Toeplitz band matrices with small random perturbations - Archive ouverte HAL
Article Dans Une Revue Indagationes Mathematicae Année : 2021

Toeplitz band matrices with small random perturbations

Résumé

We study the spectra of N × N Toeplitz band matrices perturbed by small complex Gaussian random matrices, in the regime N 1. We prove a probabilistic Weyl law, which provides an precise asymptotic formula for the number of eigenvalues in certain domains, which may depend on N , with probability sub-exponentially (in N) close to 1. We show that most eigenvalues of the perturbed Toeplitz matrix are at a distance of at most O(N −1+ε), for all ε > 0, to the curve in the complex plane given by the symbol of the unperturbed Toeplitz matrix.
Fichier principal
Vignette du fichier
BandedMatrices_200713.pdf (836.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02975964 , version 1 (23-10-2020)

Identifiants

Citer

Johannes Sjöstrand, Martin Vogel. Toeplitz band matrices with small random perturbations. Indagationes Mathematicae, 2021, 32 (1), pp.275-322. ⟨10.1016/j.indag.2020.09.001⟩. ⟨hal-02975964⟩
56 Consultations
52 Téléchargements

Altmetric

Partager

More