Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems - Archive ouverte HAL Access content directly
Conference Papers Year : 2019

Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems

Ihab Haidar
Yacine Chitour
Paolo Mason

Abstract

In this paper, we provide two converse Lyapunov theorems in the framework of nonlinear infinite-dimensional switching systems. Our results characterize uniform exponential stability with respect to the switching law through the existence of both coercive and non-coercive Lyapunov functionals. The starting point for our arguments is a generalization of the well-known Datko lemma to the case of nonlinear infinite-dimensional switching systems.
Fichier principal
Vignette du fichier
CDC19-HCMS_Final.pdf (216.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03015442 , version 1 (19-11-2020)

Identifiers

Cite

Ihab Haidar, Yacine Chitour, Paolo Mason, Mario Sigalotti. Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems. 58th IEEE Conference on Decision and Control (CDC 2019), Dec 2019, Nice, France. pp.587-592, ⟨10.1109/CDC40024.2019.9029498⟩. ⟨hal-03015442⟩
61 View
163 Download

Altmetric

Share

Gmail Facebook X LinkedIn More