Conformal multi-target regression using neural networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Conformal multi-target regression using neural networks

Résumé

Multi-task learning is a domain that is still not fully studied in the conformal prediction framework, and this is particularly true for multi-target regression. Our work uses inductive conformal prediction along with deep neural networks to handle multi-target regression by exploring multiple extensions of existing single-target non-conformity measures and proposing new ones. This paper presents our approaches to work with conformal prediction in the multiple regression setting, as well as the results of our conducted experiments.
Fichier principal
Vignette du fichier
COPA2020_paper_7.pdf (762.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03029473 , version 1 (28-11-2020)

Identifiants

  • HAL Id : hal-03029473 , version 1

Citer

Soundouss Messoudi, Sébastien Destercke, Sylvain Rousseau. Conformal multi-target regression using neural networks. 9th Symposium on Conformal and Probabilistic Prediction with Applications (COPA 2020), Aug 2020, Verone (virtual), Italy. pp.65-83. ⟨hal-03029473⟩
102 Consultations
483 Téléchargements

Partager

More