On the Gauss map of equivariant immersions in hyperbolic space - Archive ouverte HAL
Article Dans Une Revue Journal of topology Année : 2022

On the Gauss map of equivariant immersions in hyperbolic space

Résumé

Given an oriented immersed hypersurface in hyperbolic space H^{n+1}, its Gauss map is defined with values in the space of oriented geodesics of H^{n+1}, which is endowed with a natural para-Kähler structure. In this paper we address the question of whether an immersion G of the universal cover of an n-manifold M , equivariant for some group representation of π_1(M) in Isom(H^{n+1}), is the Gauss map of an equivariant immersion in H^{n+1}. We fully answer this question for immersions with principal curvatures in (−1, 1): while the only local obstructions are the conditions that G is Lagrangian and Riemannian, the global obstruction is more subtle, and we provide two characterizations , the first in terms of the Maslov class, and the second (for M compact) in terms of the action of the group of compactly supported Hamiltonian symplectomorphisms.
Fichier principal
Vignette du fichier
On the Gauss map JTop final.pdf (652.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03000958 , version 1 (12-11-2020)
hal-03000958 , version 2 (25-03-2022)

Identifiants

Citer

Christian El Emam, Andrea Seppi. On the Gauss map of equivariant immersions in hyperbolic space. Journal of topology, 2022, 15 (1), pp.238-301. ⟨10.1112/topo.12225⟩. ⟨hal-03000958v2⟩
53 Consultations
124 Téléchargements

Altmetric

Partager

More