Automatic deforestation detection with deep learning: the case of Masoala National Park - Archive ouverte HAL
Poster De Conférence Année : 2018

Automatic deforestation detection with deep learning: the case of Masoala National Park

Résumé

Large portions of territories are affected by deforestation. We aim to propose an approach based on convolutional neural networks to detect change in tropical forests. Our goal is to propose a model that requires minimal preprocessing and handcrafted features. We will test this approach with images from the Masoala National Park in Madagascar.

Mots clés

Fichier principal
Vignette du fichier
2018_8thESALTC2018.pdf (2.81 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02982957 , version 1 (06-11-2020)

Identifiants

  • HAL Id : hal-02982957 , version 1

Citer

Julius Akinyemi, Josiane Mothe, Nathalie Neptune. Automatic deforestation detection with deep learning: the case of Masoala National Park. 8th Advanced Training Course on Land Remote Sensing - ESALTC 2018, Sep 2018, Leicester, United Kingdom. , 521, 2018. ⟨hal-02982957⟩
78 Consultations
24 Téléchargements

Partager

More