt itself will be ICY or IHS, with type determined by that of X0.

Since each of the factors in the decomposition of T
X̃t

accounts for at least one

holomorphic form (in maximal rank), there can be only one such factor if X0 is ICY.

It now remains to show the corollary in the case where X0 is IHS. Write dimX0 = 2n.

First, one observes that |J | = h0(X̃t,Ω
[2]

X̃t
) = 1. Let σ ∈ H0(X̃t,Ω

[2]

X̃t
) a non-zero

element and let m := 1
2rank(S1). We have m ≤ n, and we want to show that this

inequality is actually an equality. Clearly, one has σm+1 = 0. Remember that the cup

product map SymkH2(X̃0,Q) −→ H2k(X̃0,Q) is injective for any k ≤ n, cf. [BL18,

Proposition 5.15], so the same statement is true for X̃t as locally trivial families (over

∆) are topologically trivial. This implies that m + 1 > n, and given that n ≥ m, we

have n = m as desired. �

4. Reminder on the Douady space

For a proper morphism f : X −→ S of complex spaces we denote by D(X/S) −→ S

the relative Douady space constructed by Pourcin [Pou69], who generalized the work

of Douady [Dou66] to the relative situation. Let us denote by Dq(X/S) ⊂ D(X/S)

the union of all irreducible components whose general element parametrizes a pure

dimensional reduced subspace of dimension q. Let Bq(X/S) be the relative Barlet

space of dimension q cycles in the fibers of f , see [Bar75, Théorème 5]. By [Bar75,

Théorème 8], there is a morphism of complex spaces

(4.1) % : (Dq(X/S))red −→ Bq(X/S)

where (Dq(X/S))red denotes the reduction of Dq(X/S).

Remark 4.1. As the following example shows, pure dimensionality is not an open

property. The Hilbert scheme H = Hilb3n+1(P3) is a union H = H ′ ∪ H ′′ where H ′

and H ′′ are smooth and irreducible (of dimension 12, 15 respectively) and intersect

transversally with dimH ′ ∩ H ′′ = 11, see the main theorem of [PS85]. Generically,

H ′ parametrizes twisted cubics and H ′′ parametrizes plane cubics in P3 union an

additional point. Both may degenerate to a singular plane cubic with an embedded

point at a singularity. In particular, elements of H ′ ∩H ′′ are pure dimensional (with

embedded points) while the general element of H ′′ is not.
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Fujiki has obtained important properness results about the Douady and the Barlet

space. These results are fairly comprehensive for Kähler morphisms. We need however

a slight generalization to weakly Kähler morphisms. Following [Bin83a] we call a

morphism X −→ S weakly Kähler if for any s0 ∈ S, there exists a neighborhood

S◦ ⊂ S of S and a smooth (1, 1)-form θ on X ◦ := X ×S S◦ such that for all s ∈ S◦, the

restriction θ|X◦s is a Kähler form. Here, X◦s is the fiber at s of X ◦ −→ S◦. See [Bin83b,

Example 3.9] for an example attributed to Deligne showing that a deformation of a

Kähler manifold need not be a Kähler morphism.

We call a morphism X −→ S weakly of Fujiki class if there is a weakly Kähler

morphism Y −→ S and a proper surjective S-morphism Y −→ X . The following result

is proven with exactly the same methods as in Fujiki’s articles [Fuj79, Fuj82]. We

include a sketch of a proof as we could not find it anywhere in the literature. The

argument is similar to [GLR13, Proposition 2.6].

Proposition 4.2. Let X , S be reduced and irreducible complex spaces, let f : X −→ S

be a proper locally trivial morphism which is weakly of Fujiki class, let S◦ ⊂ S be any

simply connected relatively compact subspace, and denote X ◦ := X ×S S◦. Then every

irreducible component D ⊂ Dq(X ◦/S◦) respectively B ⊂ Bq(X ◦/S◦) is proper over S◦.

Proof. Using the argument of [Fuj82, (5.2) Theorem], we may reduce to the case where

X −→ S is weakly Kähler. By [Fuj79, Proposition 3.1], the morphism % : D −→
Bq(X ◦/S◦) is proper, so it suffices to show the statement for the Barlet space. Let

B ⊂ Bq(X ◦/S◦) be an irreducible component and denote by {Fb}b∈B the universal

family of cycles parametrized by B. Let θ be a weak Kähler metric for f . The key

point is to show that λ(b) :=
´
Fb
θq is bounded as b ∈ B varies, cf. the proof of [Fuj79,

Proposition 4.1].

By [AV19, Proposition 6.1], the sheaf (R2qf∗QX ◦)∨ is a local system, and the argu-

ment of [Ful98, Lemma 19.1.3] shows that b 7→ [Fb] defines a section of the pulled back

local system along the projection π : B −→ S◦. As S◦ is simply connected, the local

system is constant and thus the [Fb] determine a global section L of (R2qf∗QX ◦)∨. In

particular, the continuous function λ′ : S◦ −→ R defined by λ′(s) := Ls([θs]
q) satisfies

π∗λ′ = λ. As λ′ can be extended to the closure S
◦

in S, we see that λ is bounded. �

The following is an immediate consequence.

Corollary 4.3. Let S be a reduced and irreducible complex space, let f : X −→ S be

a locally trivial deformation of a compact Kähler variety X with rational singularities.

With the notation of Proposition 4.2, every irreducible component D ⊂ Dq(X ◦/S◦)
respectively B ⊂ Bq(X ◦/S◦) is proper over S◦.

Proof. By [Bin83a, Theorem 6.3], f is weakly Kähler. �

As a consequence of properness, we obtain the following result.
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Lemma 4.4. Let X be a normal compact Kähler variety with rational singularities.

Let f : X −→ S be a locally trivial deformation of X over an irreducible and reduced

base S. Suppose that for some nonempty Euclidean open V ⊂ S we have a product

decomposition

X ×S V ∼= YV ×V ZV
for locally trivial YV ,ZV /V and suppose that V is contained in a relatively compact

simply connected subspace S◦ ⊂ S. Then up to replacing S by S◦, there is a finite

morphism S′ −→ S, a Euclidean open V ′ ⊂ S′ mapping generically isomorphically onto

V , and a Zariski open U ′ ⊂ S′ containing V ′ such that the base change X ×S U ′ −→ U ′

has a product decomposition

(4.2) X ×S U ′ ∼= Y ×U ′ Z

for locally trivial Y,Z/U ′ that specializes to the pullback of the one of X ×S V over V ′.

Proof. We may also assume S is normal by passing to the normalization. We will

proceed in three steps.

Step 1. Let v ∈ V and z ∈ Zv be smooth points. Then the relative Douady space

D(X/S) is smooth over S at Y (z) := Yv×{z} and dim[Y (z)] D(X/S) = dimZv+dimS.

The normal bundles form a short exact sequence 0 −→ NY (z)/Xv −→ NY (z)/X −→
NXv/X |Y (z) −→ 0 where the outer terms are trivial bundles of rank dimZv respectively

dimS. We deduce

dimTD(X/S),[Y (z)] = dimH0(Y (z), NY (z)/X )

≤ dimZv + dimS

= dimZV
≤ dim[Y (z)] D(X/S).

Note that the last inequality follows from the fact that the second projection X×SV −→
ZV can be thought of as the family of fibers Y (z) and the resulting classifying map

ZV −→ D(X/S) is clearly injective. We infer that equality holds above and D(X/S)

is smooth at [Y (z)].

Before the next step, we set some notation. By the previous step, there is a unique

irreducible component D ⊂ D(X/S) passing through [Y (z)] ∈ D(X/S) and we let

Dν −→ D be its normalization. We denote by F ⊂ Dν ×S X the (pullback of the)

universal family and consider the S-morphism e : F −→ X induced by projection.

Replacing S by S◦, we may assume that Dν −→ S is proper by Corollary 4.3 and

therefore has a Stein factorization Dν −→ S′ −→ S. Moreover, S′ is irreducible and

S′ −→ S is surjective, as D respectively D −→ S are.

Step 2. There is a nonempty Zariski open U ′ ⊂ S′ and a Euclidean open V ′ ⊂ U ′ ∩
(S′×S V ) such that the induced morphisms e× id : F ×S′ U ′ −→ X ×S U ′ and V ′ −→ V

are isomorphisms.
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Clearly, the classifying map of ZV factors as ZV −→ D ⊂ D(X/S). By construction,

ZV −→ D is injective and as the induced map ZV −→ D×S V is proper (since ZV −→ V

is), ZV maps bijectively onto an irreducible component of D ×S V . As Dν ×S V =

(D ×S V )ν , we have a factorization ZV −→ Dν −→ D such that ZV is isomorphic to a

connected component of Dν×S V . The map ZV −→ V factors through an isomorphism

V ′ −→ V for a connected component V ′ ⊂ S′ ×S V . Indeed, V ′ −→ V is finite and

bimeromorphic as ZV −→ V has connected fibers and V is normal by assumption.

Over V ′ ⊂ S′ we have a diagram

(4.3) X ×S V ′ //

α

**

��

F ×S′ V ′

��

// (X ×S S′)×S′ V ′

}}

ZV

&&

// Dν ×S′ V ′

��
V ′

where α is the identity, so F ×S′ V ′ −→ (X ×S S′)×S′ V ′ is an isomorphism. The locus

U ′ ⊂ S′ over which F −→ X ×S S′ is an isomorphism, is Zariski open (and nonempty

as V ′ ⊂ U ′).

Step 3. Final step of the proof.

We also apply the preceding steps swapping Y and Z, and thus obtain for i = Y

(resp. i = Z) finite morphisms Si −→ S and nonempty Zariski open subsets Ui ⊂ Si

such that the following hold:

(1) LetDi be the unique component of D(X/S) containing all points corresponding

to subspaces of the form Y (z) (resp. Z(y)). Let Dν
i −→ Di be the normaliza-

tion. Then Dν
i −→ Si −→ S is the Stein factorization.

(2) Let Fi −→ Dν
i is the pullback of the universal family to the normalization.

Then the morphism Fi −→ X ×S Si is an isomorphism over Ui.

(3) The inclusion V ⊂ S lifts to Vi ⊂ Si and the canonical map ZV −→ Dν
Y ×SY VY

(resp. YV −→ Dν
Z ×SZ VZ) is an isomorphism over V .

Passing to S′ := SY ×SSZ and the intersection U ′ of the preimages of Ui under S′ −→ Si

we obtain morphisms Fi×Si S′ −→ X ×S S′ whose restrictions to U ′ are isomorphisms.

In particular, we have projections X ×S U ′ −→ Dν
i ×Si U ′. Set Y = Dν

Z ×SZ U ′ and

Z = Dν
Y ×SY U ′. The product morphism

(4.4) X ×S U ′ −→ Y ×U ′ Z

is an isomorphism when restricted over V ′ ⊂ U ′. Note that

(Y ×U ′ Z)×S′ V ′ ∼= YV ×V ZV
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by construction. By shrinking U ′ we may assume that (4.4) is an isomorphism and

that Y,Z/U ′ are locally trivial, as the former is Zariski open and the latter Zariski

closed (by Theorem 2.18). �

Remark 4.5. The proof actually shows a little more, namely that X ×S S′ is bimero-

morphic to a fiber product whose factors are locally trivial families over U ′ ⊂ S′.

We also record another consequence of the proof, mainly to set the notation for later

use.

Corollary 4.6. Let X be a normal compact Kähler variety with rational singularities.

Suppose we have a locally trivial family X −→ ∆ with special fiber X such that X ∗ :=

X ×∆ ∆∗ = Y∗×∆∗ Z∗ where Y∗,Z∗/∆∗ are locally trivial. Then up to replacing ∆ by

a relatively compact open subset containing the origin there is a (reduced) component

DY ⊂ D(X/∆) which is proper over ∆ such that, setting D∗Y := DY ×∆ ∆∗ and

F∗Y := FY ×∆ ∆∗ the restriction of the universal family FY ⊂ X ×∆ DY , the graph of

the second projection X ∗ ⊂ X ∗ ×∆∗ Z∗ is isomorphic as a family of subspaces of X ∗

over Z∗ to F∗Y ⊂ X ∗ ×∆∗ D
∗
Y over D∗Y . Likewise for DZ ,FZ .

Proof. By Corollary 4.3, we can shrink ∆ and find a component DY of D(X/∆) which

contains the generic fibers Yt × {z} and which is proper over ∆. The projection

X ∗ −→ Z∗ yields a bijective classifying map Z∗ −→ D∗Y as in the proof of the lemma.

The resulting pullback map X ∗ −→ F∗Y is in fact an isomorphism, as the evaluation map

F∗Y −→ X ∗ provides an inverse. It follows that the Stein factorization of F∗Y −→ D∗Y is

identified with X ∗ −→ Z∗ −→ D∗Y , but as X ∗ −→ Z∗ is faithfully flat and F∗Y −→ D∗Y is

flat, it follows that Z∗ −→ D∗Y is flat hence an isomorphism. �

5. Splittings of relative tangent sheaves

In this section we show that given a product decomposition on the general fiber of a

locally trivial family of K-trivial varieties, the induced splitting of the tangent bundle

extends to the special fiber.

Proposition 5.1. Let π : X −→ ∆ be a locally trivial family of K-trivial Kähler

varieties with rational singularities. Let X be the special fiber. Assume we have a

product decomposition X ∗ := X ×∆ ∆∗ = Y∗ ×∆∗ Z∗ for locally trivial families π1 :

Y∗ −→ ∆ and π2 : Z∗ −→ ∆∗. Then there is a splitting

TX/∆ = A⊕B

into foliations such that A|X ∗ = π∗1TY∗/∆∗ and B|Y∗ = π∗2TZ∗/∆∗ as subsheaves of

TX ∗/∆∗.

Before the proof of Proposition 5.1 we make some preliminary remarks. We start

by observing that there is a limit Künneth decomposition on the level of cohomology.
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Lemma 5.2. Assume the setup of Proposition 5.1. Let j : ∆∗ −→ ∆ be the inclusion.

Then we have decompositions of local systems

(5.1) Rkπ∗QX ∼=
⊕
r+s=k

j∗R
rπ1∗QY∗ ⊗Q j∗R

sπ2∗QZ∗

extending the Künneth decompositions over ∆∗.

Proof. As π is topologically trivial, each Rkπ∗QX has no local monodromy, and it

follows that each Rkπ1∗QY∗ and Rkπ2∗QZ∗ also has no monodromy (since for instance

π1∗QY∗ and π2∗QZ∗ have no monodromy). �

Note that the isomorphisms preserve the integral structure—that is, the torsion-

free quotients of cohomology with integral coefficients—and that we also have the

corresponding decomposition on the level of homology. The decompositions are also

compatible with cup and cap products.

Next we upgrade Lemma 5.2 to a Künneth decomposition of variations of mixed

Hodge structures.

Lemma 5.3. Let f : X −→ S be a locally trivially family over a smooth base S. Then

for all k, Rkf∗QX underlies a variation of mixed Hodge structures

Proof. Note that because S is smooth, the normalization of X is locally trivial and

specializes to the normalization fiberwise. Following for instance the proof of [PS08,

Theorem 5.26], the family X −→ S then admits a locally trivial semi-simplicial resolu-

tion over S by Corollary 2.23, and this is enough. �

Corollary 5.4. In the setup of Proposition 5.1, the Hodge filtrations of Rrπ1∗CY∗ ⊗C

O∆∗ and Rsπ2∗CZ∗ ⊗C O∆∗ extend so that (5.1) holds as variations of mixed Hodge

structures. Moreover, the cup-product maps are morphisms of variations of Hodge

structures.

Proof. Let Uk, Vr,Ws be the special fibers of Rkπ∗CX , j∗Rrπ1∗CY∗ , j∗Rsπ2∗CZ∗ , re-

spectively. Now denoting by Fl the appropriate flag varieties, the period map ∆ −→∏
k Fl(Uk) associated to R•π∗CX maps ∆∗ to the image of the closed embedding of∏
k Fl(Vk)×

∏
k Fl(Wk) via taking the graded tensor product. It therefore maps ∆ into∏

k Fl(Vk)×
∏
k Fl(Wk), and the first claim follows. The second claim is obvious as it

is true fiber-wise. �

For simplicity, in the following we denote the Hodge filtration on Rkf∗CX ⊗C O∆

(resp. j∗R
rg∗CY∗ ⊗C O∆, j∗R

sh∗CZ∗ ⊗C O∆) by F •Rkf∗CX (resp. F •j∗R
rg∗CY∗ ,

F •j∗R
sh∗CZ∗).

Proof of Proposition 5.1. Let m = dimY∗ − 1 and n = dimZ∗ − 1. By Corollary 2.23

there is a locally trivial resolution f : X̃ −→ X . By Kebekus–Schnell [KS18, Corol-

lary 1.8] we have f∗Ω
p

X̃/∆
= Ω

[p]
X/∆ via the natural map, and likewise for Y∗ and Z∗.

In particular, we naturally identify F pRpπ∗CX = Ω
[p]
X/∆ for each p. Moreover, both
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FmRmπ1∗CY∗ = Ω
[m]
Y∗/∆∗ and FnRnπ2∗CZ∗ = Ω

[n]
Z∗/∆∗ are line bundles as Y∗ and Z∗ are

both families of K-trivial varieties. From Corollary 5.4 it follows that Fmj∗R
mπ1∗CY∗

is a vector subbundle of FmRmπ∗CX , and so there is a τY ∈ H0(X ,Ω[m]
X/∆) which

specializes to the pullback of a nonzero top-dimensional reflexive form on the fibers of

Y∗ and which is nonzero on the special fiber of X . Likewise for τZ ∈ H0(X ,Ω[n]
X/∆)

and Z∗.
We claim that A = rad(τZ) and B = rad(τY ) provides the desired splitting. Note

that the radical can only increase in rank under specialization, and that A and B are

generically complementary. The claim therefore follows provided τY ∧ τZ is nonzero

on the special fiber. But Corollary 5.4 implies the Künneth decomposition provides us

with an identification

Fm+nRm+nπ∗CX ∼= Fmj∗R
mπ1∗CY∗ ⊗ Fnj∗Rnπ2∗CZ∗

where τY ∧ τZ on the left-hand side is identified with τY ⊗ τZ on the right-hand side,

and the claim follows. �

6. Splittings of relative Kähler–Einstein metrics

By the results of the last section, given a locally trivial family which is generically

a product, there is both a limit splitting of the cohomology of the special fiber and a

limit splitting of the tangent sheaf. We show in this section that the decomposition of

the Kähler–Einstein metrics carries over to the limit.

6.1. Forms and currents on singular spaces. The references for this section are

[Dem85] or [BG13, §4.6.1]. LetX be normal complex space. We introduce the following

sheaves on X:

• L1
X is the sheaf of locally integrable real-valued functions on X,

• C∞X is the sheaf of real-valued functions which are locally the restriction of a

smooth function under a local embedding X ↪→
loc

CN ,

• PHX ⊂ C∞X is the subsheaf made of pluriharmonic functions. A pluriharmonic

function can be equivalently defined as being locally the real part of a holomor-

phic function (which by definition comes from a local embedding) or a function

in the kernel of the ddc operator.

We recall the following definitions.

− A (1, 1)-form on X is a smooth (1, 1)-form on Xreg that extends smoothly

under local embeddings.

− A (1, 1)-form is said to have local potentials if it arises as a global section of

C∞X /PHX via the ddc operator. In particular, it is closed.

− A closed (1, 1)-current with local potentials is a global section of L1
X/PHX .

− A plurisubharmonic function (psh for short) on X is a locally integrable func-

tion on X which is the restriction of a psh function under a local embedding.

If θ is a (1, 1)-form with local potentials on X, a function ϕ on X is said to
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be θ-psh if it is locally the sum of a smooth and a psh function and it satisfies

θ + ddcϕ ≥ 0 weakly. We denote by PSH(X, θ) the set of θ-psh functions on

X. If we do not specify θ, we also speak of quasi-psh functions.

− A Kähler metric on X is a (1, 1)-form with local potentials whose local poten-

tials are strictly plurisubharmonic, i.e. they are the restriction of a (smooth)

strictly psh function under a local embedding.

Remark 6.2. A closed (1, 1)-current T with local potentials on X enjoys the important

property that given a surjective morphism f : Y −→ X of complex varieties, one can

define its pull-back by f∗T by lifting its local potentials. The current f∗T is again

closed, of type (1, 1) and admits local potentials on Y . Moreover, f∗T is positive if

and only if T is positive.

We have the following exact sequences

(6.1) 0 −→ PHX −→ L1
X −→ L1

X/PHX −→ 0

and similarly with C∞X in place of L1
X , as well as

(6.2) 0 −→ RX
i·−→ OX

Re(·)−→ PHX −→ 0

These exact sequences yield exact sequences in cohomology

(6.3) H0(X,L1
X/PHX)

[·]−→ H1(X,PHX) −→ 0

and

(6.4) H1(X,PHX)
α−→ H2(X,R)

β−→ H2(X,OX)

A class in H1(X,PHX) (resp. in H2(X,R)) is said to be Kähler if it is the image of

a Kähler metric under the map [·] in (6.3) (resp. under the map α ◦ [·]). According

to [BL18, Proposition 2.8], the Kähler class ends up in H1,1(X,R) := F 1H2(X,C) ∩
H2(X,R). The following elementary result is very useful.

Proposition 6.3. Let X be a compact, normal variety of class C with rational singu-

larities. Then α is injective and β is surjective; i.e. we have an exact sequence

(6.5) 0 −→ H1(X,PHX)
α−→ H2(X,R)

β−→ H2(X,OX) −→ 0.

Proof. The injectivity of α is proved in [GK20, Remark 3.2 (2)]. Surjectivity of β

follows because the Hodge structure on H2(X,C) is pure and β can be identified with

the projection on the (0, 2)-part. Clearly, for α ∈ H0,2(X) the class α+ ᾱ is real. �

6.4. Continuity of the relative KE metric. For the remainder of this section, we

work with the following setup.

Setting 6.5. Let X be a normal complex space with canonical singularities equipped

with a proper, holomorphic, surjective map π : X −→ ∆ and a smooth hermitian

positive definite (1, 1)-form θ such that, setting Xt := π−1(t) and X = X0, one has

(i) ωX/∆ ∼= OX .
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(ii) The map π is a locally trivial and H1(X0,R) = 0.

(iii) The restriction θt := θ|Xt is a Kähler form.

(iv) There is a splitting X ×∆ ∆∗ ∼= Y∗×∆∗ Z∗ with π1 : Y∗ −→ ∆∗ and π2 : Z∗ −→
∆∗ locally trivial.

(v) The relative tangent sheaf splits: TX/∆ = A ⊕ B such that A|X ∗ = π∗1TY∗/∆∗

and B|Y∗ = π∗2TZ∗/∆∗ as subsheaves of TX ∗/∆∗.

As mentioned before, this in particular implies that π is topologically, even real ana-

lytically trivial by [AV19, Proposition 6.1].

In Setting 6.5, we can consider for any t ∈ ∆ the unique singular Kähler–Einstein

metric ωt ∈ {θt}, provided by [EGZ09, Theorem A]. One can write ωt in a unique way

as

ωt = θt + ddcϕt

where ϕt is a θt-psh function normalized by
´
Xt
ϕt θ

n
t = 0. Moreover, it is known from

loc. cit. that ϕt ∈ L∞(Xt) and from [Pău08, Corollary 1.1] that ωt is a genuine Kähler

form on Xreg
t , the regular locus of Xt. Up to shrinking ∆, it follows from [DGG20,

Theorem D] that there exists a constant C > 0 independent of t ∈ ∆ such that

(6.6) sup
Xt

ϕt − inf
Xt
ϕt ≤ C.

Actually, the quoted result requires θ to be globally Kähler on X. However, the same

proof applies as long as θt is Kähler and
´
Xt
θnt remains bounded away from 0 and +∞

when t ∈ ∆, which up to shrinking ∆ is clearly our case.

Let us also observe that the normalization condition
´
Xt
ϕt θ

n
t = 0 implies that

supXt ϕt ≥ 0 and infXt ϕt ≤ 0. The bound on the oscillation (6.6) thus implies that

with the same constant C, we have

(6.7) − C ≤ ϕt ≤ C

for all t ∈ ∆.

Up to shrinking ∆, by local triviality one can assume that there exists a finite

covering (Uα)α∈Γ of X by Euclidean open subsets such that if we set Ut,α := Uα ∩Xt

for t ∈ ∆, there exist biholomorphisms Fα : Uα,0 × ∆ −→ Uα over ∆ and such that

Fα|Uα,0×{0} coincides with idUα,0 via the natural identification Uα,0 × {0} ∼= Uα,0. In

other words, restriction to a fiber gives a family of biholomorphisms

(6.8) Fα,t : Uα,0 −→ Uα,t

depending holomorphically on t such that Fα,t converges to idUα,0 when t −→ 0. In the

following, we will replace each Uα by a slightly smaller open set so that we can assume

that the biholomorphisms Fα,t extend to a neighborhood of ∂Uα,0.

Proposition 6.6. For any α ∈ Γ, the currents F ∗α,tωt|Uα,t converge to ω0|Uα,0 when

t −→ 0, weakly on Uα,0 and locally smoothly on the regular locus of that set.
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Proof. Let us write F ∗α,tωt = θα,t + ddcψα,t on Uα,0 where θα,t := F ∗α,tθt and ψα,t :=

ϕt ◦ Fα,t. First observe that ψα,t is a θα,t-psh function. We are going to show at the

same time the following three assertions, which altogether prove the proposition.

• The family (ψα,t) is precompact in the L1
loc topology.

• Any weakly convergent subsequence (ψα,tj ) actually converges locally smoothly

on U reg
α,0 .

• The only cluster value for (ψα,t) when t −→ 0 is ϕ0|Uα,0 .

Note that even though the results above are local (i.e. on Uα,0), we need a global

argument to identify the sequential limits and obtain the last item.

The first item follows directly from classical pluripotential theory given the estimate

(6.9) ‖ψα,t‖L∞(Uα,0) ≤ C

infered by (6.7) and the fact that θα,t converges (smoothly) to θ0 on Uα0 .

We now proceed to prove the remaining two assertions. Let us first observe that if

α, β are two indices such that Uαβ,0 := Uα,0 ∩Uβ,0 6= ∅ and ψα,tj converges to a quasi-

psh function ψα,0 on Uα,0, then any sequential limit ψβ,t′j −→ ψβ,0 for a subsequence (t′j)

of (tj) will satisfy ψα,0 = ψβ,0 on Uαβ,0. This follows from the fact that (Fα,t|Uαβ,0) ◦
(Fβ,t|Uαβ,0)−1 converges to idUαβ,0 when t −→ 0. Since the set Γ of indices is finite,

we can iterate this construction and out of any sequence tj −→ 0, one can find a

subsequence (t′j) and a function ψ0 ∈ PSH(X0, θ0) ∩ L∞(X0) such that for any α ∈ Γ,

the current F ∗α,t′j
ωt′j converges to θ0 + ddcψ0 on Uα,0 in the weak topology.

In order to finish the proof of the proposition, we will show the following.

• The weak convergence F ∗α,t′j
ωt′j −→ θ0 + ddcψ0 is locally smooth over Xreg

0 ;

• The current θ0 + ddcψ0 coincides with ω0.

Since π is locally trivial, the functorial resolutions pt : X̃t −→ Xt can be patched

together to induce a simultaneous resolution p : X̃ −→ X that restricts to pt over Xt

for any t ∈ ∆, cf. [BL18, Lemma 4.8]. As the simultaneous resolution is a projective

morphism, one can reproduce verbatim the argument in [Pău08, § 3] (see also [BBE+19,

Appendix B]) relying on Tsuji’s trick [Tsu88] to get laplacian estimates

(6.10) (trθtωt)|Kt ≤ CK

for any compact subset K b X reg where Kt := K ∩ Xt and CK > 0 is a constant

independent of t. From (6.10), one can get higher order estimates

(6.11) ‖ϕt‖Ck(Kt) ≤ CK,k

for any integer k ≥ 0 using standard results (Evans-Krylov and Schauder estimates).

Now, let Ω ∈ H0(X , ωX/∆) be a trivialization. We know from e.g. the proof of

[DGG20, Theorem 6.1] that there exists a constant ct > 0 uniformly bounded away

from 0 and +∞ when t ∈ ∆ such that

(6.12) (θt + ddcϕt)
n = ct · in

2
Ωt ∧ Ωt on Xt.
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By (6.11), the function ψα,t is locally bounded for any Ck-norm on U reg
α,0 := Uα,0∩Xreg

0 .

Therefore, the Arzela–Ascoli theorem guarantees that one can find a subsequence (t′′j )

of (t′j) such that ψα,t′′j converges locally smoothly on U reg
α,0 . Since ψα,t′′j already converges

weakly to ψ0 on Uα,0, we have ψα,0|Ureg
α,0

= ψ0|Ureg
α,0

. This shows that ψα,t converges

locally smoothly to ψ0 on U reg
α,0 when t −→ 0. Applying F ∗α,t′′j

to (6.12) and passing to

the limit on each U reg
α,0 , one finds that

(6.13) (θ0 + ddcψ0)n = c0 · in
2
Ω0 ∧ Ω0 on Xreg

0 .

As ψ0 ∈ L∞(X0), the uniqueness of the Kähler–Einstein metric [EGZ09, Proposi-

tion 1.4] guarantees that θ0 + ddcψ0 = ω0. �

6.7. Decomposition of the KE metric on X0. We now prove the splitting of the

Kähler-Einstein metric.

Proposition 6.8. In Setting 6.5, one can decompose the Kähler-Einstein metric ωt

on Xreg
t as

(6.14) ωt = ω1
t + ω2

t

where

(1) The ωit are closed, semi-positive smooth (1, 1)-forms on Xreg
t .

(2) One has kerω1
t = Bt and kerω2

t = At.

(3) When t −→ 0, we have local smooth convergence ωit −→ ωi0 on Xreg
0 under any

local trivialization of the family.

(4) If t 6= 0, then ω1
t (resp. ω2

t ) is the pull-back of a KE metric on Yt (resp. Zt). In

particular, they extend to Xt as positive currents with bounded local potentials

satisfying the identity (6.14).

Proof.

Items (1) and (2). The decomposition of the tangent sheaf TXt = At ⊕ Bt induces

a decomposition of TXreg
t

into parallel subbundles with respect to ω0 by [GGK19,

Theorem 8.1.2]. That result was stated for projective varieties but the proof goes

through without any changes in the Kähler setting, cf. also [Gue16].

This implies that the Kähler–Einstein metric ωt splits canonically on Xreg
t as follows

ωt = ω1
t + ω2

t

where ω1
t (resp. ω2

t ) is a smooth, closed semipositive (1, 1)-form on Xreg
t whose kernel

is Bt|Xreg
0

(resp At|Xreg
0

) and which is positive definite in restriction to At|Xreg
t

(resp.

Bt|Xreg
t

).

Item (3). This is an easy consequence of the local smooth convergence of ωt to ω0

on Xreg
0 via the local biholomorphisms Fα,t shown in Proposition 6.6 combined with

the definition of the ωit and the fact that the summand At of TXt coincides with the
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restriction of the subbundle A ⊂ TX/∆ to Xreg
t .

Item (4). From now on, we assume t 6= 0. We will need the following

Lemma 6.9. For any t ∈ ∆∗, the natural map

H1(Yt,PHYt)⊕H1(Zt,PHZt) −→ H1(Xt,PHXt)

is an isomorphism.

Proof. Recall from Proposition 6.3 that H1(Xt,PHXt) is the kernel of the natural

map H2(Xt,R) −→ H2(Xt,OXt). We claim that this map is given by the sum map

H2(Yt,R)⊕H2(Zt,R) −→ H2(Yt,OXt)⊕H2(Zt,OXt), from which the Lemma follows.

Now, since π is locally trivial and H1(X0,R) = 0, we have H1(Xt,R) = 0. Since Xt

has rational singularities, this implies that H1(Xt,OXt) = 0 as well. The claim now

follows from Künneth decomposition formula. �

Therefore, one can decompose [θt] ∈ H1(Xt,PHXt) as

[θt] = pr∗t,1αt + pr∗t,2βt

for some classes αt and βt on Yt and Zt respectively. Since [θt] is Kähler, so are αt and

βt. By [EGZ09], there exists a unique singular Kähler–Einstein metric ωYt ∈ αt (resp.

ωZt ∈ βt). Since pr∗t,1ωYt + pr∗t,2ωZt ∈ [θt] is smooth, Kähler and Ricci-flat on Xreg
t and

has bounded potentials, it coincides with ωt. In particular, one has ω1
t = pr∗t,1ωYt and

ω2
t = pr∗t,1ωZt on Xreg

t , hence everywhere since none of these currents puts any mass

on Xsing
t . �

6.10. Properties of the currents ωi0. In this section, we fix a functorial, simulta-

neous resolution p : X̃ −→ X inducing fiber-wise resolutions pt : X̃t −→ Xt, we set

π̃ := π ◦ p. Since p∗TX̃ = TX and X −→ ∆ is locally trivial, one can find a cover (Uα)

of X and holomorphic vector fields vα on Uα such that

• π∗vα = ∂
∂t .

• vα = p∗ṽα for some holomorphic vector field ṽα on p−1(Uα).

Using a partition of unity (χα) associated to (Uα), one can construct a smooth vector

field v on X (resp. ṽ on X̃ ) such that p∗ṽ = v and π∗v = ∂
∂t . The flow of these vector

fields yields diffeomorphisms F : X0×∆ −→ X and F̃ : X̃0×∆ −→ X̃ commuting with

p; i.e. p ◦ F̃ = F ◦ (p0 × id∆). With a slight abuse, we denote by Ft (resp. F̃t) the

restriction F |X0×{t} : X0 −→ Xt (resp. F̃ |
X̃0×{t} : X̃0 −→ X̃t).

For t 6= 0, the currents ω1
t and ω2

t have local potentials by Proposition 6.8, hence

they induce cohomology classes αt, βt ∈ H2(Xt,R) such that

(6.15) αt + βt = [θt].

Lemma 6.11. With the notation above, there exist α0, β0 ∈ H2(X0,R) such that

F ∗t αt −→ α0 (resp. F ∗t βt −→ β0) when t −→ 0.
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Proof. From Lemma 5.2 we have R2π∗RX = j∗R
2π1∗RY∗ ⊕ j∗R2π2∗RZ∗ , using (ii) of

Setting 6.5. The sections t 7→ αt (resp. t 7→ βt) of the vector bundle (R2π1∗RY∗)⊗C∞∆∗
(resp. (R2π2∗RZ∗)⊗C∞∆∗) over ∆∗ are such that their sum extends to a smooth section

of (R2π∗RX ) ⊗ C∞∆ . This shows that both sections extend across the origin, proving

the claim. �

Another helpful result is the following

Lemma 6.12. In Setting 6.5, there is a sub-vector bundle H ⊂ R2π∗RX ⊗R C∞∆ and

the inclusion is fiberwise canonically identified with H1(Xt,PHXt) ⊂ H2(Xt,R).

Proof. By topological triviality and purity of the weight two Hodge structure, the

family X −→ ∆ gives rise to a variation of Hodge structures with underlying R-local

system R2π∗RX . We denote V := R2π∗RX ⊗C∞∆ and by F p ⊂ V⊗C the C∞-sections of

the Hodge filtration. Then the base change of V −→ F 0/F 1 to t ∈ ∆ is the surjection

β from (6.5), so if we define H := ker
(
V −→ F 0/F 1

)
, we have canonical identifications

Ht = H1(Xt,PHXt). �

Proposition 6.13. With the notation of Proposition 6.8, then for i = 1, 2, the cur-

rent ωi0 extends to positive current on X0 having local bounded potentials and satisfy-

ing (6.14) on X0.

Proof. Let us first prove that ωi0 can be extended across Xsing
0 with local potentials.

We prove the claim for i = 1, the case i = 2 being entirely similar. First of all, since

the singularities of Xt are rational, p realizes R2π∗RX ⊗ C∞∆ as a sub-vector bundle

of R2π̃∗RX̃ ⊗ C
∞
∆ , see e.g. [BL16, Lemma 2.1]. In particular, Lemma 6.12 provides a

sub-vector bundle

p∗H ↪→ R2π̃∗RX̃ ⊗ C
∞
∆

whose fiber at t is p∗H1(Xt,PHXt) ⊂ H2(X̃t,R).

By Lemma 6.11, the section t 7→ p∗tαt is a continuous section of R2π̃∗RX̃ ⊗C
∞
∆ whose

image lies in p∗H over ∆∗. It follows that the latter holds across the origin too. In

particular, we get

(6.16) p∗0α0 ∈ p∗0H0.

Moreover, the arguments laid out in [AH19, Appendix] show that one can find a

sequence tk −→ 0 and a closed, positive (1, 1)-current T on X̃0 such that F̃ ∗tkp
∗
tk
ω1
tk

con-

verges to T weakly when tk −→ 0. Since X̃0 is a smooth, compact Kähler manifold, one

can write T = γ̃+ ddcṽ where γ̃ is a smooth, closed (1, 1)-form on X̃0 and ṽ ∈ L1(X̃0).

Since the cohomology class in H2(X̃0,R) of a closed current depends continuously on

it (with respect to the weak topology), we have [γ̃] ∈ p∗0H0. Said otherwise, the local

potentials of γ̃ actually come from X0 via p0 modulo a global function on X̃0, i.e.

one can write γ̃ = p∗0γ + ddcw̃ where γ is a (1, 1)-form on X0 with potentials and

w̃ ∈ L1(X̃0). Set ũ := ṽ + w̃ so that T = p∗0γ + ddcũ.
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Given a fiber F of p0, ũ|F is either identically −∞ or it is a psh function. Since F is

connected and compact, u|F has to be constant. That it, there exists a γ-psh function

u on X0 such that ũ = γ∗u or, equivalently, T = p∗0(γ + ddcu) on X̃0.

Now, recall from Proposition 6.8 that F ∗t ω
1
t −→ ω1

0 locally smoothly on Xreg
0 when

t −→ 0. By uniqueness of the limit, this shows that T agrees with p∗0ω
1
0 on X̃0\Exc(p0).

Therefore, we have ω1
0 = γ + ddcu on Xreg

0 . This shows that ω1
0 extends to a closed

positive (1, 1)-current with local potentials on X0.

In the following, the extension just constructed to X0 will still be denoted by ωi0,

and we aim to prove that its local potentials are bounded. Pick a Stein open subset

U ⊂ X0 where ωi0|U = ddcvi and ω0|U = ddcv where v, vi ∈ PSH(U) and v is bounded

on U , say ‖v‖L∞(U) ≤ C1. Up to shrinking U slightly and subtracting a constant, one

can assume that the upper semi-continuous functions vi are non-positive on U . The

function v− (v1 + v2) coincides almost everywhere with a pluriharmonic function h on

U . Up to shrinking U , one can assume that h is bounded; i.e. ‖h‖L∞(U) ≤ C2. Then,

one has 0 ≥ vi ≥ −(C1 +C2) almost everywhere on U , hence everywhere on U since vi

is psh. Finally, the closed (1, 1)-current ω0 − (ω1
0 + ω2

0) is supported on Xsing
0 while it

has local bounded potentials, so it vanishes everywhere thanks to the support theorem

applied on X̃, which is legitimate by Remark 6.2. Indeed, p∗0(ω0 − (ω1
0 + ω2

0)) would

have to be a current of integration along a divisor, which violates the boundedness of

its potentials unless it vanishes identically. �

7. Splittings of locally trivial families

In this section, we show using the results of the previous section that the limit

tangent splitting of Section 5 induces a product decomposition. The key technical

result of the previous section is the existence of a splitting of the Kähler–Einstein

metric as a positive current with bounded potentials.

The boundedness of the local potentials of a closed, positive (1, 1)-current T on X

allows us to do two things that we cannot do with closed positive (1, 1)-currents in

general, even when they admit local potentials.

(1) One can define the Bedford-Taylor Monge-Ampère operator Tn, which is a

positive measure satisfying
´
X T

n = [T ]n where the right-hand side is computed

in cohomology, cf. [BT76, BT82] or [Dem85, § 2].

(2) If Z ⊂ X is a closed analytic subvariety of X, then one can define T |Z :=

θ|Z + ddcu|Z , which is again a closed, positive (1, 1)-current with bounded

local potentials on Z.

We assume we are in Setting 6.5 and adopt the notation of Corollary 4.6. Thus, after

shrinking ∆ we have the (reduced) irreducible components DY , DZ of D(X/∆) which

are proper over ∆, generically parametrize fibers Yt × {z} and {y} × Zt, respectively,

and furthermore DY ×∆ ∆∗ = Z∗ and DZ×∆ ∆∗ = Y∗. Let (DY )0, (DZ)0 be the fibers

over 0, and set m = dimY∗− 1, n = dimZ∗− 1. Let FY ,FZ be the restrictions of the

universal families to DY , DZ .
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The map FZ −→ X is an isomorphism over ∆∗, so there is a unique (reduced)

component (FZ)+
0 of the special fiber (FZ)0 for which the map to X is surjective and

generically one-to-one. We have a diagram

(7.1)

(FZ)+
0 X.

(DZ)0

p

e

Let (DZ)+
0 = p((FZ)+

0 ). Note that for any [V0] ∈ (DZ)+
0 , we have that V0 ∩ Xreg is

either empty or tangent to B|Xreg , since by choosing the germ of a curve C in DZ

passing through [V0] and dominating ∆, we obtain a flat family V/C specializing to

V0, embedded as V ⊂ X ′ := X ×∆C, and generically tangent to B. Likewise we define

(FY )+
0 and (DY )+

0 .

Lemma 7.1. Let X be as in Setting 6.5. Then for any point [V0] ∈ (DZ)+
0 (resp.

[U0] ∈ (DY )+
0 ) we have that V0 (resp. U0) is irreducible and generically reduced.

Proof. Its enough to prove the claim for V0, as the one for U0 is the same after switching

factors. With V/C as above, the argument of [Ful98, Lemma 19.1.3] yields an integral

section v of (R2nπ∗QX ′)∨ with vt = [Vt]. Using the decomposition of Lemma 5.2, we

in fact have an integral generator η of (j∗R
2nπ1∗QZ′∗)∨ and v = η ⊗ pt, where pt is

the integral generator of (j∗π2∗QY ′∗)∨. Set

W =
⊕

r+s=2n
r>0

(j∗R
rπ1∗QY ′∗)∨ ⊗ (j∗R

sπ2∗QZ′∗)∨.

Now, note that V0 is pure-dimensional, and assume that we have an effective de-

composition [V0] = [V ′] + [V ′′]. In H2n(X,Q) one has an integral decomposition

[V ′] = λ′v0 + w0 (resp. [V ′′] = λ′′v0 − w0) for λ′, λ′′ ∈ Z with 1 = λ′ + λ′′ and

w0 ∈W0.

By Propositions 6.8 and 6.13, the Kähler–Einstein metric ωt ∈ [θt] can be decom-

posed as ωt = ω1
t + ω2

t , and we set αt := [ω1
t ] ∈ H2(Xt) (resp. βt = [ω2

t ] ∈ H2(Xt)).

Recall that these currents have bounded local potentials, hence one can take their

wedge products, cf. the beginning of this section. We claim that the cap product

(7.2) βn0 · u0 = 0 for any u0 ∈W0.

Indeed, any such u0 can be written as limit of elements ut ∈ Wt but for t 6= 0 we

have βnt · ut = 0 almost by definition and t 7→ βnt · wt is continuous by Lemma 6.11.

Similarly, we have

(7.3) αr0β
n−r
0 · v0 = 0 for any r > 0.

By Proposition 6.13 we have

0 ≤
ˆ
V ′

(ω2
0)n = λ′βn0 · v0
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and so 0 ≤ λ′. By the same argument, we also have 0 ≤ λ′′, and therefore without loss

of generality we have λ′′ = 0; i.e. [V ′′] = −w0. Combining (7.2) and (7.3), we findˆ
V ′′
ωn0 = −βn0 · w0︸ ︷︷ ︸

=0

−
∑
r>0

αr0β
n−r
0 · v0

= −
∑
r>0

ˆ
V ′

(ω1
0)r ∧ (ω2

0)n−r︸ ︷︷ ︸
≤0

+
∑
r>0

αr0β
n−r
0 · v0︸ ︷︷ ︸

=0

.

hence
´
V ′′ ω

n
0 = 0, so [V ′′] = 0. �

Proposition 7.2. Let X be as in Setting 6.5, and let [V0] ∈ (DZ)+
0 and [U0] ∈ (DY )+

0 .

Then we have

ω1
0|V0 ≡ 0 and ω2

0|U0 ≡ 0.

In particular, ω0|U0∩V0 ≡ 0.

Proof. Since the ωi0 have bounded local potentials by Proposition 6.13, it makes sense

to restrict them to U0 or V0. The last statement follows from the main one thanks to

Proposition 6.13.

First assume V0 ∩ Xreg 6= ∅. Set V ◦0 := V0 ∩ Xreg which is a dense Zariski open

subset of V0. Since ω1
0|V ◦0 ≡ 0 by Proposition 6.8, it follows that the restriction ω1

0|V0
is a positive (1, 1)-current with bounded potentials on V0 supported on V0 \ V ◦0 . By

Lemma 7.1 and the support theorem applied on a resolution say (cf. Remark 6.2), the

current ω1
0|V0 has to be a non-negative combination of currents of integration along

the codimension one components of V0 \ V ◦0 which is only possible if ω1
0|V0 vanishes

identically since it has bounded potentials.

Now for V0 arbitrary, take the germ of a smooth pointed curve (C, 0) with a non-

constant morphism C −→ (DZ)0 sending 0 to [V0] and consider the pullback diagram

F X

C

e

p

where we abusively use the same letters e, p for the restrictions of the corresponding

maps in (7.1). By the previous paragraph, e∗ω1
0 vanishes in restriction to Ft for t

general. Since p is smooth at a generic point x0 of F0 = V0 by Lemma 7.1 and e∗ω1
0

has local bounded potentials, Lemma 7.3 below implies that e∗ω1
0 vanishes in restriction

to a neighborhood of x0 in V0, hence e∗ω1
0|G0 is supported on a proper analytic subset.

Since its local potentials are bounded, this implies that e∗ω1
0|G0 ≡ 0 as before. �

In the course of the proof above, we used the following lemma about psh functions

on the total space of a trivial fibration that are pluriharmonic on all but one slice.

Lemma 7.3. Let ϕ be a psh function on ∆n×∆. Assume that ϕ is pluriharmonic in

restriction to each slice Dt := ∆n × {t} for t ∈ ∆∗. Then, either ϕ|D0 ≡ −∞ on D0

or ϕ|D0 is pluriharmonic.
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Proof. Assume that ϕ|D0 6≡ −∞. We use the coordinates (z1, . . . , zn) for the first

factor ∆n and (t) for the second factor ∆. The lemma is local, and it is sufficient to

prove that for every one-dimensional disk Dzr ⊂ ∆n centered at 0 ∈ ∆n of small enough

radius r, we have

(7.4) ϕ(0, 0) =

 
Dzr
ϕ(z, 0)dV (z).

For that purpose, we introduce the function u : ∆ −→ R ∪ {−∞} defined by

u(t) :=

 
Dzr
ϕ(z, t)dV (z).

The function ϕ(t) := ϕ(0, t) is a psh function on ∆ that satisfies

(7.5) u = ϕ on ∆∗

since ϕ|Dt is pluriharmonic for any t 6= 0. To show (7.4), we thus have to extend the

identity (7.5) across the origin. This will be achieved if we show that u is psh on ∆

since psh functions are determined by their value almost everywhere and ϕ is psh.

First of all, u is upper semi-continuous by Fatou’s lemma since ϕ is upper semi-

continuous as well (one can assume that ϕ ≤ 0 without loss of generality). Next, if

t0 ∈ ∆ and s is small enough, setting Dts := {t ∈ ∆ | |t− t0| < s} we have

u(t0) =

 
Dzr
ϕ(z, t0)dV (z)

≤
 
Dzr

 
Dts
ϕ(z, t)dV (t)dV (z)

=

 
Dts
u(t)dV (t)

where the inequality follows from ϕ(z, ·) being psh while the last identity is a simple

application of Fubini’s theorem. This shows that u is psh, and concludes the proof of

the lemma. �

We will specifically need the following corollary of the previous proposition. Let

I := (FY )+
0 ×X (FZ)+

0 be the universal intersection, and consider the resulting diagram

(7.6)

I+ X

(DY )+
0 × (DZ)+

0

g

f

where I+ is the unique (reduced) component of I dominating X.

Corollary 7.4. In (7.6), f is surjective and generically one-to-one, and g is finite,

surjective, and generically one-to-one.

Proof. The statements for f follow from the fact that the natural maps (FY )+
0 −→

X and (FZ)+
0 −→ X are generically one-to-one and surjective by definition and the

surjectivity of g is clear as (FY )+
0 −→ (DY )+

0 and (FZ)+
0 −→ (DZ)+

0 are surjective. The
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fibers of g are the intersections U0 ×X V0 in the notation of Proposition 7.2, so the

finiteness is immediate from there and the Kählerness of [ω0].

For the rest of the claim, as f−1(Xsing) does not dominate (DY )+
0 × (DZ)+

0 , for

generic [U0] ∈ (DY )+
0 and [V0] ∈ (DY )+

0 we have U0 ∩ V0 ⊂ Xreg. We may take the

germ of a smooth pointed curve (C, 0) with a non-constant map C −→ DZ sending 0

to [V0] and dominating ∆, as well as a non-constant map C −→ DY sending 0 to [U0]

and dominating ∆. If we let F2 (resp. F1) be the pullback of FZ (resp. FY ) to C,

then both F1 and F2 are naturally embedded in X ′ := X ×∆ C. Every component5

of F1 ∩ F2 ∩ X ′reg has dimension at least dimF1 − codimX ′ F2 = (m + 1) −m = 1,

as for example the intersection is equal to the intersection of F1 × F2 ⊂ X ′ × X ′

with the diagonal embedding of X ′reg, which is regularly embedded in X ′reg × X ′reg.

The fact that (F1)t ∩ (F2)t is a single point for t 6= 0 implies that there is at most

one zero-dimensional component of (F1)0 ∩ (F2)0 ∩ Xreg = U0 ∩ V0 ∩ Xreg, which is

zero-dimensional. The claim then follows. �

Proposition 7.5. Assume Setting 6.5. Then after shrinking ∆ there is a splitting

X = Y ×∆ Z for locally trivial Y,Z/∆ restricting to the given splitting over ∆∗.

Proof. We will first show how to obtain a splitting of the central fiber and then show by

deformation theory that it gives back the splitting over ∆∗. We observe the following:

Lemma 7.6. Let X,Y, Z be normal compact complex varieties with a bimeromorphic

morphism f : Y × Z −→ X and assume X is Kähler with rational singularities and

H1(X,OX) = 0. Then X ∼= Y ′ × Z ′ where Y ′ (resp. Z ′) is the normalization of the

image of a general fiber Y × {z} (resp. {y} × Z).

Proof. By taking resolutions we may assume Y and Z are smooth. Observe that from

the rationality of the singularities and the exact sequence

0 −→ H1(X,OX) −→ H1(Y × Z,OY×Z) −→ H0(X,R1f∗OY×Z)

coming from the Leray spectral sequence, we obtain

(7.7) H1(Y × Z,OY×Z) = H1(Y,OY )⊕H1(Z,OZ) = 0.

For a general fiber Yz := Y × {z} let Y ′′ = f(Yz) and nY : Y ′ −→ Y ′′ the normaliza-

tion; likewise for nZ : Z ′ −→ Z ′′. Note that the map g : Y ×Z −→ Y ′×Z ′ is birational.

The situation is summarized in the diagram below

Y × Z X

Y ′ × Z ′

f

g

For the claim it is enough to show that f factors through g and vice versa; note that

such a factorization is obviously unique provided it exists. As both f and g are proper

5When we take intersections we mean the intersections of the reductions.
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with connected fibers and map to normal targets, by the rigidity lemma it is sufficient

to check the following claim:

Claim. f and g have the same fibers.

Proof. Let ω ∈ H2(X,R) be a Kähler class X. By (7.7) we have that h1(Y,OY ) = 0,

so the Künneth decomposition yields

(7.8) f∗ω = pr∗Y α+ pr∗Zβ

where α ∈ H2(Y,R) and β ∈ H2(Z,R). Identifying Yz with Y (likewise for Z), we find

that α = (f∗ω)|Yz = f∗ω|Y ′′ and β = f∗(ω|Z′′). Since we have a factorization

Yz Y ′′

Y ′

f |Yz

g|Yz nY

we find that f∗ω|Y ′′ = g∗n∗Y ω|Y ′′ and f∗ω|Z′′ = g∗n∗Zω|Z′′ . In the end, (7.8) becomes

(7.9) f∗ω = g∗(ω1 + ω2)

where ω1 = n∗Y ω|Y ′′ and ω2 = n∗Zω|Z′′ . Note that ω1 and ω2 are Kähler classes by

[Vâj96, Theorem 1], see also [GK20, Proposition 3.6].

Since ω (resp. ω1 + ω2) is a Kähler class, a subvariety V ⊂ Y × Z is contracted to

a point by f (resp. g) if and only if f∗ω|V = 0 (resp. g∗(ω1 + ω2)|V = 0). The claim

now follows from (7.9). �

As explained above, the lemma follows from the claim. �

Now, the map g of Corollary 7.4 is an isomorphism on normalizations, and so X is

a product by Lemma 7.6. This produces a second splitting of X/∆ using the following

result.

Lemma 7.7. Let Y, Z be compact irreducible and reduced varieties with H1(Y,OY ) =

0 = H1(Z,OZ). Let X = Y × Z. Then the natural map Def lt(Y ) × Def lt(Z) −→
Def lt(X) is an isomorphism. In particular, the universal locally trivial deformation of

X is the product of the pullbacks of the universal families of Y and Z.

Note that H1(X,R) = 0 in our case so that the hypotheses on Y and Z are fulfilled.

Proof. It suffices to show the map on tangent spaces is an isomorphism and that the

map on obstruction spaces is injective. By the Künneth decomposition, the map on

tangent spaces is the natural map

H1(Y, TY )⊕H1(Z, TZ) −→ H1(Y, TY )⊗H0(Z,OZ)⊕H0(Y,OY )⊗H1(Z, TZ)

since the other Künneth factors vanish:

H1(Y,OY )⊗H0(Z, TZ) = 0 = H0(Y, TY )⊗H1(Z,OZ).
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In particular, the map on tangent spaces is an isomorphism. The map on obstruction

spaces is likewise identified via the Künneth decomposition with the inclusion of the

Künneth factors

H2(Y, TY )⊗H0(Z,OZ)⊕H0(Y,OY )⊗H2(Z, TZ)

and is therefore injective. �

So thanks to Lemma 7.7, after shrinking ∆ we have a product decomposition

X ∼= Y ′×∆Z ′ where Y ′,Z ′/∆ are locally trivial. Let us denote Y := Y ′0 and Z := Z ′0.

By construction, the subspaces Y × {z} and {y} × Z for general y ∈ Y , z ∈ Z are

obtained as fibers of the families FY −→ DY respectively FZ −→ DZ which over ∆∗

coincide with X ∗ −→ Z∗ and X ∗ −→ Y∗. As one fiber of FY −→ DY is contracted under

the projection FY
e−−→ X −→ Z ′, so are all the fibers thanks to the rigidity lemma. In

other words, Y∗ ∼= Y ′∗ and likewise for Z∗. �

8. Proof of the decomposition theorem

In this section we prove Theorem A. Let X be a numerically K-trivial Kähler variety

with log terminal singularities. By [CGGN20, Corollary 4.2], there exists a quasi-étale

cover X̃ −→ X that splits as X̃ = T × Y where T is a torus and Y is K-trivial with

vanishing augmented irregularity, q̃(Y ) = 0. Replacing X with Y , we may thus assume

X is a K-trivial Kähler variety with canonical singularities and vanishing augmented

irregularity. Moreover, by Corollary 3.9 and [CGGN20, Theorem C & Proposition 6.9],

we also know TX has a splitting

(8.1) TX =
⊕
i∈I

Ci ⊕
⊕
j∈J

Sj

into foliations such that with respect to some (hence any) singular Ricci-flat metric on

X the sheaves Ci|Xreg (resp. Sj |Xreg) are parallel with holonomy SU (resp. Sp). We

may assume (8.1) has at least two factors (or X is IHS or ICY and there is nothing

to prove) and at least one symplectic factor (or X is already projective and we apply

[HP19, Theorem 1.5]). It suffices to show by induction that there is a quasi-étale cover

of X which splits as a product.

Given Proposition 7.5, it is enough to show we are in Setting 6.5. We obtain the

weakly Kähler metric θ by [Bin83a, Theorem 6.3], see also [Nam01, Proposition 5]. It

thus remains to show the following:

Claim. After replacing X with a quasi-étale cover, there is a locally trivial deformation

X −→ ∆ of X such that we have a nontrivial product decomposition X ∗ = Y∗ ×∆∗ Z∗

over ∆∗ for locally trivial families Y∗,Z∗/∆∗ and a splitting TX/∆ = A⊕B compatible

with the decomposition over ∆∗.

Proof. Taking E =
⊕

j∈J Sj and P =
⊕

i∈iCi, then the family X −→ S guaranteed

by Corollary 2.32 is a strong locally trivial approximation of X by Lemma 3.5. By

Corollary 3.10 every fiber has vanishing augmented irregularity. A projective fiber has a
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BB decomposition on some quasi-étale cover [HP19, Theorem 1.5], so by Lemmas 3.7

and 3.8 we may assume a fiber Xt of X −→ S has a BB decomposition which is

nontrivial by Corollary 3.10 and which has no torus factor. By Lemma 7.7 this product

decomposition persists in a neighborhood of t, and by Lemma 4.4 after taking a finite

base-change S′ −→ S and choosing a curve ∆ −→ S′ through the special point we have

a locally trivial family X −→ ∆ with a locally trivial product decomposition over ∆∗.

By Proposition 5.1 the claim follows. �

The proof of Theorem A is now complete. �
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algébriques affines. Mém. Soc. Math. France (N.S.), (19):124, 1985. – cited on p. 27, 34

[DG94] G. Dethloff and H. Grauert. Seminormal complex spaces. In Several complex variables, VII,

volume 74 of Encyclopaedia Math. Sci., pages 183–220. Springer, Berlin, 1994. – cited on

p. 19, 20
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