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Converse Lyapunov theorems for infinite-dimensional nonlinear
switching systems

Ihab Haidar, Yacine Chitour, Paolo Mason and Mario Sigalotti

Abstract— In this paper, we provide two converse Lya-
punov theorems in the framework of nonlinear infinite-
dimensional switching systems. Our results characterize
uniform exponential stability with respect to the switching
law through the existence of both coercive and non-coercive
Lyapunov functionals. The starting point for our argu-
ments is a generalization of the well-known Datko lemma
to the case of nonlinear infinite-dimensional switching
systems.

Index Terms— infinite-dimensional systems, nonlinear
systems, switching systems, converse Lyapunov theorems.

I. INTRODUCTION
To deal with stability issues of switching systems

many approaches based on Lyapunov techniques have
been developed. In particular many sufficient conditions
for stability are based on the existence of multiple
Lyapunov functions (see e.g. [1]) or common Lyapunov
functions (see e.g. [3]). For linear finite-dimensional
switching systems, it is well known that the existence of
a common Lyapunov function is a necessary and suffi-
cient condition for their uniform asymptotic stability [3].
The extension of such a result to infinite-dimensional
linear systems has been done in [7]. To the best of our
knowledge, the uniform exponential stability of infinite-
dimensional nonlinear switching systems has not yet
been developed in the literature.

Various works have been recently devoted to the
characterization of the stability of infinite-dimensional
systems in Banach space X through non-coercive Lya-
punov functionals (see, e.g., [5], [7], [10], [11] and
[12]). By non-coercive Lyapunov functional, we simply
mean a positive definite functional decaying along the
trajectories of the system which satisfies

0 < V (x) ≤ α(‖x‖), ∀x ∈ X\{0}, (1)
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where α ∈ K∞, the class of continuous increasing
bijections from R+ to R+. Such a function V would
be coercive if there would exists α0 ∈ K∞ such that
V (x) ≥ α0(‖x‖), for x ∈ X . In the literature, Lyapunov
functionals satisfying (1) are equivalently called weakly-
degenerate (see, e.g., [5]). Recall, from [2], that the
exponential stability of a linear C0-semigroup (T (t))t≥0
on a complex Hilbert space H is equivalent to the
existence of a positive Hermitian endomorphism B on H
such that the relation 2<(BAx, x) = −‖x‖2 holds for
every x in the domain of A, the infinitesimal generator
of the semigroup (T (t))t≥0. In this case, we have

(Bx, x) =

∫ +∞

0

‖T (t)x‖2dt, ∀x ∈ H, (2)

and, as reported in [13], the functional V : X →
R+ defined by V (x) = (Bx, x) is in general a non-
coercive Lyapunov functional, i.e.,

√
V is not necessarily

equivalent to a norm on H since there does not exist in
general a positive real number c such that∫ +∞

0

‖T (t)x‖2dt ≥ c‖x‖2, ∀x ∈ H. (3)

Of course, in the case of finite-dimensional spaces,
an exponential stable linear semigroup (T (t))t≥0 is
given by (etA)t≥0 with A Hurwitz and hence inequal-
ity (3) holds true. A complete characterization of C0-
semigroups defining a norm on H is given in [13].

Another interesting point resulting from [2] is the
well-known Datko lemma which characterizes the
asymptotic behavior of a linear C0-semigroup (T (t))t≥0
on a Hilbert space H through the convergence of the
integral term given by equation (2). More precisely, the
linear C0-semigroup (T (t))t≥0 is globally exponentially
stable if and only if, for every x ∈ H , the integral in (2)
is convergent. Datko’s lemma still holds true in a general
Banach space, as proved in [13]. This result is extended
in [8] to the framework of nonlinear semigroups with
the only difference that the nonlinear semigroup needs
to satisfy the following boundedness property

‖T (t)x‖ ≤ g(t)‖x‖, ∀t ≥ 0,∀x ∈ X, (4)



for some positive and continuous function g (a con-
dition which is automatically satisfied for linear C0-
semigroups [14]).

In this work we generalize Datko’s lemma to the case
of infinite dimensional nonlinear switching systems in
Banach space, combining the approaches of [7], [8],
and [16]. The paper [8] provides a nonlinear version
of Datko’s lemma, while [7] and [16] deal with linear
switching systems. Thanks to such a generalization, we
prove that the existence of non-coercive and coercive
Lyapunov functionals is necessary and sufficient for the
uniform global exponential stability. The result dealing
with a non-coercive Lyapunov functional is better suited
to derive a stability result, while the result dealing with a
coercive Lyapunov functional provides more information
on a nonlinear switching system that is known to be
globally uniformly exponentially stable, by tightening
the properties satisfied by the Lyapunov functional. The
main difference with respect to the characterization
provided in [12] is that we focus here on necessary and
sufficient conditions for exponential stability, rather than
asymptotic stability. Converse Lyapunov theorems are
helpful tools in the analysis of interconnected systems
(such as in [6]) and input-to-state stability (see, e.g., [9]
and [15]), for example.

The paper is organized as follows. Section II presents
the list of notations and definitions in use. In Sec-
tion III, we extend Datko’s lemma to nonlinear switching
systems. A first converse theorem with non-coercive
Lyapunov functional is given in Section IV and a second
converse theorem with coercive Lyapunov functional is
given in Section V.

II. NOTATIONS AND DEFINITIONS

By (X, ‖ · ‖), we denote a Banach space with norm
‖ · ‖ and by BX(0, r) the closed ball of center 0 and
radius r ≥ 0. We use R+ and R?+ to denote the set
of non-negative real numbers and positive real numbers
respectively and we set R = R ∪ {±∞}. Let Q be a
nonempty index set. We denote by S the set of piecewise
constant switching signals σ : R+ → Q. For all σ ∈ S
and all τ ≥ 0, the τ -shifted signal στ ∈ S is defined as
στ (s) = σ(τ + s).

We next give the definition of a strongly continuous
nonlinear semigroup on a Banach space X .

Definition 1: Let T (t) : X → X , t ≥ 0, be a family
of nonlinear maps. We say that (T (t))t≥0 is a strongly
continuous nonlinear semigroup if the following holds1

i) ∀ x ∈ X , T (0)x = x;

1Following the classical notation in nonlinear semigroup theory we
use T (t)x to denote the evaluation of the map T (t) at x.

ii) ∀ t1, t2 ≥ 0, T (t1)T (t2)x = T (t1 + t2)x;
iii) for each x ∈ X the map t 7→ T (t)x is continuous.

Let σ ∈ S. More precisely, assume that σ ≡ σk on
[tk, tk+1), where (tk)k≥0 is an increasing sequence with
t0 = 0 and σk ∈ Q for k ≥ 0. With each σk we
associate the strongly continuous nonlinear semigroup
(Tσk(t))t≥0. By concatenating the flows (Tσk(t))t≥0,
one can associate with σ the nonlinear evolution operator

Tσ(·)(t) := Tσk(t− tk)Tσk−1
(tk − tk−1) · · ·Tσ0

(t1),

for all t ∈ [tk, tk+1). The evolution operator(
Tσ(·)(t)

)
t≥0 just introduced identifies the switching

nonlinear system in X{
x(t) = Tσ(·)(t)x0,

x0 ∈ X.
(Σ)

With the previous notations, we have the following
concatenation property

Tσ(·)(t)x = Tστ (·)(t− τ)Tσ(·)(τ)x, (5)

for all σ ∈ S, 0 ≤ τ ≤ t and x ∈ X .
The notion of uniform Lipschitz continuity of the

flow with respect to initial conditions is given by the
following definition.

Definition 2: We say that the flow of Σ is uniformly
(with respect to (t, σ)) Lipschitz on bounded subsets of
X , if for any r > 0 there exists Lr > 0 such that
∀x, y ∈ BX(0, r),∀t ≥ 0,∀σ ∈ S, we have

‖Tσ(·)(t)x− Tσ(·)(t)y‖ ≤ Lr‖x− y‖.
The notion of uniform (with respect to the switching

signals) global exponential stability is given by the
following definition.

Definition 3: We say that the system Σ is 0-UGES if
there exist M,λ > 0 such that

‖Tσ(·)(t)x‖ ≤Me−λt‖x‖, ∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S.
(6)

We also need the following definition of the Dini
derivatives of a continuous functional V : X → R+.

Definition 4: Consider the system Σ. For a contin-
uous functional V : X → R+, its upper and lower
Dini derivatives, denoted by DqV : X → R and
DqV : X → R respectively, are defined for x ∈ X
and q ∈ Q, by

DqV (x) = lim sup
h→0+

1

h
(V (Tq(h)x)− V (x)) ,

and

DqV (x) = lim inf
h→0+

1

h
(V (Tq(h)x)− V (x)) .



III. DATKO’S TYPE THEOREM FOR NONLINEAR
SWITCHING SYSTEMS

In this section, we extend Datko’s lemma [2], to the
nonlinear switching infinite-dimensional system Σ.

Theorem 5: Consider the switching system Σ. Let
g : R+ → R?+ be a continuous function, bounded from
below by a positive constant, such that

‖Tσ(·)(t)x‖ ≤ g(t)‖x‖, ∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S.
(7)

The following statements are equivalent:
i) The system Σ is 0-UGES,
ii) for every p > 0, there exists k > 0 such that,

for all x ∈ X and all σ ∈ S, we have∫ +∞

0

‖Tσ(·)(t)x‖
p
dt ≤ kp‖x‖p,

iii) there exist p, k > 0 such that, for all x ∈ X
and all σ ∈ S we have∫ +∞

0

‖Tσ(·)(t)x‖
p
dt ≤ kp‖x‖p. (8)

Proof: By using Definition 3, one deduces that i)
implies ii) with kp = Mp

λp . Moreover, ii) clearly implies
iii). It then remains to prove that iii) implies i), which
is proved in three steps. We first show that there exists
C > 0 such that

‖Tσ(·)(t)x‖ ≤ C‖x‖, ∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S.

We then prove that, for each 0 < c < 1, there exists a
t0 = t0(c) such that

‖Tσ(·)(t)x‖ ≤ c‖x‖, ∀ t ≥ t0,∀ x ∈ X,∀ σ ∈ S.

The concatenation property (5) together with the previ-
ous inequality conclude the proof.

Let (x, σ) in X ×S. For each t ≥ 0, it follows, from
Definition 1 and inequalities (7) and (8), that

‖Tσ(·)(t)x‖p
∫ t

0

1

gp(τ)
dτ

=

∫ t

0

‖Tσ(·)(t)x‖p
1

gp(t− τ)
dτ

=

∫ t

0

‖Tστ (·)(t− τ)Tσ(·)(τ)x‖p 1

gp(t− τ)
dτ

≤
∫ t

0

‖Tσ(·)(τ)x‖pdτ ≤ kp‖x‖p. (9)

Define k1 by

kp1 =

∫ 1

0

1

gp(τ)
dτ > 0.

We observe that, for any t ≥ 1,

kp1 ≤
∫ t

0

1

gp(τ)
dτ. (10)

We deduce from (9) and (10) that

‖Tσ(·)(t)x‖ ≤
k

k1
‖x‖, ∀ t ≥ 1.

Combining with (7) it follows that

‖Tσ(·)(t)x‖ ≤ C‖x‖, ∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S,
(11)

where

C = max

{
sup
t∈[0,1]

g(t),
k

k1

}
.

Now, let t > 0 and (x, σ) be fixed in X × S. We have,

t‖Tσ(·)(t)x‖p =

∫ t

0

‖Tσ(·)(t)x‖pdτ

=

∫ t

0

‖Tστ (·)(t− τ)Tσ(·)(τ)x‖pdτ

≤ Cp
∫ t

0

‖Tσ(·)(τ)x‖pdτ ≤ (kC)p‖x‖p.

It follows that

‖Tσ(·)(t)x‖ ≤
kC

t1/p
‖x‖.

So, for each 0 < c < 1, there exists t0 = t0(c) > 0 such
that

‖Tσ(·)(t)x‖ ≤ c‖x‖, ∀ t ≥ t0,∀ x ∈ X,∀ σ ∈ S.

Now, let t ≥ 0 be fixed. There exists an integer n ≥ 0
such that t = nt0 + s, with 0 ≤ s < t0. We have

‖Tσ(·)(t)x‖ = ‖Tσnt0 (·)(s)Tσ(·)(nt0)x‖
≤ C‖Tσ(·)(nt0)x‖ ≤ Ccn‖x‖
≤Me−λt‖x‖, (12)

with M = C
c and λ = − 1

t0
ln (c) > 0.

Remark 6: Without loss of generality one may re-
place g(t) in (7) by an exponential function. Indeed, by
the concatenation property (5), it is easy to see that (7)
implies

‖Tσ(·)(t)x‖ ≤Meλt‖x‖, ∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S,
(13)

with M = maxs∈[0,1] g(s) and λ = max{0, log(g(1))}.
Notice that inequality (13) is a strong requirement on the
switching system S. Even in the linear case, and even if
each mode satisfies (13), uniformly with respect to the
mode, it does not follow that a similar exponential bound
holds for the corresponding switching system, cf. [7,
Example 1].



IV. FIRST CONVERSE THEOREM

In this section, we give our main result which states
that the origin of an infinite-dimensional nonlinear
switching system on a Banach space is uniformly glob-
ally exponentially stable if and only if it admits a non-
coercive Lyapunov function.

Theorem 7: Consider the nonlinear switching sys-
tem Σ, with a flow which is uniformly Lipschitz on
bounded subsets of X . The system Σ is 0-UGES if and
only if the following conditions hold:

i) there exists a continuous function g : R+ → R?+,
bounded from below by a positive constant, such
that for all t ≥ 0 and for all x ∈ X ,

‖Tσ(·)(t)x‖ ≤ g(t)‖x‖, ∀σ ∈ S; (14)

ii) there exist a functional V : X → R+, Lipschitz on
bounded subsets of X , and p, c > 0 such that

V (x) ≤ c‖x‖p, ∀ x ∈ X, (15)

and

DqV (x) ≤ −‖x‖p, ∀ x ∈ X,∀ q ∈ Q. (16)

Proof: Assume that conditions i) and ii) hold. Let
x ∈ X and σ ∈ S . For t ≥ 0 small enough so that the
restriction of σ to the interval [0, t] is constantly equal
to q ∈ Q, we have from inequality (16) that

DqV (Tσ(·)(t)x) ≤ −‖Tσ(·)(t)x‖p,

which implies that (see [4, Theorem 9])

V (Tσ(·)(t)x) ≤ V (x)−
∫ t

0

‖Tσ(·)(τ)x‖pdτ. (17)

Inequality (17), together with (15), yields∫ t

0

‖Tσ(·)(τ)x‖pdτ ≤ c‖x‖p.

Thus, for all x ∈ X and all σ ∈ S, we have∫ ∞
0

‖Tσ(·)(τ)x‖pdτ ≤ c‖x‖p, (18)

which implies, thanks to Theorem 5, the uniform global
exponential stability of system Σ.

Conversely, assume that system Σ is 0-UGES. Thus,
(14) holds with g(t) = Me−λt, for some positive
constants M and λ. Define the functional V : X → R+

by

V (x) = sup
σ∈S

∫ ∞
0

‖Tσ(·)(t)x‖2dt, x ∈ X. (19)

Thanks to the uniform exponential stability of Σ, the
functional V is well defined. Let us prove ii) with p = 2.
It is clear that in this case inequality (15) holds true with

c = M2

∫ ∞
0

e−2λtdt =
M2

2λ
.

Let us now prove (16). For this, let us define, for each
fixed h > 0, and each q fixed in Q the set

Sh,q = {σ ∈ S : σ ≡ q over [0, h]},

i.e., the set of switching signals whose restriction to the
interval [0, h] is constantly equal to q. Hence,

V (x) = sup
σ∈S

∫ +∞

0

‖Tσ(·)(t)x‖2dt

= sup
σ∈S

(∫ h

0

‖Tσ(·)(t)x‖2dt+

∫ +∞

h

‖Tσ(·)(t)x‖2dt

)

≥ sup
σ∈Sh,q

(∫ h

0

‖Tσ(·)(t)x‖2dt+

∫ +∞

h

‖Tσ(·)(t)x‖2dt

)

=

∫ h

0

‖Tq(t)x‖2dt+ sup
σ∈Sh,q

∫ +∞

h

‖Tσ(·)(t)x‖2dt.

(20)

Furthermore, we have

V (Tq(h)x) = sup
σ∈S

∫ +∞

0

‖Tσ(·)(t)Tq(h)x‖2dt

= sup
σ∈S

∫ +∞

h

‖Tσ(·)(t− h)Tq(h)x‖2dt

= sup
σ∈Sh,q

∫ +∞

h

‖Tσ(·)(t)x‖2dt. (21)

Thus, (20) and (21) yields the inequality

V (Tq(h)x)− V (x)

h
≤ − 1

h

∫ h

0

‖Tq(t)x‖2dt.

Therefore, for each x ∈ X and each fixed q ∈ Q, it
follows that

DqV (x) = lim inf
h→0+

V (Tq(h)x)− V (x)

h

≤ lim sup
h→0+

V (Tq(h)x)− V (x)

h

≤ lim sup
h→0+

1

h

(
−
∫ h

0

‖Tq(t)x‖2dt

)

≤ − lim inf
h→0+

1

h

(∫ h

0

‖Tq(t)x‖2dt

)
= −‖x‖2, (22)

establishing (16), with p = 2.



Finally, we prove that the functional V is Lipschitz
on bounded subsets of X . For this, let r be any positive
real and let x, y ∈ BX(0, r). We have

|V (x)− V (y)| =∣∣∣∣sup
σ∈S

∫ ∞
0

‖Tσ(·)(t)x‖2dt− sup
σ∈S

∫ ∞
0

‖Tσ(·)(t)y‖2dt
∣∣∣∣

≤
∣∣∣∣sup
σ∈S

(∫ ∞
0

‖Tσ(·)(t)x‖2dt−
∫ ∞
0

‖Tσ(·)(t)y‖2dt
)∣∣∣∣

≤ sup
σ∈S

∣∣∣∣∫ ∞
0

‖Tσ(·)(t)x‖2dt−
∫ ∞
0

‖Tσ(·)(t)y‖2dt
∣∣∣∣

≤ sup
σ∈S

∫ ∞
0

∣∣‖Tσ(·)(t)x‖2 − ‖Tσ(·)(t)y‖2∣∣ dt. (23)

Using the 0-UGES of Σ together with the fact that the
flow is uniformly Lipschitz on bounded subsets of X , it
follows, from (23), that

|V (x)− V (y)|

≤ sup
σ∈S

∫ ∞
0

(
‖Tσ(·)(t)x‖+ ‖Tσ(·)(t)y‖

)
(
‖Tσ(·)(t)x‖ − ‖Tσ(·)(t)y‖

)
dt

≤ 2Mr sup
σ∈S

∫ ∞
0

e−λt‖Tσ(·)(t)x− Tσ(·)(t)y‖dt

≤ 2MrLr

∫ ∞
0

e−λt‖x− y‖dt

= 2
M

λ
rLr‖x− y‖.

This implies that the functional V is Lipschitz on
bounded subsets of X .

V. SECOND CONVERSE THEOREM

We prove in this section a second converse Lyapunov
theorem stating that the origin of an infinite-dimensional
nonlinear switching system on a Banach space is uni-
formly globally exponentially stable if and only if there
exists a coercive Lyapunov function for this system.

Theorem 8: Consider the nonlinear switching system
Σ, with a flow which is uniformly Lipschitz on bounded
subsets of X . The system Σ is 0-UGES if and only if
there exists a functional V : X → R+, Lipschitz on
bounded subsets of X , and positive reals p, c and c
such that

c‖x‖p ≤ V (x) ≤ c‖x‖p, ∀ x ∈ X, (24)

and

DqV (x) ≤ −‖x‖p, ∀ x ∈ X,∀ q ∈ Q. (25)
Proof: We prove first the sufficiency part. Assume

the existence of a continuous functional V : X → R+

satisfying inequalities (24) and (25), with positive reals

p, c and c. Then, for all x ∈ X , σ ∈ S and t ≥ 0, using
inequality (25) we obtain (see [4, Theorem 9])

V (Tσ(·)(t)x) ≤ V (x)−
∫ t

0

‖Tσ(·)(τ)x‖pdτ,

from which we obtain, using inequality (24), the follow-
ing

‖Tσ(·)(t)x‖p ≤
c

c
‖x‖p,∀t ≥ 0,∀x ∈ X,∀σ ∈ S. (26)

Thus, the exponential boundedness property given by
equation (7) is satisfied with g(t) ≡ (c/c)

1/p. By
consequence, from the sufficiency part of Theorem 7,
it follows that

‖Tσ(·)(t)x‖ ≤Me−λt‖x‖,∀ t ≥ 0,∀ x ∈ X,∀ σ ∈ S,

for some positive M,λ.
Let us prove now the necessity part. Assume that the

system Σ is 0-UGES and let M > 0, λ > 0 be such
that the inequality (6) holds. Choose γ > 0 such that
2γ − λ < 0. Without loss of generality, we can suppose
that M is sufficiently large in such a way that we have
γ > 1/2M2. Let V : X → R+ be the functional defined
by

V γ(x) = sup
σ∈S

sup
t≥0
‖eγtTσ(·)(t)x‖2, x ∈ X. (27)

Thanks to the uniform exponential stability of Σ, the
functional V is well defined. Let us check inequali-
ties (24) and (25). The right-hand inequality in (24)
follows directly from the 0-UGES assumption with
c = M2. The left-hand inequality in (24) holds, with
c = 1. Concerning inequality (25), observe that for all
h ≥ 0, x ∈ X and for any q ∈ Q we have

V γ(Tq(h)x) = sup
σ∈S

sup
t≥0
‖eγtTσ(·)(t)Tq(h)x‖2

= e−2γh sup
σ∈S

sup
t≥0
‖eγ(t+h)Tσ(·)(t)Tq(h)x‖2

≤ e−2γh sup
σ∈S

sup
t≥0
‖eγ(t+h)Tσ(·)(t+ h)x‖2

≤ e−2γh sup
σ∈S

sup
t+h≥0

‖eγ(t+h)Tσ(·)(t+ h)x‖2

= e−2γhV γ(x). (28)

Therefore, for all x ∈ X and any q ∈ Q, it follows that

DqV
γ(x) = lim sup

h→0+

V γ(Tq(h)x)− V γ(x)

h

≤ lim sup
h→0+

e−2γh − 1

h
V γ(x)

≤ lim sup
h→0+

e−2γh − 1

h
M2‖x‖2

= −2γM2‖x‖2 ≤ −‖x‖2, (29)



which implies that inequality (25) holds, with p = 2.

Let us prove that the functional V γ is Lipschitz on
bounded subsets of X . For this, let r be any positive
real and let x, y ∈ BX(0, r). We have

|V γ(x)− V γ(y)| =∣∣∣∣sup
σ∈S

sup
t≥0
‖eγtTσ(·)(t)x‖2 − sup

σ∈S
sup
t≥0
‖eγtTσ(·)(t)y‖2

∣∣∣∣
≤ sup
σ∈S

sup
t≥0

∣∣‖eγtTσ(·)(t)x‖2 − ‖eγtTσ(·)(t)y‖2∣∣ , (30)

from which we obtain, using the fact that 2γ − λ < 0,
the following inequalities

|V γ(x)− V γ(y)|
≤ 2Mr sup

σ∈S
sup
t≥0
‖Tσ(·)(t)x− Tσ(·)(t)y‖

≤ 2MrLr‖x− y‖. (31)

This implies that the functional V γ is Lipschitz on
bounded subsets of X .

Remark 9: The construction of the Lyapunov func-
tional (27), given in the proof of Theorem 8, is based on
the classical construction given in [14] in the context of
linear C0-semigroups. This is also used in [10] in order
to construct a coercive ISS Lyapunov functional for
bilinear infinite-dimensional systems with bounded input
operators. An alternative construction of a coercive com-
mon Lyapunov functional can be given, starting from the
non-coercive Lyapunov functional given by (19), by the
following

V (x) = sup
σ∈S

∫ ∞
0

‖Tσ(·)(t)x‖2dt+sup
σ∈S

sup
t≥0
‖Tσ(·)(t)x‖2,

which guarantees that V is the square of a norm; in this
case the right-hand inequality in (24) follows directly
from the 0-UGES assumption with c = M2 (1 + 1/2λ),
and the left-hand inequality in (24) holds, with c = 1,
for t = 0.

VI. CONCLUSION

In this paper, we establish two converse Lyapunov
theorems regarding global uniform exponential stabil-
ity of nonlinear infinite-dimensional switching systems.
In the first result we prove the existence of a non-
coercive Lyapunov functional while the second result
uses a coercive Lyapunov functional. A common tool
for the arguments of two theorems is a generalization of
the well-known Datko lemma to the case of nonlinear
infinite-dimensional switching systems. Further work in
the context of nonlinear infinite-dimensional switching
systems will address issues such as stability of inter-
connected systems and converse Lyapunov theorems for

semi-global uniform exponential stability and for input-
to-state stability.
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