On estimation and feedback control of spin-1/2 systems with unknown initial states
Résumé
In this paper, we consider stochastic master equations describing the evolutions of quantum systems interacting with electromagnetic fields undergoing continuous-time measurements. In particular, we study feedback control of quantum spin-1/2 systems in the case of unawareness of initial states and in presence of measurement imperfections. We prove that the fidelity between the actual quantum filter and its associated estimated filter converges to one under appropriate assumption on the feedback controller. This shows the asymptotic convergence of such filters. In addition, for spin-J systems, we discuss heuristically the asymptotic behavior of the actual quantum filter and its associated estimated filter and the possibility of exponentially stabilizing such systems towards an eigenvector of the measurement operator by an appropriate feedback.
Domaines
Optimisation et contrôle [math.OC]Origine | Fichiers produits par l'(les) auteur(s) |
---|