On the Gauss map of equivariant immersions in hyperbolic space - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

On the Gauss map of equivariant immersions in hyperbolic space

Résumé

Given an oriented immersed hypersurface in hyperbolic space H n+1 , its Gauss map is defined with values in the space of oriented geodesics of H n+1 , which is endowed with a natural para-Kähler structure. In this paper we address the question of whether an immersion G of the universal cover of an n-manifold M , equivariant for some group representation of π 1 (M) in Isom(H n+1), is the Gauss map of an equivariant immersion in H n+1. We fully answer this question for immersions with principal curvatures in (−1, 1): while the only local obstructions are the conditions that G is Lagrangian and Riemannian, the global obstruction is more subtle, and we provide two characterizations , the first in terms of the Maslov class, and the second (for M compact) in terms of the action of the group of compactly supported Hamiltonian symplectomorphisms.
Fichier principal
Vignette du fichier
Christian_arxiv.pdf (739 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03000958 , version 1 (12-11-2020)
hal-03000958 , version 2 (25-03-2022)

Identifiants

  • HAL Id : hal-03000958 , version 1

Citer

Christian El Emam, Andrea Seppi. On the Gauss map of equivariant immersions in hyperbolic space. 2020. ⟨hal-03000958v1⟩
53 Consultations
124 Téléchargements

Partager

More