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Abstract

Multi-task learning is a domain that is still not fully studied in the conformal prediction
framework, and this is particularly true for multi-target regression. Our work uses inductive
conformal prediction along with deep neural networks to handle multi-target regression
by exploring multiple extensions of existing single-target non-conformity measures and
proposing new ones. This paper presents our approaches to work with conformal prediction
in the multiple regression setting, as well as the results of our conducted experiments.

Keywords: Inductive conformal prediction - Deep neural networks - Multi-target regres-
sion

1. Introduction

Multi-task learning is a natural generalization to single-output supervised learning, where
the objective is to predict multiple outputs from the input features characterizing the data
set. For instance, multi-label classification focuses on having numerous binary outputs
(Zhang and Zhou (2013)) and multi-target regression considers real output values (Borchani
et al. (2015)). As we do in single-target tasks, we can improve a multi-output learning
algorithm by providing an estimate of the confidence to be placed in its predictions. To
achieve this goal, conformal prediction can be applied.

Conformal prediction is a framework that provides partial or set-valued predictions (as
a set of labels in the classification case, and as a prediction interval in the case of single-
target regression) with a statistical guarantee under the assumption that random variables
are exchangeable (a weaker assumption than the i.i.d. one). Initially, conformal prediction
was proposed as a transductive online learning method that performs training, learning and
prediction simultaneously. Then, an extension to the inductive framework was introduced
to learn the model once on the training examples before testing it on future ones. The
principle of inductive conformal prediction for regression and its non-conformity measures
will be recalled in Section 2.

Conformal prediction was used for the specific multi-task learning that is multi-label
classification: Wang et al. (2015) compared three different implementations of multi-label
conformal prediction called instance reproduction, binary relevance and power set. However,
conformal prediction for multi-target regression is still a largely unexplored area. This
paper proposes to examine this aspect of conformal prediction by extending single-output
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regression methods in conformal prediction to the multi-target problem, and come up with
other non-conformity measures for this problem.

Our work uses inductive conformal prediction applied to multi-target regression. We
use neural networks, propose diverse non-conformity measures and conduct experiments
on different multi-target regression data sets. Our approach is described in Section 3.
The experiments and their results are presented in Section 4, where we try various non-
conformity measures inspired from the single-output context of conformal prediction.

2. Conformal prediction

Conformal prediction was originally proposed by Gammerman et al. (1998) as a transductive
online learning framework that produces predictions for each new example from the previous
examples without generating a prediction rule. This method was then adapted to the
inductive approach by Papadopoulos et al. (2002), where a model induced from training
instances is used to produce conformal predictions for the new examples. For more details,
see the book Vovk et al. (2005). This section will briefly present the inductive approach for
regression, which is the groundwork for our paper. It will also review the related work.

2.1. Inductive conformal prediction (ICP) for regression

Let *z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn)+ be successive pairs constituting the
observed training examples, with xi ∈ X an object and yi ∈ R its label. We assume that
the underlying random variables are exchangeable (a weaker condition than the usual i.i.d.,
meaning that our inference does not depend on their order nor change the underlying joint
distribution. Given any new object xn+1 ∈ X, the objective is to predict yn+1 ∈ R. To do
so, the inductive conformal approach consists of the following steps :

1. Split the original training data set Z = *z1, . . . , zn+ into a proper training set Ztr =
*z1, . . . , zl+ and a calibration set Zcal = *zl+1, . . . , zn+, with |Zcal| = n− l = q.

2. Train the chosen machine learning algorithm called the underlying algorithm on Ztr,
and get the non-conformity measure Al. This measure determines how unusual an
example is from a bag of other examples, called the non-conformity score. Thus, for
an example zk and a bag of examples *z1, . . . , zl+, we can calculate the non-conformity
score αk of zk compared to the other examples in the bag, such as:

αk = Al(*z1, . . . , zl+, zk). (1)

3. For each example zi of Zcal, calculate the non-conformity score αi by applying (1) to
get the sequence αl+1, . . . , αn.

4. For a new example xn+1, associate to any possible prediction ŷ its non-conformity
score αŷ

n+1 using the underlying algorithm, and calculate its p-value expressing the
proportion of less conforming examples than zn+1, with:

p(ŷn+1) =
|{i = l + 1, . . . , n, n+ 1 : αi ≥ αŷ

n+1}|
q + 1

. (2)
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5. By considering the desired probability of error ε ∈ (0, 1), called the significance level,
a prediction set can be given at a confidence level of 1 − ε, which is the statistical
guarantee of coverage of the true value yn+1 by this interval, which amounts to provide
every ŷ such that p(ŷ) > ε.

When calculating αŷ
n+1 for each new example xn+1, ŷ is replaced with each possible

label in classification. However, it is not possible in regression to replace it with all possible
values in R. Thus, a prediction interval is instead given by the conformal regressor whose
values depend on the confidence level and on the chosen non-conformity measure.

The two fundamental characteristics desired in conformal regressors are (a) validity,
i.e. the error rate does not exceed ε for each chosen confidence level ε, and (b) efficiency,
meaning prediction sets are as small as possible. Therefore, for two valid regressors, a
smaller prediction interval will be much more informative and useful than a bigger one.

2.2. Non-conformity measures for regression

Many studies that tackle single-output regression focus on non-conformity measures, so as
to treat the issue mentioned above. The most basic non-conformity measure is the absolute
difference between the actual value yi and the predicted value ŷi by the underlying algorithm
as follows:

αi = |yi − ŷi|. (3)

By applying (3) to Zcal, we get the sequence of non-conformity scores and then sort
them in descending order α1, . . . , αq. Then, depending on the significance level ε, we define
the index of the (1 − ε)-percentile non-conformity score, αs, such as s = bε(q + 1)c. Thus,
for each new example xn+1, its prediction interval, covering the true output yn+1 with
probability 1− ε, will be :

(ŷn+1 − αs, ŷn+1 + αs). (4)

Using this standard non-conformity measure means that all prediction intervals have the
same size 2αs. We can improve this by using a normalized non-conformity measure. This
latter provides individual bounds for each example by scaling the standard non-conformity
measure with an additional term σi, which estimates the difficulty of predicting yi, such as:

αi =
|yi − ŷi|
σi

. (5)

In this case, the prediction interval is smaller for ”easy” examples, and bigger for ”hard”
examples, making two different examples with the same αs value using (3) have two distinct
interval predictions determined by their difficulty. Thus, for a new example xn+1, the
prediction interval becomes :

(ŷn+1 − αsσn+1, ŷn+1 + αsσn+1) . (6)

There are a lot of ways to calculate σi. Papadopoulos and Haralambous (2011) propose
to train another model to estimate the error of the underlying model by predicting the value
µi = ln(|yi − ŷi|). In this matter, the non-conformity score is defined as follows :
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αi =
|yi − ŷi|

exp(µi) + β
, (7)

where β ≥ 0 is a sensitivity parameter that controls changes in µi. For a new example xn+1,
the prediction interval is :

(ŷn+1 − αs(exp(µn+1) + β), ŷn+1 + αs(exp(µn+1) + β)) . (8)

Other non-conformity measures proposed by Papadopoulos et al. (2011) use k-nearest
neighbors by calculating two terms λki and ξki . The first one is λki and measures dki , the sum
of the distance of the example zi from its k-nearest neighbors xi1 , . . . , xik , and normalizes
it with the median of all dkj over all training examples, so that we have:

λki =
dki

median(dkj , zj ∈ Ztr)
, (9)

where

dki =
∑k

j=1
δ(xi, xij ), (10)

where δ is a distance.
The second one is ξki and calculates the standard deviation ski of the outputs of the

example k-nearest neighbours, and normalizes it with the median of all standard deviations
skj of all training examples, such as :

ξki =
ski

median(skj , zj ∈ Ztr)
, (11)

where

ski =

√
1

k

∑k

j=1
(yij − yi1...k)2 and yi1...k =

1

k

∑k

j=1
yij . (12)

These two terms are then used to calculate many non-conformity measures, including :

αi =

∣∣∣∣ yi − ŷiexp(γλki )

∣∣∣∣ , (13)

and

αi =

∣∣∣∣ yi − ŷi
exp(γλki ) + exp(ρξki )

∣∣∣∣ , (14)

where γ ≥ 0 and ρ ≥ 0 are sensitivity parameters that control changes in λki and ξki
respectively. For a new example xn+1, the prediction interval is respectively :(

ŷn+1 − αs(exp(γλki )), ŷn+1 + αs(exp(γλki ))
)
, (15)

and (
ŷn+1 − αs(exp(γλki ) + exp(ρξki )), ŷn+1 + αs(exp(γλki ) + exp(ρξki ))

)
. (16)
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2.3. Related work

Conformal prediction for single-output regression has been studied in many papers with
various approaches, such as Ridge regression (Nouretdinov et al. (2001)), regression trees
(Johansson et al. (2018)), k-nearest neighbors (Papadopoulos et al. (2011)) and neural
networks (Papadopoulos and Haralambous (2011)). Other papers discuss alternative ways
to benefit from conformal regressors. For example, Spjuth et al. (2019) aggregates prediction
intervals of multiple and independent sources of training data. ICP regression has also
been adopted in different applications, for instance, drug discovery (Eklund et al. (2015)),
software effort estimation (Papadopoulos et al. (2009)) and student grades (Morsomme and
Smirnov (2019)).

To our knowledge, there are only two papers that address conformal prediction for
multi-target regression. The first one is by Kuleshov et al. (2018), and applies it in order to
get a valid measure of accuracy for Manifold Learning Regression algorithms. This paper
is theoretical and does not present any experiments to test the proposed non-conformity
measure. It is also limited to manifold learning. The second study is by Neeven and Smirnov
(2018) and combines weather forecasting data from different websites on a period of time. To
do so, it introduces a straightforward multi-target extension of the conformal single-output
k-nearest neighbor regressor (CSkNNR) by Papadopoulos et al. (2011). This extension is a
set of m CSkNNR models, one for each target variable Y m, and its final output is the set of
all prediction intervals constructed by each CSkNNR for its related Y m. This work presents
initial results for applying conformal prediction to multi-target regression. However, it
focuses on a single non-conformity measure conducted on one single data set that does not
always respect the exchangeability assumption of conformal prediction. Moreover, applying
m distinctive single-output models on each target Y m deprives the conformal model of
profiting from the possible correlations between the different outputs. In this study, we
make a first step towards accounting for such correlations, at least in the normlization of
intervals.

3. Conformal multi-target regression

When the objective is to use conformal prediction for a multi-target regression with m
targets, the most obvious strategy is to divide the problem into m single-output regression
ones and adopt a separate conformal regressor for each one. This approach is indeed simple
but does not account for the possible interactions that exist between the m targets.

In this work, we explore other extensions to existing non-conformity measures that
take into consideration the possible links between these targets. The first idea is to learn
the normalizing coefficients by a multi-target model. Thus, this latter will exploit the
information coming from training each task and will share representations between related
targets in order to generalize better and give greater performance results (see Ruder (2017)
and Caruana (1993)). The second idea is to use a deep fixed-length representation of
the data that was learned from trying to predict all the targets at once when calculating
the normalizing coefficient in k nearest neighbors based non-conformity measures, thus
embedding the correlation information in the deep network layers.
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3.1. Non-conformity measures (NCMs) for multi-target regression

We extend three existing non-conformity measures in the single-output regression case to
the multi-target regression problem as follows :

• Single : uses the normalized non-conformity measure described in (7) where each µi
is estimated by a single deep neural network trained on each output separately.

• Original k-NN (O-KNN) : adopts the k-nearest neighbors non-conformity measure
(13) based on λki only, with the distances calculated between the original form of the
examples xi.

• Original k-NN with Standard Deviation (OS-KNN) : adopts the k-nearest
neighbors non-conformity measure (14) based on λki and ξki , with the distances calcu-
lated between the original form of the examples xi.

To these existing non-conformity measures, we add three new ones defined as :

• Multi : trains a single deep neural network to estimate the normalizing coefficients
µi in (7) for all outputs at the same time.

• Representation k-NN (R-KNN) : instead of using the original form of the data,
it employs the learned deep representations of the examples extracted from the before
last dense layer of the underlying algorithm’s neural network to compute dki in λki for
the k-nearest neighbors non-conformity measure (13).

• Representation k-NN with Standard Deviation (RS-KNN) : uses the k-
nearest neighbors non-conformity measure (14) with λki and ξki where the learned
deep representations of the examples are used to calculate dki .

3.2. Our approach

Since Transductive Conformal Prediction (TCP) is not computationally efficient when using
deep learning architectures, we use the Inductive Conformal Prediction (ICP) framework
as described in Section 2.1 in order to only train the underlying deep neural network model
once. Hence, we follow these steps :

1. Split the original training set into two smaller subsets: the proper training set and
the calibration set.

2. Use the proper training set to train the underlying algorithm, which is a deep neural
network, and get the output predictions and the representations of each example.

3. For each non-conformity measure, learn the appropriate normalizing algorithm (deep
neural network for ”single” and ”multi” NCMs, and kNN on the original examples
for ”O-KNN” and ”OS-KNN” NCMs and their representations for ”R-KNN” and
”RS-KNN” NCMs) using the proper training set.

4. Compute the non-conformity scores for each non-conformity measure by using the
calibration set.
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5. For each example in the test set, predict ŷ and its representation using the underlying
neural network, calculate its non-conformity score, and compute its interval prediction
depending on the significance level ε for each non-conformity measure.

This approach is executed for different non-conformity measures and for various values
of ε in order to measure the performance of each approach, and verify its validity and
efficiency.

4. Evaluation

In this section, we describe the experimental setting (underlying algorithm, data sets and
performance metrics) and the results of our study.

4.1. Experiments

Since we are working with neural networks, we normalize all the features and targets to
have a mean of 0 and a standard deviation of 1 as a preprocessing step since it makes
the deep neural network optimization easier. Then, we conduct all our experiments with
10-folds cross validation, meaning that each data set is split into 10 equally-sized folds and
the experiments are repeated for each k fold as the test set and the remaining k − 1 sets
as the training set. This procedure is necessary in order to eliminate biased results caused
by a specific split of the data or the examples chosen in the calibration set. The results are
thus averaged on all 10 folds.

The overall focus of this paper is to compare between the different non-conformity
measures presented above. Thus, for all experiments on all data sets, we keep the same
amount of examples in the calibration set, which is 10% of the training examples. We also
do not optimize the sensitivity parameters for each data set and use the same values, which
are β = 0.1 for ”single” and ”multi” NCMs, and γ = ρ = 0.5 for the remaining NCMs.
Moreover, we keep the same underlying machine learning algorithm for all experiments,
which is a deep neural network. Its architecture is as follows :

• Apply a dense layer to the input (with the number of the continuous features and the
number of one hot values for the categorical features), with ”selu” activation (scaled
exponential linear units Klambauer et al. (2017)).

• Add three other hidden dense layers with dropouts and ”selu” activation.

• Add a dense layer with ”selu” activation and use it as a feature extractor to produce
a representation vector with a fixed size.

• Add a final dense layer with m neurons representing the targets and a linear activation
to get the outputs predicted by the model.

The results of this deep neural architecture will enable us to calculate values of the
normalizing coefficients for the corresponding non-conformity measure :

• µi : estimate the error ln(|yi − ŷi|) which will be learned by the normalizing neural
network for each target separately in the case of ”single” non-conformity measure, or
at once in the case of ”multi” non-conformity measure.
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• λki and ξki : use the deep representations of each example to compute dki for the
k-nearest neighbors based non conformity measures ”R-KNN” and ”RS-KNN”.

4.1.1. Performance metrics

In order to adapt the conformal framework to the multi-target regression problem, we
calculate all performance measures on a set of hyper-cube predictions such as :

[ŷi] = ×m
j=0[ŷ

j
i
, ŷ

j
i ], (17)

where × is a Cartesian product, m is the number of targets and ŷj
i
, ŷ

j
i are respectively the

lower and upper bounds of the interval predictions given by the non-conformity measure

for each target in Y m. This hyper-cube has a volume of
∏t

j=0(ŷ
j − ŷj).

Efficiency is mainly based on the tightness of the hyper-cube’s volume. This verification
is done by calculating the median volume instead of the mean volume in order to avoid the
impact of outlier interval predictions for each target, especially as these extreme values can
be much more amplified when calculating the hyper-cube volume.

Validity is calculated based on the accuracy, i.e. checking whether the observation
yi ∈ [ŷi] or not depending on ε value. In the single-output case, the confidence level 1 − ε
is easily verified by checking whether the real output value is in the interval prediction.
However, this is harder in the multi-target case, as ε is used as a probability error for each
target m, and a correctly predicted example must have all of its m observed values yj in the
corresponding interval predictions for each target. In this case, the actual confidence level
of the hyper-cube corresponding to ε is equal to (1 − ε)m. Hence, we need to differentiate
between εt corresponding to the actual significance level for each target and εh, that of the
hyper-cube. To adapt the conformal prediction framework to the multi-target regression
problem, we can calculate the value of εt that should be used in order to obtain εh, so as
to get an overall confidence level of the hyper-cube 1 − εh. This corrected εt is defined as
follows :

εt = 1− m
√

1− εh, (18)

and our experiments focus on this corrected validity measure.

4.1.2. Data sets

We use eleven data sets with various numbers of targets to examine the effectiveness of the
conformal method in the case of multi-target regression. Their information is summarized
in Table 1.

4.2. Results

To motivate the choice of using a corrected validity measure to estimate the performance of
our non-conformity measures, we show the results of the empirical validity for each target
of the music origin data set, as well as its uncorrected hyper-cube validity in Figure 1.
The results show that for each target, the calibration validity is reached or surpassed by
all non-conformity measures. However, when computing the validity for the hyper-cube,
the performance of the conformal predictors for multi-target regression (computed without
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Names Examples Features Targets Source

enb 768 8 2 Mulan (Tsanas and Xifara (2012))

music origin 1059 68 2 UCI (Zhou et al. (2014))

indoor localization 21049 520 3 UCI (Torres-Sospedra et al. (2014))

scpf 1137 23 3 Mulan (Kaggle (2013))

sgemm 241600 14 4 UCI (Nugteren and Codreanu (2015))

rf1 9125 64 8 Mulan (Tsoumakas et al. (2011))

rf2 9125 576 8 Mulan (Tsoumakas et al. (2011))

wq 1060 16 14 Mulan (Džeroski et al. (2000))

scm1d 9803 280 16 Mulan (Tsoumakas et al. (2011))

scm20d 8966 61 16 Mulan (Tsoumakas et al. (2011))

community crime 2215 125 18 UCI (Redmond (2011))

Table 1: Information on the used multi-target regression data sets.

correction) is less than the calibration line, due to the observation made earlier. This proves
the utility of using the corrected validity measure to compute the actual values of εt to verify
a 1− εh confidence level on all the hyper-cube for each εh.
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Figure 1: Results per target for music origin.

The results of the corrected empirical validity and median hyper-cube volumes for all
data sets are shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Note that for data
sets with more than 4 targets, we use a logarithmic scale to plot the median volume, as
hyper-cube volumes quickly decrease when decreasing the required confidence.

In the case of validity, the results of the empirical validity plots (figure (a) for each data
set) show that using corrected values of εt confirm the validity of conformal predictors in
the case of multi-target regression. For ”enb”, ”music origin” and ”indoor localization”,
this validity is close to the calibration line. For the other data sets, the validity is better
that the confidence level defined by εh values, indicating that the correction may be too
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Figure 2: Results for enb.
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Figure 3: Results for music origin.
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Figure 4: Results for indoor localization.
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Figure 5: Results for scpf.
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Figure 6: Results for sgemm.
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Figure 7: Results for rf1.
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Figure 8: Results for rf2.
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Figure 9: Results for wq.
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Figure 10: Results for scm1d.
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Figure 11: Results for scm20d.
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Figure 12: Results for community crime.

strong, perhaps due to interactions between the targets. All NCMs seem to perform well
on all data sets, without any obvious best non-conformity measure for all data sets.

In the case of efficiency, the results of the median hyper-cube volume (figure (b) for
each data set) show that the overall volume decreases with the number of targets. This
can be explained by the fact that when εh grows, the confidence level becomes small, which
means that we allow for smaller prediction intervals (as we approach a point prediction),
and therefore the conformal regressor tends to give prediction intervals that are smaller
and smaller for each target (values less than 1). Then after multiplying these intervals to
compute the volume, we find that the hyper-cube volume approaches 0 faster when m is
large (which justifies the use of a logarithmic scale for data sets with more than 4 targets).

For all data sets except scm1d and enb, for which results are more ambiguous, we observe
that using a ”multi” NCM gives predictions with tighter volumes compared to a ”single”
NCM (comparing Single with Multi, O-KNN with R-KNN and OS-KNN with RS-KNN).
The magnitude of this improvement however depends on both the methods and the data set.
For instance, it is large for every method in community crime (Figure 12), only for Multi in
rf1 (Figure 7), and only for the k-NN approaches in Indoor localization (Figure 4). We also
notice that the ”RS-KNN” is in most cases the best non-conformity measure among the ones
based on k-nearest neighbors, which shows the advantage of using a deep representation
of the examples instead of their original form. However, we cannot observe a best NCM
overall as the results differ from one data set to another.

4.3. Computation time

During the experiments, we also computed the time taken in seconds for each non-conformity
measure to train and predict for each fold on all data sets. Note that since ”O-KNN” and

15



Conformal multi-target regression using neural networks

”OS-KNN”(respectively ”R-KNN” and ”RS-KNN”) share the same values of parameter λki ,
the training of the k-NN is done at the same time for both of them. Thus, the computation
time is grouped for both of them. The results of these computation times averaged on 10
folds are shown in the Table 2.

Single Multi O/OS-KNN R/RS-KNN

enb 19.18 11.23 0.1 0.24

music origin 39.2 19.78 0.13 0.31

indoor localization 140.64 53.64 33.85 2.19

scpf 30.41 15.88 0.17 0.3

sgemm 2831.4 729.09 33.89 31.12

rf1 124.46 93.12 1.91 2.15

rf2 274.16 96.56 2.36 2.23

wq 187.13 49.31 0.7 0.88

scm1d 245.47 22.28 7.13 4.25

scm20d 193.92 23.54 4.06 4.14

community crime 239.56 45.9 1.38 1.51

Table 2: Average computation time in seconds per NCM for all data sets.

From these results, the non-conformity measures based on k-nearest neighbors ”O/OS-
KNN” and ”R/RS-KNN” have similar computation time, showing that using the original
form of the examples or a deep representation of them does not affect the computation time.
However, when comparing ”single” to ”multi” non-conformity measures, we notice that the
first one is much slower than the second one, with an increasing difference between them
as the number of targets m grows. This is due to the fact that the ”single” NCM needs to
train additional m−1 models compared to the ”multi” NCM, with each time corresponding
to a training done on one single target separately. This shows another advantage of using
a ”multi” NCM approach instead of a ”single” one.

5. Conclusion

In this paper, we applied inductive conformal prediction to multi-target regression using
deep neural networks. We extended non-conformity measures from the single-output regres-
sion problem to the multi-target regression case and proposed new non-conformity measures.
We also introduced a corrected significance level calculation for the whole output space in or-
der to compute the necessary significance levels for each target to get the overall confidence
level. We then performed an empirical study on various data sets, with results showing
that our new non-conformity measures generally outperform the existing ones. These re-
sults show that using a multi-target non-conformity measure instead of a single-target one
is better with regards to the efficiency and complexity time. They also show that using a
deep representation of the examples instead of the original form of the data in the distance
calculation of k-NN based non-conformity measures is better when it comes to prediction
tightness.
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This study is an introductory study of the application of conformal prediction framework
to the multi-target regression setting. Our future work will further explore the theoretical
definition of non-conformity measures in the multivariate space.
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