
HAL Id: hal-02975964
https://hal.science/hal-02975964v1

Submitted on 23 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toeplitz band matrices with small random perturbations
Johannes Sjöstrand, Martin Vogel

To cite this version:
Johannes Sjöstrand, Martin Vogel. Toeplitz band matrices with small random perturbations. Inda-
gationes Mathematicae, 2021, 32 (1), pp.275-322. �10.1016/j.indag.2020.09.001�. �hal-02975964�

https://hal.science/hal-02975964v1
https://hal.archives-ouvertes.fr


TOEPLITZ BAND MATRICES WITH SMALL RANDOM PERTURBATIONS

JOHANNES SJÖSTRAND AND MARTIN VOGEL

In memory of Hans Duistermaat

Abstract. We study the spectra of N×N Toeplitz band matrices perturbed by small complex
Gaussian random matrices, in the regime N � 1. We prove a probabilistic Weyl law, which
provides an precise asymptotic formula for the number of eigenvalues in certain domains, which
may depend on N , with probability sub-exponentially (in N) close to 1. We show that most
eigenvalues of the perturbed Toeplitz matrix are at a distance of at most O(N−1+ε), for all
ε > 0, to the curve in the complex plane given by the symbol of the unperturbed Toeplitz
matrix.
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1. Introduction

The aim of this article is to study the eigenvalue distribution of N×N Toeplitz band matrices
subject to small random perturbations. In particular we are interested in obtaining a precise
asymptotic formula for the number of eigenvalues of the perturbed matrix in suitable domains
as N →∞.

There has been a great recent interest in this subject, in particular when the unperturbed
matrix is non-normal. For such matrices we do not have in general a good control over the
resolvent and its norm may be very large even far away from the spectrum. Consequently the
eigenvalues of such matrices may be very sensitive to small perturbations. This phenomenon is
sometimes called pseudospectral effect or spectral instability, see Section 2.3 for more details. In
view of this spectral instability it is very natural to study the distribution of the eigenvalues of
such non-normal matrices subjet to small random perturbations. In this article we focus on the
case when the unperturbed matrix is given by a Toeplitz matrix with a finite number of bands,
see (1.1).

In the recent work [GuWoZe14] the authors considered the case of a large Jordan block matrix
and showed that the empirical spectral measure, that is the eigenvalue counting measure, of the
Jordan block subject to a perturbation by a complex Gaussian matrix with a coupling constant
which is polynomially small in N (with minimal decay rate of order N−γ , γ > 1/2), converges
weakly in probability to the uniform measure on the unit circle

In [Wo16], using a replacement principle developed in [TaVuKr10], it was shown that the
result of [GuWoZe14] holds for perturbations given by complex random matrices whose entries
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are independent and identically distributed random complex random variables with expectation
0 and variance 1 and a coupling constant δ = N−γ , with γ > 2.

The result of [GuWoZe14] on Jordan block matrices was also generalised in [BaPaZe18a,
BaPaZe18b]. There the authors prove that the empirical spectral measure of finitely banded
Toeplitz matrices subject to a random perturbation converges in probability to the push forward
measure of the uniform measure on the unit circle under the the symbol of the unperturbed
matrix, see (1.3). See also Figure 1 for a numerical illustration. In [BaPaZe18a, BaPaZe18b],
they also proved that this convergence holds for not only for Gaussian perturbations but also
for a large class of random perturbations, which satisfy a certain anti-concentration condition
on the smallest singular value and a second moment condition on its entries.

In this work we follow the line of [Sj19, SjVo16], and consider perturbations with complex
Gaussian random matrices with coupling constants ≤ N−4/C (with C > 0 sufficiently large)
allowed to be sub-exponentially small in N (and not only polynomially small as in previous
works), see (2.2). We prove a precise asymptotic formula for the number of eigenvalues in
certain domains, valid with probability close to one, see Theorem 2.1. Our results improve those
of previous works:

They provide more detailed information on the spectral distribution than just the con-
vergence of the empirical measure.
The domains in which we count the eigenvalues may be small and depend on N (see
Theorem 6.5) and this gives information about the local behaviour of the eigenvalues.

From Theorem 2.1 we infer the convergence of the empirical spectral measure, see Corollary 2.2.

1.1. Toeplitz band matrices. Let N± ≥ 0 be in N, such that either N+ 6= 0 or N− 6= 0, and
consider the operator

(1.1) p(τ)
def
=

N+∑
j=−N−

ajτ
j , a−N− , a−N−+1, . . . , aN+ ∈ C, a±N± 6= 0,

acting on `2(Z), or more generally on functions ψ : Z→ C, where

(1.2) (τu)(k)
def
= u(k − 1),

defines the translation to the right by one unit. We shall work on Z, on an interval in Z and on
Z/MZ, for some N 3 M ≥ 1. The symbol of τ = exp(−iDx) is 1/ζ, with ζ = eiξ. Therefore,
the symbol of the operator (1.1) is given by the meromorphic function

(1.3) C 3 ζ 7→ p(1/ζ) =

N+∑
j=−N−

ajζ
−j .

We obtain a Toeplitz band matrix from the operator p(τ) by restricting it to the finite dimen-
sional space CN . Indeed, we let N ≥ 1 and identify CN with `2([1, N ]), [1, N ] = {1, 2, .., N},
and also with `2[1,N ](Z) (the space of all u ∈ `2(Z) with support in [1, N ]). Then, we consider

the N ×N Toeplitz band matrix

(1.4) PN
def
= 1[1,N ] p(τ) 1[1,N ],

acting on CN ' `2[1,N ](Z).

The translation operator τ on `2(Z) is unitary, i.e. τ∗ = τ−1, so one can easily see that p(τ)
is a normal operator, meaning that it commutes with its adjoint. The Fourier transform shows
that the spectrum of p(τ) (1.1) acting on `2(Z) is purely absolutely continuous and given by

(1.5) Spec(p(τ)) = p(S1).

The restriction PN = p(τ)|`2(N) of p(τ) to `2(N), is in general no longer normal, except for specific
choices of N+, N− and the coefficients aj . The essential spectrum of the Toeplitz operator PN
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(1.1) is still given by p(S1). However, we gain additional pointspectrum in all loops of p(S1)
with non-zero winding number, i.e.

(1.6) Spec(PN) = p(S1) ∪ {z ∈ C; indp(S1)(z) 6= 0}.
Here, by a result of Krein [BöSi99, Theorem 1.15] (see also Proposition 3.11 below) the winding
number of p(S1) around the point z 6∈ p(S1) is related to the Fredholm index of PN − z:
(1.7) Ind(PN − z) = −indp(S1)(z).

For every ε > 0, the spectrum of the finite Toeplitz matrix PN (1.4) satisfies

(1.8) Spec(PN ) ⊂ Spec(PN) +D(0, ε)

for N > 0 sufficiently large, where D(z, r) denotes the open disc of radius r, centered at z.
The limit of Spec(PN ) as N →∞ is contained in a union of analytic arcs inside Spec(PN), see
[BöSi99, Theorem 5.28]. This phenomenon can also be observed in the numerical simulations
presented in Figures 1, 2.

However, we will show that after a small random perturbation of PN , most of the eigenvalues
of the perturbed operator will be very close to the curve p(S1), see Figures 1, 2.
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Figure 1. The pictures on the left hand side shows the spectrum of the Toeplitz matrix
PN , with N = 100, given by the symbol p(1/ζ) = 2iζ−1 + ζ2 + 7

10ζ
3 and the right hand

side shows the spectrum of a random perturbation Pδ, as in (1.9) below, with coupling
constant δ = 10−14 and dimension N = 1000. The red line shows the symbol curve
p(S1).

1.2. Adding a small random perturbation. Let (M,A,P) denote a probability space and
let HN (CN×N , ‖ · ‖HS) denote the space of N ×N complex valued matrices equipped with the
Hilbert-Schmidt norm. Consider the random matrix

M3 ω 7→ Qω
def
= Qω(N)

def
= (qj,k(ω))1≤j,k≤N ∈ HN

with Gaussian law
(Qω)∗(dP) = π−N

2
e−‖Q‖

2
HSL(dQ),

where L denotes the Lebesgue measure on CN×N . We are interested in the spectrum of the
random perturbations of the matrix P 0

N = PN :

(1.9) P δN
def
= P 0

N + δQω, 0 ≤ δ � 1.

Notice that the entries qj,k(ω) of Qω are independent and identically distributed complex Gauss-
ian random variables with expectation 0, and variance 1.

We recall that the probability distribution of a complex Gaussian random variable α ∼
NC(0, 1), defined on the probability space (M,A,P), is given by

α∗(dP) = π−1e−|α|
2
L(dα),



4 JOHANNES SJÖSTRAND AND MARTIN VOGEL

where L(dα) denotes the Lebesgue measure on C. If E denotes the expectation with respect to
the probability measure P, then

E[α] = 0, E[|α|2] = 1.

In this paper we consider the Gaussian case for the sake of simplicity. However, we believe that
our method can be adapted to the case of more general complex valued random matrices. The
main difficulty lies in showing that the logarithm of the determinant of a certain matrix valued
stochastic process is not too small with probability close to 1 (see Proposition 5.3 below).

2. Main results

We will provide precise eigenvalue asympotics for the eigenvalues of P δN in certain domains

which show that most eigenvalues of P δN are close to the curve p(S1) with probability sub-
exponentially (in N) close to 1, see Theorem 2.1 below. We also prove eigenvalue asymptotics in
thin N -dependent domains in scales up to order N−1+ε, for every ε > 0. This shows in particular
that for every ε > 0, with probability sub-exponentially (in N) close to 1, most eigenvalues can
be found at a distance ≤ O(N−1+ε) from p(S1), see Theorem 6.5 for the precise statement.

Our results also provide an upper bound on the number of eigenvalues of P δN which remain
far from the curve p(S1). Finally, we will show that our results on the eigenvalue asymptotics
of P δN imply the almost sure weak convergence of the empirical measure of eigenvalues of P δN to
the uniform measure on p(S1), see Corollary 2.2. This corresponds to the leading term of our
asymptotic result.

2.1. Eigenvalue asymptotics in fixed smooth domains. Let Ω b C be an open simply
connected set with smooth boundary ∂Ω which is independent of N . We suppose that

(Ω1) ∂Ω intersects p(S1) in at most finitely many points;
(Ω2) the points of intersection are non-degenerate, i.e.

(2.1) ∂ζp 6= 0 on p−1(∂Ω ∩ p(S1));

(Ω3) ∂Ω intersects p(S1) transversally, in the following precise sense : for each z0 ∈ ∂Ω ∩ p(S1)
let γk ⊂ p(S1), k = 1, . . . , n denote the mutually distinct segments of p(S1) passing
through z0, i.e. each γk is given by the image of a small neighborhood in S1 of a point in
p−1(z0) ∩ S1. Then γk and ∂Ω intersect transversally at z0.

We then have the following result:

Theorem 2.1. Let p be as in (1.1), set M = N+ + N− and let P δN be as in (1.9). Let Ω be
as above, satisfying conditions (Ω1)–(Ω3) and pick a ε0 ∈]0, 1[. There exists a constant C > 0,
such that, for N > 1 sufficiently large, if

(2.2) Ce−N
ε0/(2M) ≤ δ ≤ N−4

C
,

then we have that

(2.3)

∣∣∣∣#(Spec(P δN ) ∩ Ω)− N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ)

∣∣∣∣ ≤ O(N ε0 logN).

with probability

(2.4) ≥ 1−O(logN)
(

e−N
2

+ δ−Me−
1
2
Nε0
)
.

Let us give some remarks on this result. The e−N
2

term in the estimate (2.4) is an artifact
from the proof where we restrict to the event that ‖Qω‖HS ≤ CN which occurs with probability

≥ 1− e−N
2
, see (2.6).

The factor N ε0 in the error estimate in (2.3) is a consequence of our aim to show that (2.3)
holds with probability which is sub-exponentially close to 1. However, it is clear from the proof,
see Proposition 5.3, that if we were to settle for a probability ≥ 1−N−κ, for every κ > 0, then
we can ameliorate the error estimate in (2.3) to O((logN)2).
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Figure 2. The pictures on the left hand side shows the spectrum of the Toeplitz matrix
PN , with N = 100, given by the symbol p(1/ζ) = 2ζ−3 − ζ−2 + 2iζ−1 − 4ζ2 − 2iζ3 and
the right hand side shows the spectrum of a random perturbation Pδ, as in (1.9), with
coupling constant δ = 10−14 and N = 1000. The red line shows the symbol curve p(S1).

We provide a more detailed version of this result in Theorem 6.5 below. There, we present
a Weyl law in probability for the eigenvalues of P δN in thin N -dependent domains ΩN with,
roughly speaking, a width ≥ CN−1+, and whose boundary is uniformly Lipschitz. See Theorem
6.5 below for more details.

2.2. Convergence of the empirical measure and related results. Another way to see the
limiting behavior of the spectrum of P δN (1.9) is to study the limits of the empirical measure of

the eigenvalues of P δN , defined by

(2.5) ξN
def
=

1

N

∑
λ∈Spec(P δN )

δλ

where the eigenvalues are counted including multiplicity and δλ denotes the Dirac measure at
λ ∈ C. The Markov inequality implies that

(2.6) P[‖Qω‖HS ≤ CN ] ≥ 1− e−N
2
,

for C > 0 large enough. The operator norm of PN (1.4) satisfies

‖PN‖ ≤ ‖p‖L∞(S1).

If δ ≤ N−1, then the Borel-Cantelli Theorem shows that, almost surely, ξN has compact support
for N > 0 sufficiently large.

From Theorem 2.1 we will deduce that, almost surely, ξN converges weakly to the uniform
distribution on p(S1).

Corollary 2.2. Let ε0 ∈]0, 1[, let p be as in (1.1) and write M = N+ +N−. Then, there exists
a constant C > 0 such that if (2.2) holds,

Ce−N
ε0/(2M) ≤ δ ≤ N−4

C
,

then, almost surely,

(2.7) ξN ⇀ p∗

(
1

2π
LS1

)
, N →∞,

weakly, where LS1 denotes the Lebesgue measure on S1.
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Our strategy to prove the precise eigenvalue asymptotics presented in Theorems 2.1 and 6.5
also provides an alternative proof of the above result via the convergence of the associated log-
arithmic potentials, see Section 7.

Similar results to Corollary 2.2 have been proven in a various settings. In the recent work
[BaPaZe18a], the authors consider a general sequence of deterministic complex N ×N matrices
MN perturbed by complex Gaussian random matrices Qω = Qω(N), as in (1.9). They study
the empirical measure ξN of the eigenvalues of MN := MN + N−γQω, γ > 1/2, defined as in
(2.5). The authors show that the Logarithmic potential LξN (z), z ∈ C, (see Section 7 below for
a definition) associated with ξN , asymptotically coincides with a deterministic function gN (z) in
probability at each point z, for which the number of singular values of (MN − zId) smaller than

N−γ+1/2+δN , 0 < δN = o(1) as N → ∞, is of order o(N(logN)−1) as N → ∞. Since the weak
convergence of the random measure ξN can be deduced from the point wise convergence of the
Logarithmic potential LξN (z) (see Section 7 below for details and references), this result shows
that studying the weak convergence of the empirical measure ξN can be reduced to deterministic
calculation involving only the unperturbed matrix MN .

Moreover, in [BaPaZe18a, BaPaZe18b], the authors consider the special case of MN being
given by a band Toeplitz matrix, i.e. MN = PN with p as in (1.1). In this case they show
that the convergence (2.7) holds weakly in probability for a coupling constant δ = N−γ , with
γ > 1/2. Furthermore, they prove a version of this theorem for Toeplitz matrices with non-
constant coefficients in the bands, see [BaPaZe18a, Theorem 1.3, Theorem 4.1]. Their methods
are quite different from ours. They compute directly the log |detMN − z| by relating it to
log | detMN (z)|, where MN (z) is a truncation of MN − z, where the smallest singular values
of MN − z have been excluded. The level of truncation however depends on the strength of
the coupling constant and it necessitates a very detailed analysis of the small singular values of
MN − z.

In the earlier work [GuWoZe14], the authors prove that the convergence (2.7) holds weakly
in probability for the Jordan bloc matrix PN with p(τ) = τ−1 (1.1) and a perturbation given by
a complex Gaussian random matrix whose entries are independent complex Gaussian random
variables whose variances vanishes (not necessarily at the same speed) polynomially fast, with

minimal decay of order N−1/2+.
In [Wo16], using a replacement principle developed in [TaVuKr10], it was shown that the

result of [GuWoZe14] holds for perturbations given by complex random matrices whose entries
are independent and identically distributed random complex random variables with expectation
0 and variance 1 and a coupling constant δ = N−γ , with γ > 2.

In [DaHa09], the authors showed that in the case of large Jordan block matrix p(τ) = τ−1,
most eigenvalues of the perturbed matrix P δN lie in the annulus

{z ∈ C; (δN)1/Ne−σ ≤ |z| ≤ (δN)1/N},
for any fixed σ > 0, with probability ≥ 1−O(N−2). Moreover, the authors show that there are
at most O(σ−1 logN) eigenvalues of P δN outside this annulus, with probability ≥ 1−O(N−2).

A version of Theorem 2.1, concerning the special cases of large Jordan block matrices p(τ) =
τ−1 and large bi-diagonal matrices p(τ) = aτ+bτ−1, a, b ∈ C, have been proven in [Sj19, SjVo16].

2.3. Spectral instability. In general, the spectra of non-selfadjoint operators can be highly
unstable under small perturbations due to the lack of good control over the norm of the resolvent.
This phenomenon, sometimes referred to as pseudospectral effect or spectral instability, can
be observed in the case of non-normal Toeplitz matrices PN (1.4), as illustrated in Figures 1
and 2. To quantify the zone of spectral instability in the complex Plane, one defines the ε-
pseudospectrum of a linear operator P acting on some complex Hilbert space H as follows: for
ε > 0 set

(2.8) Specε(P )
def
= {z ∈ C; ‖(P − z)−1‖ > ε−1}.
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The points z ∈ C in the ε-pseudospectrum of P are precisely the points z ∈ C for whom there
exists a bounded linear operator Q acting on H with ‖Q‖ ≤ 1, such that z ∈ Spec(P + εQ), see
[EmTr05, Da07] for a detailed exposition.

For the Toeplitz band matrices PN , we have that any fixed point in C\p(S1) with

(2.9) z /∈ {0,+∞} and z 6= a0, when N+ or N− = 0,

which is contained in the pointspectrum of PN (1.6) is contained in the Ce−N/C-pseudospectrum
of PN . Recall from (1.6) that the pointspectrum of PN in C\p(S1) is given by the points z around
which the curve p(S1) has a non-zero winding number indp(S1)(z) 6= 0. In fact, provided that
we avoid the special cases (2.9), we have that

• if indp(S1)(z) < 0, then the Fredholm index of PN − z satisfies

Ind(PN − z) = dim ker(PN − z) = −indp(S1)(z);

• if indp(S1)(z) > 0,

Ind(PN − z) = −dim ker(PN − z)∗ = −indp(S1)(z),

see Propositions 3.10 and 3.11. Moreover, these kernels are spanned by exponentially decaying
functions, see the discussion in Section 3.4. In the first case, restricting such a function u ∈
ker(PN− z) to the interval [1, N ] yields an approximate solution to the equation (PN − z)u = 0,
sometimes called a quasimode. More precisely, setting e+ = ‖1[1,N ]u‖−11[1,N ]u, we get that

(PN − z)e+ = O(e−N/C).

Similarly, we get in the second case an e− ∈ `2([1, N ]), ‖e−‖ = 1, with

(PN − z)∗e− = O(e−N/C).

These exponentially precise quasimodes show that any fixed z with indp(S1)(z) 6= 0 satisfying

(2.9), is contained in the Ce−N/C-pseudospectrum of PN .

On the other hand, for any compact set Ω b C\p(S1), with z ∈ Ω satisfying (2.9) and

indp(S1)(z) = 0,

we have that that for N > 0 sufficiently large ‖(PN − z)−1‖ = O(1) uniformly for z ∈ Ω, see
Proposition 3.13. Hence, outside the spectrum of PN (1.6) is a zone of spectral stability for PN .
This explains why the eigenvalues of P δN can (with high probability) only be found in a small
neighborhood of the spectrum of PN.

However, only analysing the pseudospectrum does not yield any information on where the
eigenvalues of P δN can be found. Theorem 2.1, shows that with probability very close to one, all

but O(N ε0 logN) many eigenvalues of P δN can be found close to the curve p(S1). Theorem 6.5

below shows that still probability very close to one, most eigenvalues of P δN are at a distance of
≤ N−1+ε, for every ε > 0, from p(S1), see (6.54) for the precise error estimate.

It would be interesting to perform a precise analysis of the boundary of the ε-pseudospectrum
of PN to see whether the eigenvalues of P δN accumulate there, as in the case of small random
perturbations of semiclassical differential operators in [Vo16].

2.4. Outline of the proof. The overall strategy of the proof is based on a Grushin reduction.
In Section 4 we review the basic idea of such a reduction and we set up a Grushin problem PN
by considering the operator p(τ) (1.1) on the discrete circle Z/ÑZ, Ñ = N +N− +N+,

PN = p(τ) : `2(Z/ÑZ)→ `2(Z/ÑZ),

which can be used to describe the eigenvalues of the unperturbed operator PN . In Section 3 we
provide a general discussion of band Toeplitz matrices and their Fredholm properties. However,
for this paper only Sections 3.2 and 3.3 are of immediate importance as we discuss properties of

p(τ) on Z/ÑZ.
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In Section 5, we will use the Grushin problem for the unperturbed operator PN to set up a
Grushin Problem PδN for the perturbed P δN , resulting in an effective description of its eigenvalues

log det(P δN − z) = log detPδN (z) + log detEδ−+(z),

with probability ≥ 1 − e−N
2
. Here, E−+(z)δ is an (N+ + N−) × (N+ + N−) complex valued

matrix. Furthermore, the Grushin problem shows that we have a trivial upper bound on the
quantity log detEδ−+(z). In Section 5.3, we show that with probability very close to 1 we have

a quantitative lower bound on log detEδ−+(z).
To obtain our main results on eigenvalue asympotics from this description we apply a general

estimate [Sj10] on the number of zeros of a holomorphic function u(z;N) of exponential growth.
We will recall this result in Section 6.1 below, see Theorem 6.2. Roughly speaking, if the available
information is

(i) an upper bound log |u(z;N)| ≤ Nφ(z), for z near the boundary ∂Ω and φ a subharmonic
continuous function and

(ii) a lower bound log |u(z;N)| ≥ N(φ(z)−εj), with εj ≥ 0, for finitely many points zj = zj(N),
j = 1, . . . ,M(N), which are situated near the boundary of ∂Ω,

then the number of zeros of u in Ω is given by

#(u−1(0) ∩ Ω) ∼ N

2π

∫
Ω

∆φL(dz),

asymptotically asN → +∞. In Section 6.2 we check that our effective description for log det(P δN−
z) satisfies the required upper bound (i), and in Section 6.3, using Section 5.3, we check the
lower bound (ii).

In Section 6.4 we then use these bounds in combination with Theorem 6.2 to prove Theorem
2.1.

In Section 6.5 we provide a more general version of Theorem 2.1 for N -dependent domains.
Finally, in Section 7 we give two proofs of Corollary 2.2 via the method of logarithmic potentials.

Acknowledgments. The first author was supported by PRC CNRS/RFBR 2017-2019 No.1556
“Multi-dimensional semi-classical problems of Condensed Matter Physics and Quantum Dynam-
ics”. The second author was supported by the Erwin Schrödinger Fellowship J4039-N35, by the
National Science Foundation grant DMS-1500852 and by CNRS Momentum. We are grateful
to the Institut Mittag-Leffler for a stimulating environment.

3. A general discussion of Toeplitz band matrices

Let z ∈ C and recall (1.2). The exponential function u : Z 3 ν 7→ ζν , for ζ ∈ C\{0}, is a
solution to

(3.1) (p(τ)− z)u = 0,

if and only if

(3.2) p(1/ζ)− z = 0.

Here, we assume that

(3.3) z /∈ {0,∞}

Suppose furthermore that

(3.4) z 6= a0, when N− = 0.

Then (3.2) is equivalent to the following polynomial equation

(3.5)

N++N−∑
j=0

aN+−jζ
j − zζN+ = 0.
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This is a polynomial equation of degree N+ +N− (when N− = 0 we have a0 − z 6= 0 by (3.4)).
It has N− +N+ roots, counted with their multiplicity.

If z /∈ p(S1), no root is in S1, and we let

(3.6) ζ+
1 , . . . , ζ

+
m+

be the roots in D(0, 1)

and

(3.7) ζ−1 , . . . , ζ
−
m− be the roots in C\D(0, 1),

repeated according to their multiplicity. Notice that

(3.8) m+ +m− = N+ +N−.

3.1. Remark on exponential solutions. Let z ∈ C\({0}∪p(S1)). We strengthen assumption
(3.4) and assume that

(3.9) if N+ or N− = 0, then a0 6= z.

Let ζ1, ζ2, ..., ζm ∈ C \ {0} be the distinct roots of the characteristic equation (3.2):

p(1/ζ)− z = 0.

Let mult (ζj) ≥ 1 be the corresponding multiplicity so that

(3.10)
m∑
1

mult (ζj) = N+ +N−.

Similarly to (3.6), (3.7), we let

(3.11) ζ+
1 , . . . , ζ

+
m̃+

be the distinct roots in D(0, 1) with multiplicities 1 ≤ mult(ζ+
j ) < +∞,

and
(3.12)

ζ−1 , . . . , ζ
−
m̃−

be the distinct roots in C\D(0, 1) with multiplicities 1 ≤ mult(ζ−j ) < +∞,

so that m̃− + m̃+ = m in (3.10). Notice also that

(3.13)

m̃±∑
1

mult (ζ±j ) = m±.

The functions

Z 3 ν 7→ fζ,k(ν) := (ζ∂ζ)
k(ζν), 0 ≤ k ≤ mult (ζ)− 1

are solutions to

(3.14) (p(τ)− z)fζ,k = 0,

for ζ = ζ1, ..., ζm. In fact, if ζ is such a root, then for ω close to ζ

(p(τ)− z)(ων) = (p(1/ω)− z)ων = O((ω − ζ)mult (ζ))

and applying (ω∂ω)k with 0 ≤ k ≤ mult (ζ)− 1, and then putting ω equal to ζ, we get (3.14).
More generally, let ζ1, ..., ζm ∈ C \ {0} be distinct numbers and let 1 ≤ mj <∞, 1 ≤ j ≤ m.

Proposition 3.1. The functions fζj ,k : Z → C, 1 ≤ j ≤ m, 0 ≤ k ≤ mj − 1 are linearly
independent. More precisely, if K ⊂ Z is an interval with #K = m1 + m2 + ... + mm, then
fζj ,k |K

form a basis in `2(K).

Proof. We first prove the linear independence of fζj ,k as functions on Z.

Lemma 3.2. Let ζj, j = 1, . . . , J , be finitely many distinct elements of S1. If aj ∈ C, j =
1, . . . , J , and lim

ν→+∞

∑
ajζ

ν
j = 0, then aj = 0.
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Proof of Lemma 3.2. Write ζj = eiσj , σj ∈ R and let δσj ∈ D′(S1) be the delta function centered
at σj . Then we have

lim
ν→+∞

F−1
(∑

ajδσj

)
(ν) = 0

where F−1(u)(ν) = 1
2π

∫
S1 u(x)eixνdx. Let χ ∈ C∞(S1), χ(σj0) = 1, χ(σj) = 0, j 6= j0. Then

lim
ν→+∞

F−1
(
aj0δσj0

)
(ν) = lim

ν→+∞
F−1

(
χ
∑

ajδσj

)
(ν)

= lim
ν→+∞

F−1(χ) ∗ F−1
(∑

ajδσj

)
(ν) = 0,

where ∗ indicates the standard convolution on `p(Z). Hence, aj0 = 0 for any j0 = 1, . . . , J . �

Now consider
m∑
j=1

mj−1∑
k=0

aj,kfζj ,k = 0 on Z

and notice that
fζj ,k = (ζ∂ζ)

k(ζν)ζ=ζj = νkζνj .

Let S = {j; |ζj | = max
j̃
|ζj̃ |}, M = max

j∈S
mj and write ζj = es+iσj . Then we get

lim
ν→∞

∑
j∈S,
mj=M

aj,M−1 eiνσj = 0.

Lemma 3.2 then implies that aj,k = 0 when |ζj | = maxj̃ |ζj̃ | and k = mj − 1 is maximal.

Repeating this procedure we get aj,k = 0, 0 ≤ k ≤ mj − 1, j ∈ S. Repeating the procedure
we finally get aj,k = 0 for all j, k and we have shown that fζj ,k are independent as functions on Z.

Let

Q∞ =
m∏
1

(τ − 1/ζj)
mj = τ m̃ + a1τ

m̃−1 + · · ·+ am̃, m̃ = m1 + · · ·+mm.

Then as in the case of p(τ)− z, the functions fζj ,k, 1 ≤ j ≤ m, 0 ≤ k ≤ mj − 1 satisfy

Q∞fζj ,k = 0.

Assume that a linear combination u of these functions vanishes on the interval K of length
m1 + · · · + mm = m̃. Then Q∞u = 0 on Z, u = 0 on K, and we conclude that u = 0 on Z.
Hence fζj ,k|K , 1 ≤ j ≤ m, 0 ≤ k ≤ mj − 1 are linearly independent. �

3.2. Operators on the line and circulant matrices. Let SN
def
= Z/NZ, for N ∈ N\{0}. In

applications we will replace N by N+ +N− +N . By convention we set S∞ = Z.

Recall (1.1). We are interested in

(3.15) (p(τ)− z)u = v, u, v ∈ `2(Z).

Let Fu(ξ) =
∑∞

k=−∞ u(k)e−ikξ, so that F : `2(Z)→ L2(S1, dξ2π ) is unitary. We have

(3.16) (Fτu)(ξ) =

∞∑
k=−∞

u(k − 1)e−ikξ = e−iξ(Fu)(ξ),

explaining why e−iξ = 1/ζ is the symbol of τ . Hence, application of F to (3.15) gives the
equivalent equation

(3.17) (p(e−iξ)− z)û = v̂, û = Fu, v̂ = Fv.
Thus, Spec(p(τ)) = p(S1) and if z /∈ p(S1), we can invert (3.17)

(3.18) û(ξ) =
1

p(e−iξ)− z
v̂(ξ)
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Applying (F−1û)(k) = 1
2π

∫
S1 eikξû(ξ)dξ, we get

(3.19) (p(τ)− z)−1v = K∞ ∗ v,
where

(3.20) K∞(z; k) =
1

2π

∫
S1

1

p(e−iξ)− z
eikξdξ.

In this formula, S1 is identified with R/2πZ. Introduce ζ = eiξ as the new integration variable,

so that dx = dζ
iζ . Then (3.20) becomes

(3.21) K∞(z; k) =
1

2πi

∫
S1

1

p(1/ζ)− z
ζk
dζ

ζ
,

where now S1 is the boundary of the unit disk D(0, 1) ⊂ C. Recall (3.11), (3.12) and write
m±j = mult(ζ±j ). If k � 1, we shrink the contour to 0 and get by the residue theorem

K∞(z; k) =

m̃+∑
j=1

lim
ζ→ζ+j

1

(m+
j − 1)!

dm
+
j −1

dζm
+
j −1

ζk−1(ζ − ζ+
j )m

+
j

p(1/ζ)− z

=

m̃+∑
j=1

m+
j∑

l=1

(
k − 1

l

)
b+j,l (ζ

+
j )k−l−1, b+j,l ∈ C.

(3.22)

If k � −1, we use (3.21), enlarge the contour to |ζ| = R, R→∞, and get

K∞(z; k) = −
m̃−∑
j=1

lim
ζ→ζ−j

1

(m−j − 1)!

dm
−
j −1

dζm
−
j −1

ζk−1(ζ − ζ−j )m
−
j

p(1/ζ)− z

= −
m̃−∑
j=1

m−j∑
l=1

(
k − 1

l

)
b−j,l (ζ

−
j )k−l−1, b−j,l ∈ C.

(3.23)

Remark 3.3. When all roots of the polynomial (3.5) are simple, then we have by (3.6),(3.7),
(3.11), (3.11) as well as (3.22), (3.23) that

(3.24) K∞(z; k) =


∑m+

j=1
1

∂ζ(p(1/ζ))
ζ=ζ+

j

(ζ+
j )k−1, if k ≥ 1,

−
∑m−

j=1
1

∂ζ(p(1/ζ))
ζ=ζ−

j

(ζ−j )k−1, if k ≤ −1.

Notice that K∞(z; k) decays exponentially as |k| → ∞. Hence, we can solve (3.15) for
u, v ∈ `∞.

If v ∈ `2(SN ), then we can view v as an N -periodic function on Z and the solution u is
N -periodic and given by (3.19).

Let Ω ⊂ Z be a finite set of cardinal #Ω = N such that(Ω + jN) ∩ (Ω + kN) = ∅ for j 6= k⋃
j∈Z

Ω + jN = Z.

Let N ≥ N+ +N− + 1. Still when u, v are N -periodic we make (3.19) more explicit

u(ν) =
∑
µ∈Z

K∞(z; ν − µ)v(µ) =
∑
j∈Z

∑
µ∈Ω+jN

K∞(z; ν − µ)v(µ)

=
∑
j∈Z

∑
µ∈Ω

K∞(z; ν − µ− jN)v(µ) =
∑
µ∈Ω

KN (z; ν − µ)v(µ),
(3.25)

where

(3.26) KN (z; ν − µ) =
∑
j∈Z

K∞(z; ν − µ− jN)
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and the series converges geometrically. We check that KN (z; ν + N) = KN (z; ν). Identifying
Ω ' SN , and defining

(3.27) PSN
def
= p(τ) : `2(SN )→ `2(SN ),

we get

Proposition 3.4. If z /∈ p(S1), then z /∈ Spec(PSN ) and the resolvent (PSN − z)−1 is given by

(3.28) (PSN − z)
−1v(ν) = (KN (z) ∗ v)(ν) =

∑
µ∈SN

KN (z; ν − µ)v(µ)

with

(3.29) KN (z; ν) =
∑

ν̃∈π−1(ν)

K∞(z; ν̃)

where π : Z→ SN is the natural projection.

A consequence of (3.26) is the following: Choose Ω = [−N
2 ,

N
2 [ when N is even and Ω =

[−N−1
2 , N+1

2 [ when N is odd. Then,

(3.30) KN (z; ν) = K∞(z; ν) +O
(

e−
N
C

)
, ν ∈ Ω.

3.3. The spectrum of PSN . Using the finite Fourier transform `2(SN ) → `2(ŜN ), with ŜN =

{e
2πik
N ; k = 0, . . . , N − 1}, it is easy to prove that

(3.31) Spec(PSN ) = p(ŜN ).

In this section we study the spectrum of the normal operator PSN , see (3.27) and (4.9) below,
in

(3.32) γ = p(S1) ∩ Ω

with Ω as in Section 2.1.

3.3.1. A Weyl law for PSN . We present a Weyl law for the eigenvalues of PSN , which we shall
use later on to count the eigenvalues of small perturbations of the operator PN (1.4).

Let γ be as in (3.32). First notice that by (3.31)

(3.33) #{Spec(PSN ) ∩ γ} = #{ŜN ∩ p−1(γ)}.

Since two consecutive points of ŜN differ by an angle of 2π/N , we get that

(3.34) #{ŜN ∩ p−1(γ)} =
N

2π

∫
p−1(γ)

LS1(dθ) +O(1),

where the measure LS1(dθ) in the integral denotes the Lebesgue measure on S1. Combining
(3.33), (3.34), we get

(3.35) #{Spec(PSN ) ∩ γ} =
N

2π

∫
p−1(γ)

LS1(dθ) +O(1).

3.3.2. Local eigenvalue spacing for PSN . Let z0 ∈ p(S1) be such that

(3.36) dp 6= 0 on p−1(z0).

Proposition 3.5. Let p be as in (1.3) and let z0 ∈ p(S1) be such that (3.36) holds. Then, there
exist a constant C > 0 and an open neighborhood U ⊂ C of z0, such that p−1(U) is the union
of finitely many disjoint open sets Vi ⊂ C, i = 1, . . . ,M . Moreover, on each non-empty segment
γi = p(Vi ∩ S1) we have that

(3.37) min
z,w∈p(Ŝ

Ñ
)∩γi

w 6=z

|z − w| ≥ 1

CN
.
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Proof of Proposition 3.5. For i = 1, . . . ,M let ζi ∈ p−1(z0) and notice that M < +∞. By (3.36)
and the implicit function theorem, there exist complex open neighborhoods Ui of z0 and Vi of
ζi such that p : Vi → Ui is a diffeomorphism. Setting γi = p(S1 ∩ Vi) ⊂ Ui when S1 ∩ Vi 6= ∅ ,
we have that

(3.38) |ζ̂in − ζ̂im| � |ẑin − ẑim|,

where ζ̂in ∈ ŜÑ ∩ Vi and ẑin ∈ p(ŜÑ )∩ γi, for n ∈ Ji ⊂ N, some index set which is non-empty for

N > 1 sufficiently large. Since M is finite, the claim follows by (3.31) and by taking U =
⋂M
i=1 Ui

and by potentially shrinking the segements γi. �

3.4. Restrictions to intervals. If K ⊂ Z is a finite set or an infinite interval, we identify

(3.39) `2(K) ' `2K
def
= {u ∈ `2(Z); suppu ⊂ K}.

We define,

(3.40) PK
def
= 1K p(τ) : `2K −→ `2K , and PZ = p(τ).

In the following we assume (3.9). When K is an interval we define the length of K to be
#K = |K|.

Proposition 3.6. Let K be an interval of length ≤ N+ +N−. Any function u : K → C can be
extended to a solution ũ : Z→ C to (p(τ)− z)u = 0. The space of such extensions is affine of
dimension N+ +N− −#K. In particular the extension is unique when N+ +N− = #K.

Proof. If #K < N+ + N−, let K̃ ⊃ K be an interval with #K̃ = N+ + N−. The extensions

û : K̃ → C form an affine space of dimension N+ + N− − K, so it suffices to treat the case
#K = N+ +N−.

Let K = [M,M +N+ +N−[ and write (p(τ)− z)ũ = 0, i.e.

(3.41) aN+ ũ(ν −N+) + · · ·+ (a0 − z)ũ(ν) + · · ·+ a−N− ũ(ν +N−) = 0.

For ν = N+ +M , ν+N− is the first point in Z\K to the right of K and ν+N−−1, . . . , ν−N+

belong to K, so (3.41) defines ũ(ν +N−) uniquely. Replacing ν with ν + 1 = M +N+ + 1, we
get ũ(M + N+ + N− + 1) and by repeating the procedure we get ũ(M + N+ + N− + µ) for all
µ ≥ 0.

For ν = M +N+ − 1, we have ν −N+ /∈ K while ν −N+ + 1, . . . , ν +N− ∈ K, and therefore
(3.41) determines ũ(M − 1) uniquely. Iterating the procedure, we get all values of ũ(M − µ),
for µ > 0. �

It follows that the space of solutions to (p(τ)− z)u = 0 is of dimension N+ +N− = m+ +m−,
cf. (3.8). Recall (3.11), (3.12), (3.8), (3.9), (3.3) and (3.10). The space of exponential solutions,
spanned by the functions

(3.42) Z 3 ν 7→ νk(ζ±j±)ν , for 1 ≤ j± ≤ m̃±, 0 ≤ k ≤ mult(ζ±j±)− 1,

is also of dimension m+ + m−, since these functions form a linearly independent system by
Proposition 3.1. Hence, assuming (3.9), (3.3), they form a basis of the space of solutions u :
Z→ C to (p(τ)− z)u = 0. We conclude the following

Proposition 3.7. Suppose (3.9) and (3.3). Then, the general solution u : Z → C of (p(τ) −
z)u = 0 is of the form

(3.43) u(ν) =

m̃+∑
j=1

mult(ζ+j )−1∑
k=0

a+
j,kν

k(ζ+
j )ν +

m̃−∑
j=1

mult(ζ−j )−1∑
k=0

a−j,kν
k(ζ−j )ν , a±j,k ∈ C.

The subspace of solutions decaying at ν → ±∞ is given by

(3.44) a∓j,k = 0, for j = 1, . . . , m̃∓, k = 0, . . . ,mult(ζ+
j )− 1.
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Remark 3.8. Enumerate all the roots of (3.5) as

wj =

{
ζ+
j , for j = 1, . . . , m̃+

ζ−j−m̃+
, for j = m̃+ + 1, . . . , m̃+ + m̃−

so that (3.43) takes the form

(3.45) u(ν) =

m̃++m̃−∑
j=1

mult(wj)−1∑
k=0

bj,kν
k(wj)

ν , bj,k ∈ C.

We then recover the fact that the following Van der Monde type determinant

(3.46) det(A1, . . . , Am̃++m̃−)

is non-vanishing. Here, the block matrices Aj, j = 1, . . . , m̃+ + m̃−, are given by

(3.47) Aj = (νkwνj ) ν∈K
0≤k≤mult(wj)−1

∈ C|K|×mult(wj)

where K is any interval of length |K| = m+ +m−.

We next look at PK where K is the half-axis [A,+∞[ or ]−∞, A]. The two cases are similar
and we may assume by translation invariance that K = [0,+∞[.

Let u : K → C have its support in [0,∞[ and satisfy

(3.48) (p(τ)− z)u = 0 in [0,+∞[.

More explicitly, by (1.1),

(3.49)

 N+∑
j=−N−

ajτ
j − z

u(ν) = 0, ν = 0, 1, . . .

The left most equation for ν = 0 is

aN+u(−N+) + aN+−1u(1−N+) + · · ·+ (a0 − z)u(0) + · · ·+ a−N−u(N−) = 0.

Here, u(−N+) = · · · = u(−1) = 0, when N+ ≤ 1. We know how to extend u|[−N+,+∞[ to a
function ũ : Z → C, by solving (3.49) with u replaced by ũ for ν = −1,−2, . . . . The equation
for ν = −1 defines ũ(−N+ − 1), the next one gives ũ(−N+ − 2) and so on. In this way we get a
solution ũ on Z of

(3.50) (p(τ)− z)ũ = 0.

Consequently ũ has the form of the right hand side in (3.43). Now restrict the attention to
solutions u ∈ `2[0,+∞[(Z) of (3.48). The corresponding extension ũ is of the form (3.43) with

a−j,k = 0, since it must decay to the right. Hence,

(3.51) ũ(ν) =

m̃+∑
j=1

mult(ζ+j )−1∑
k=0

a+
j,kν

k(ζ+
j )ν

and by construction ũ(ν) = u(ν) = 0 for ν ∈ [−N+,−1]. More explicitly, using (3.13), we have

0 = A

 a+
1,0
...

a+
m̃+,mult(ζm̃+

)−1

 , A = (A+
1 , . . . , A

+
m̃+

) ∈ CN+×m+ ,

A+
j = (ν0(ζ+

j )ν , . . . , νmult(ζ+j )−1(ζ+
j )ν)−N+≤ν≤−1, for j = 1, . . . , m̃+.

(3.52)

Notice that A is a rectangular generalized matrix of Van der Monde type, of size N+ × m+.
Arguing as at the end of the proof of Proposition 3.1 and using (3.13), we see that A is of
maximal rank min(N+,m+). Thus

• if N+ ≥ m+, then
ker
(
P[0,+∞[ − z

)
= 0.
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• If N+ < m+, then

dim ker
(
P[0,+∞[ − z

)
= m+ −N+.

For (P]−∞,0] − z) we have the corresponding statements with N+,m+ replaced by N−,m−.

Lemma 3.9. Let z /∈ p(S1), then the operators (P[0,+∞[ − z) : `2([0,+∞[) → `2([0,+∞[) and

(P]−∞,0] − z) : `2(]−∞, 0])→ `2(]−∞, 0]) are Fredholm.

Proof. We give the proof for (P[0,+∞[ − z), the one for (P]−∞,0] − z) is similar.

Recall (3.19), and define for z /∈ p(S1)

E(z) = 1[0,+∞[(p(τ)− z)−11[0,+∞[.

Then,

(P[0,+∞[ − z)E(z) = 1[0,+∞[ +R(z)

and

E(z)(P[0,+∞[ − z) = 1[0,+∞[ + L(z).

where R(z), L(z) are compact. Indeed, we have

R(z) = −1[0,+∞[(p(τ)− z)1]−∞,0[(p(τ)− z)−11[0,+∞[.

By (1.1) we see that R(z) = 1[0,N+[R(z), so R(z) is of finite rank and thus compact. Similarly,
we have

L(z) = −1[0,+∞[(p(τ)− z)−11]−∞,0[(p(τ)− z)1[0,+∞[.

We notice that L(z) = L(z)1[0,N+[ is of finite rank, hence compact. �

Next, notice that by (3.2), (3.6), (3.7), p(τ)∗ is similar to p(τ) just with the roles of N+,m+

and N−,m− exchanged. More explicitly, by (1.1),

p∗(τ) = p(τ−1) =

N+∑
−N−

ajτ
−j =

N−∑
−N+

a−jτ
j .

The analogue of (3.2) is p(ω)− z = 0, or equivalently p(ω)− z = 0, since p(ω) = p(ω). In view

of (3.6), (3.7), we get the roots ω±j = 1/ζ±j . Remembering (3.40), we have

P ∗K = 1Kp(τ
−1)1K

Therefore, the above statements remain valid with (p(τ)−z) replaced by (p∗(τ)−z) and N+,m+

exchanged with N−,m−.

By Lemma 3.9 we get that for z /∈ p(S1)

dim ker
(
P[0,+∞[ − z

)∗
= dim coker

(
P[0,+∞[ − z

)
Hence, using (3.8) we conclude the following

Proposition 3.10. Assume that z /∈ {0,+∞} ∪ p(S1) and that (3.9) holds.

• If N+ ≥ m+, then

ker
(
P[0,+∞[ − z

)
= 0

and

dim coker
(
P[0,+∞[ − z

)
= N+ −m+.

• If N+ < m+, then

coker
(
P[0,+∞[ − z

)
= 0

and

dim ker
(
P[0,+∞[ − z

)
= m+ −N+.

For (P]−∞,0] − z) we have the corresponding statements with N+,m+ replaced by N−,m−.
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It will be convenient to replace P[0,+∞[ with the unitarily equivalent operator P[N+,+∞[. More-
over, let us recall that the index of a Fredholm operator A is defined by

IndA
def
= dim kerA− dim coker A.

There is a very nice relation between the index of the Fredholm operator (P[N+,+∞[− z) and the

winding number of the curve p(S1) around the point z.

Proposition 3.11. Let z /∈ {0,+∞}∪p(S1) and suppose that (3.9) holds. Then (P[N+,+∞[− z)
is Fredholm of index

(3.53) Ind(P[N+,+∞[ − z) = m+ −N+ = −indp(S1)(z).

Proof. The first equality follows from Proposition 3.10 (see also (4.21), (4.25)). To see the second
equality, notice that

(3.54) − indp(S1)(z) =
1

2πi

∫
S1

d

dη
log(p(1/η)− z)dη.

The integral on the right hand side is equal to the number of zeros minus the number of poles of
p(1/η)− z in D(0, 1), where both are counted including multiplicity. This is equal to m+ −N+

by (3.5), (3.6) and (3.7). �

Remark 3.12. This result has been obtained by M.G. Krein via a different method. See [BöSi99,
Chapter 1.5] for a detailed exposition.

3.5. Zone of zero winding number. In this section we show that in regions in C, for which
the winding number of the curve p(S1) is zero, the norm of the resolvent of PN is controlled by
a constant. Hence, we can consider such regions to “spectrally stable” for PN .

Proposition 3.13. Let Ω b C\({0}∪ p(S1)) be a compact set and suppose that for every z ∈ Ω
(3.9) holds and

(3.55) indp(S1)(z) = 0.

Then, there exists a constant C > 0 such that for N > 0 sufficiently large and for any z ∈ Ω

‖(PN − z)−1‖ ≤ C.

Proof. By Propositions 3.11, 3.10 and by (3.55), we know that (P[1,+∞[−z) and (P]−∞,N ]−z) are

bijective on `2 with uniformly bounded inverses when z ∈ Ω. By the Combes-Thomas argument
the same holds after conjugation with a factor eεϕ if ϕ is Lipschitz of modulus ≤ 1 and |ε| is
small enough.

Let
QN (z) = 1[1,N ]((P[1,+∞[ − z)−11[1,[N/2]] + (P]−∞,N ] − z)−11[[N/2]+1,N ]).

Then, using the stability under exponential conjugation, it follows that

(P[1,N ] − z)QN (z) = 1 +R, ‖R‖ ≤ O(1)e−N/C .

Hence, for N > 1 large enough, P[1,N ] : `2([1, N ]) → `2([1, N ]) has a uniformly bounded right
inverse which is also a left inverse since P[1,N ] is a finite square matrix. �

4. A Grushin Problem

We begin by giving a short refresher on Grushin problems. See [SjZw07] for a review. The
central idea is to set up an auxiliary problem of the form(

P (z) R−
R+ R+−

)
: H1 ⊕H− −→ H2 ⊕H+,

where P (z) is the operator under investigation and R±, R+− are suitably chosen. We say that the
Grushin problem is well-posed if this matrix of operators is bijective. If dimH− = dimH+ <∞,
one typically writes (

P (z) R−
R+ R+−

)−1

=

(
E(z) E+(z)
E−(z) E−+(z)

)
.
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The key observation goes back to the Shur complement formula or, equivalently, the Lyapunov-
Schmidt bifurcation method, i.e. the operator P (z) : H1 → H2 is invertible if and only if the
finite dimensional matrix E−+(z) is invertible and when E−+(z) is invertible, we have

P−1(z) = E(z)− E+(z)E−1
−+(z)E−(z).

E−+(z) is sometimes called effective Hamiltonian.

4.1. A Grushin problem for the unperturbed operator. Let J ⊂ Z be a fixed interval of
length #J = N+ +N−. More precisely, we choose

(4.1) J = [−N−, N+[.

If M > N+ +N− we view J as a segment of SM , cf. the beginning of Section 3.2. More precisely
we define a segment [a, b] ⊂ SM , a, b ∈ SM , to be the set of points in SM that we get by picking
first a, then a+1 and so on until we reach b (mod MZ) with the last point b included. Similarly
we define [a, b[, ]a, b[, ]a, b]. Recall that S∞ = Z.

Suppose that

(4.2) N ≥ N+ +N− + 1.

When N is finite we decompose

(4.3) SN+N++N− = J ∪ IN ,

(4.4) IN = [N+,−N− − 1]

where IN ' [N+,−N− − 1 + N+ + N− + N ] = [N+, N+ + N − 1] in Z. When N = ∞, we
decompose

(4.5) Z = S∞ = J ∪ I∞,

(4.6) I∞ =]−∞,−N− − 1] ∪ [N+,∞[.

Since #IN = N , we can identify

(4.7) PN ' PIN ,

in view of (1.4), when N is finite, while PI∞ is the direct sum

(4.8) P]−∞,−N−−1] ⊕ P[N+,∞[ ' P]−∞,0] ⊕ P[0,∞[.

In both cases we identify

`2(SN+N−+N−) ' `2(IN )⊕ `2(J)

so that

(4.9) (PSN+N−+N−
− z) def

= PN (z) =

(
PIN − z RN−
RN+ RN+−(z)

)
: `2(IN )⊕ `2(J)→ `2(IN )⊕ `2(J)

where

PIN − z = 1IN (p(τ)− z)1IN , RN− = 1INp(τ)1J ,

RN+ = 1Jp(τ)1IN , RN+−(z) = 1J(p(τ)− z)1J .
(4.10)

Lemma 4.1. RN+ is surjective and RN− is injective.

Proof. Suppose that suppu ⊂ [−N− −N+,−N−[⊂ IN . Then, suppRN+u ⊂ [−N−,−N− +N+[.

By fixing the values of u(−N− − 1), . . . , u(−N+ −N−) we can arrange so that RN+u is equal to
any given function with support in [−N−,−N− +N+[.

Similarly, if suppu ⊂ [N+, N+ + N−[ then suppRN+u ⊂ [−N+ − N−, N+[ and a convenient
choice of such a u will produce any given function with support in [N+ − N−, N+[. Since
J = [−N−,−N− + N+[∪[N+ − N−, N+[ and [−N− − N+,−N−[, [N+, N+ + N−[ are by (4.2)
disjoint subsets of IN , we see that RN+ is surjective.

For the same reason t(RN− ) = 1J
tp(τ)1IN is surjective and therefore RN− is injective. �
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Recall (3.31). If z /∈ Spec(PS
Ñ

), where Ñ = N + N− + N−, then PN (z) in (4.9) is bijective
and invertible with bounded inverse

(4.11) EN (z) =

(
EN (z) EN+ (z)
EN− (z) EN−+(z)

)
: `2(IN )⊕ `2(J)→ `2(IN )⊕ `2(J).

We have

EN (z) = 1IN (PS
Ñ
− z)−11IN , EN+ (z) = 1IN (PS

Ñ
− z)−11J ,

EN− (z) = 1J(PS
Ñ
− z)−11IN , EN−+(z) = 1J(PS

Ñ
− z)−11J .

(4.12)

If z /∈ p(S1), then this also holds for N =∞. We now recall Proposition 3.4 and (3.26) with N

replaced by Ñ . On the level of matrices we get with π = π
Ñ

: Z→ S
Ñ

EN (z; ν, µ) =
∑

ν̃∈π−1(ν)

E∞(z; ν̃, µ̃), µ̃ ∈ π−1(µ), µ, ν ∈ IN ,

EN+ (z; ν, µ) =
∑

ν̃∈π−1(ν)

E∞+ (z; ν̃, µ), µ ∈ J, ν ∈ IN ,

EN− (z; ν, µ) =
∑

µ̃∈π−1(µ)

E∞− (z; ν, µ̃), ν ∈ J, µ ∈ IN ,

(4.13)

and

(4.14) EN−+(z; ν, µ) =
∑
j∈Z

(p(τ)− z)−1(ν + jÑ , µ) µ, ν ∈ J.

In these formulas we used that J is naturally defined both as a subset of S
Ñ

and ofZ. We can con-

sider a similar non-canonical identification of IN with ĨN ⊂ Z given by [−M,−N−[∪[N+,−M +

Ñ [, Ñ = N +N− +N+, where we choose M so that ΘN ≤ M ≤ (1−Θ)N for some Θ ∈]0, 1[,
with N � 1. Then, (4.13) has a more explicit form:

EN (z; ν, µ) =
∑
j∈Z

E∞(z; ν + jÑ , µ), µ, ν ∈ ĨN ,

EN+ (z; ν, µ) =
∑
j∈Z

E∞+ (z; ν + jÑ , µ), ν ∈ ĨN , µ ∈ J,

EN− (z; ν, µ) =
∑
j∈Z

E∞− (z; ν, µ+ jÑ), ν ∈ J, µ ∈ ĨN ,

EN−+(z; ν, µ) =
∑
j∈Z

E∞−+(z; ν + jÑ , µ), ν, µ ∈ J.

(4.15)

In particular, due to the exponential decay,

EN+ (z; ν, µ) = E∞+ (z; ν, µ) +O
(

e−
N
C

)
, ν ∈ ĨN , µ ∈ J,

EN− (z; ν, µ) = E∞− (z; ν, µ) +O
(

e−
N
C

)
, ν ∈ J, µ ∈ ĨN ,

EN−+(z; ν, µ) = E∞−+(z; ν, µ) +O
(

e−
N
C

)
, ν, µ ∈ J.

(4.16)

We next look at some general properties of EN−+. We are mainly interested in the case N = +∞,
but the discussion holds for all N , so we drop the superscript N . From (P −z)E+ +R−E−+ = 0,
conclude that

(4.17) ker(E−+)
E+−→ ker(P − z).

From E−+R+ + E−(P − z) = 0 we see that

(4.18) ker(P − z) R+−→ ker(E−+).

Also notice that since R+E+ +R+−E−+ = 1, we have

(4.19) R+E+ = 1 on ker(E−+).
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Similarly for E(P − z) + E+R+ = 1, we have

(4.20) E+R+ = 1 on ker(P − z),

so (4.17), (4.18) are bijective and inverse to each other.

Let N = +∞. From Proposition 3.10 we know that

(1) if N+ = m+, then N− = m−, by (3.8), and

ker(PI∞ − z) = 0.

Since ker(E∞−+) = R+ ker(PI∞−z) we conclude that E∞−+ is injective and hence bijective.
(2) if N+ < m+, then N− > m− and

u ∈ ker(PI∞ − z) ⇐⇒

{
u|]−∞,−N−−1] = 0,

u ∈ ker(P[N+,+∞[ − z).

Moreover,

dim ker(E∞−+(z)) = dim ker(PI∞ − z)
= dim ker(P[N+,+∞[ − z) = m+ −N+.

(4.21)

(3) if N+ > m+, then N− < n− and

u ∈ ker(PI∞ − z) ⇐⇒

{
u|[N+,+∞[ = 0,

u ∈ ker(P]−∞,−N−−1] − z).

Moreover,

dim ker(E∞−+(z)) = dim ker(PI∞ − z)
= dim ker(P]−∞,−N−−1] − z) = m− −N−.

In all cases ker(E∞−+(z)) = R+ ker(PI∞ − z).
Suppressing again the superscripts, we can describe by duality R(E−+)⊥ = ker(E∗−+). In fact

by (4.10)

R∗− = 1J p(τ)∗ 1IN , R∗+ = 1IN p(τ)∗ 1J

R∗+− = 1J (p(τ)− z)∗ 1J .
(4.22)

So

(4.23) P∗(z) =

(
(PI − z)∗ R∗+

R∗− R∗+−

)
is obtained from (PSN+N−+N+

− z)∗ in exactly the same way as P(z) from (PSN+N−+N+
− z), cf.

(4.9). The inverse is

(4.24) E∗(z) =

(
E(z)∗ E−(z)∗

E+(z)∗ E−+(z)∗

)
,

and we get from N = +∞ that ker(E+−(z)∗) = (R−)∗ ker((PI∞ − z)∗).

For u ∈ `2(Z) let Γu = u. In view of (1.1) we see that

(p(τ)− z)∗ = Γ(p(τ−1)− z)Γ

as operators acting on `2(Z). By Proposition 3.10 we get

(1) if N+ = m+, then N− = m−, by (3.8), and

ker
(
(PI∞ − z)∗

)
= 0.

Since ker((E∞−+)∗) = R∗− ker((PI∞−z)∗), we conclude that (E∞−+)∗ is injective and hence
bijective.
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(2) if N+ < m+, then N− > m− and

u ∈ ker
(
(PI∞ − z)∗

)
⇐⇒

{
u|[N+,∞[ = 0,

u ∈ ker
(
(P]−∞,−N−−1] − z)∗

)
.

Moreover,

dim ker
(
E∞−+(z)∗

)
= dim ker

(
(PI∞ − z)∗

)
= dim ker

(
(P]−∞,−N−−1] − z)∗

)
= m+ −N+.

(3) if N+ > m+, then N− < m− and

(4.25) u ∈ ker
(
(PI∞ − z)∗

)
⇐⇒

{
u|]−∞,−N−−1] = 0,

u ∈ ker
(
(P[N+,+∞[ − z)∗

)
.

Moreover,

dim ker
(
E∞−+(z)∗

)
= dim ker

(
(PI∞ − z)∗

)
= dim ker

(
(P[N+,+∞[ − z)∗

)
= m− −N−.

4.2. Estimates on the singular values of E±. In this section we will give bounds on the
singular values of E±, see (4.12). We will treat both the case when N ≥ N+ +N− + 1. and the
limiting case when N = +∞. First, notice that

(4.26) rank(EN± ) ≤ |J | = N+ +N−.

When N ≥ N+ +N− + 1. and z /∈ Spec(PS
Ñ

), let

(4.27) 0 ≤ sN,±|J | ≤ · · · ≤ s
N,±
1 = ‖EN± ‖

denote the singular values of EN± . When N = +∞ and z /∈ p(S1), let

(4.28) 0 ≤ s∞,±|J | ≤ · · · ≤ s
∞,±
1 = ‖E∞± ‖

denote the singular values of E∞± . Although we have not denoted it explicitly here, the singular
values (4.28), (4.28), depend on z. Recall (4.9) and notice that since the operator p(τ) acting
on `2(S

Ñ
) and on `2(Z) is normal, we have the trivial upper bounds

(4.29) sN,±1 ≤ 1

dist(z, Spec(PS
Ñ

))
, s∞,±1 ≤ 1

dist(z, p(S1))

Lemma 4.2. Let N ≥ 2(N+ +N−) + 1 and let Ω b C be a compact set. Then,

(1) there exists a constant C > 0, such that for all z ∈ Ω\Spec(PS
Ñ

)

1

C
≤ sN,±j ≤ 1

dist(z,Spec(PS
Ñ

))
, j = 1, . . . , N+ +N−.

In particular EN+ is injective and EN− is surjective.
(2) there exists a constant C > 0, such that for all z ∈ Ω\p(S1)

1

C
≤ s∞,±j ≤ 1

dist(z, p(S1))
, j = 1, . . . , N+ +N−.

In particular E∞+ is injective and E∞− is surjective.

Remark 4.3. Notice that in both cases the lower bound on the singular values only depends on
the compact set Ω and is independent of N . This is due to the fact that the only moment in the
proof of Lemma 4.2 where we need that z /∈ Spec(PS

Ñ
) (respectively z /∈ p(S1) when N = +∞)

is when we use that E (4.11)- the inverse of the Grushin problem P (4.9) - exists, see (4.44)
below.
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Proof of Lemma 4.2. We begin with the case (1): The upper bounds follow from (4.29).
Let us now turn to the lower bounds. We begin by recalling the Grushin problem (4.9): for

z ∈ Ω\Spec(PS
Ñ

), the operator

(p(τ)− z) : `2(S
Ñ

) −→ `2(S
Ñ

)

is bijective with bounded inverse EN (z), see (4.11). Here, S
Ñ
' Z/ÑZ, Ñ = N + N+ + N−.

Recall the notation introduced in the discussion after (4.1) where we write segments of S
Ñ

as

intervals modulo ÑZ. We write
S
Ñ

= J ∪ IN
where J = [−N−, N+[ is naturally defined both as a subset of S

Ñ
and of Z. For IN we write

IN = S
Ñ
\J ≡ [N+,−N− − 1] ⊂ S

Ñ
.

Moreover, we will use the notation a+ J = [a−N−, a+N+[, a ∈ S
Ñ

.

Next, suppose that z ∈ Ω and let

(4.30) (p(τ)− z)u = v on S
Ñ
, with supp v ⊂ J.

Fix a+, a− ∈ SÑ\J , so that

(4.31) N+ +N− + 1 ≤ distS
Ñ

(a+, N+ − 1) = distS
Ñ

(a+, J) = O(1)

and

(4.32) N+ +N− + 1 ≤ distS
Ñ

(a−,−N−) = distS
Ñ

(a−, J) = O(1).

Notice that

(4.33) (a± + [−N− −N+, N+ +N−]) ∩ J = ∅.
By (4.30) we see that

(4.34) (p(τ)− z)1[a−,a+[ u =


0, on S

Ñ
\[a− −N−, a+ +N+[ ,

v, on [a− +N+, a+ −N−[ ,

w−, on a− + J ,

w+, on a+ + J ,

where w± ∈ `2(S
Ñ

) and suppw± ⊂ a± + J . Since supp v ⊂ J , we see by (4.31), (4.32) and
(4.34), that

(4.35) (p(τ)− z)1[a−,a+[ u = v + w+ + w− ,

and

(4.36) ‖w±‖ ≤ O(1)‖1a±+[−N+−N−,N++N−[ u‖.
Next, write

(4.37) τ−N+(p(τ)− z)1[a−,a+[ u = τ−N+(v + w+ + w−)

and

(4.38) τN−(p(τ)− z)1[a−,a+[ u = τN−(v + w+ + w−).

We will use these two equations to estimate ‖1[0,N+[ u‖, when N+ ≥ 1, and ‖1[−N−,0[ u‖, when
N− ≥ 1.

In view of (1.1), (3.9), we see that τ−N+(p(τ) − z) is upper triangular with a non-vanishing
constant entry at the diagonal. Since supp τ−N+(v + w+ + w−) ⊂ [a− − N+ − N−, a+[ and
supp 1[a−,a+[ u ⊂ [a−, a+[, we see that

(4.39) ‖1[0,a+[ u‖ ≤ O(1)‖1[0,a+[τ
−N+(v + w+ + w−)‖,

where the constant is uniform in z ∈ Ω and independent of N . Here,

1[0,a+[τ
−N+(v + w+ + w−) = 1[0,a+[τ

−N+w+ ,
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so, by (4.39), (4.36),
‖1[0,a+[ u‖ ≤ O(1)‖1a++[−N+−N−,N++N−[ u‖

which, using (4.31), implies

(4.40) ‖1[0,a++(N++N−)[ u‖ ≤ O(1)‖1[N+,a++N++N−[ u‖.
Notice that when N+ = 0 this holds trivially.

When N− ≥ 1, we use that τN−(p(τ) − z) is lower triangular with a non-vanishing constant
entry at the diagonal. In (4.38) we have that supp τN−(v+w+ +w−) ⊂ [a−, a+ +N+ +N−[ and
supp 1[a−,a+[ u ⊂ [a−, a+[. We therefore deduce that

(4.41) ‖1[a−,0[ u‖ ≤ O(1)‖1[a−,0[τ
N−(v + w+ + w−)‖,

where the constant is uniform in z ∈ Ω and independent of N . Since

1[a−,0[τ
N−(v + w+ + w−) = 1[a−,0[τ

N−w−,

we obtain by (4.41), (4.36), (4.32) that

(4.42) ‖1[a−−(N++N−),0[ u‖ ≤ O(1)‖1[a−−(N++N−),−N−[ u‖,
which holds trivially when N− = 0.

Combining (4.40), (4.42) gives

(4.43) ‖1[a−−(N++N−),a++(N++N−)[ u‖ ≤ O(1)‖1[a−−(N++N−),a++(N++N−)[\J u‖.
Since v = (p(τ)− z)u is supported in J , we have that

‖v‖ ≤ O(1)‖1[−(N++N−),(N++N−)[ u‖
≤ O(1)‖1[a−−(N++N−),a++(N++N−)[ u‖,

where the constant in the estimate is uniform in z ∈ Ω and independent of N . Combining this
with (4.43) shows that

‖v‖ ≤ O(1)‖1[a−−(N++N−),a++(N++N−)[\J u‖.

Now suppose that z ∈ Ω\Spec(PS
Ñ

) and recall from (4.9), (4.11), that when u ∈ `2(S
Ñ

), we
have that

(4.44) u = EN (z)v, with v = 1Jv+, v+ ∈ `2(J).

Hence, by (4.11), u = EN+ v+ on IN = S
Ñ
\J . Thus,

‖v+‖ ≤ O(1)‖1[a−−(N++N−),a++(N++N−)[\J E
N
+ v+‖

≤ O(1)‖1IN E
N
+ v+‖,

where the constant in the estimate is uniform in z ∈ Ω and independent of N . This concludes
the proof for the singular values of EN+ . The proof of the statement for EN− follows exactly the

same lines using (EN− )∗ instead of EN+ .
The proof of the statement in the case (2), when N = ∞, is similar, using that S∞ ' Z =

]−∞, N−[∪[N−, N+[∪[N+,+∞[. �

5. A Grushin Problem for the perturbed operator

Our aim is to study the following random perturbation of P0 = PIN :

(5.1) P δN
def
= P 0

N + δQω, Qω = (qj,k(ω))1≤j,k≤N ,

where 0 ≤ δ � 1 and qj,k(ω) are independent and identically distributed complex Gaussian
random variables, following the complex Gaussian law NC(0, 1). Here, 1 � N < ∞. Consider

the space HN
def
= (CN×N , ‖ · ‖HS) of N ×N complex valued matrices equipped with the Hilbert-

Schmidt norm. We equip HN with the probability measure

(5.2) µN (dQ)
def
= π−N

2
e−‖Q‖

2
HSL(dQ),
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where L(dQ) denotes the Lebesgue measure on HN . For C1 > 0, let QC1N ⊂ HN be the subset
where

(5.3) ‖Q‖HS ≤ C1N.

Markov’s inequality [Ka97, Lemma 3.1] implies that if C1 > 0 is large enough,

(5.4) P [‖Qω‖HS ≤ C1N ] = µN (QC1N ) ≥ 1− e−N2
.

5.1. A general discussion. We begin with a formal discussion of a Grushin problem for the
perturbed operator Pδ. Recall from Section 4 that the Grushin problem for the unperturbed
operator is of the form

P0 =

(
P0 − z R−
R+ R+−

)
: `2(IN )× `2(J) −→ `2(IN )× `2(J),

We added a subscript 0 to indicate that we deal with the unperturbed operator. Suppose that
P0 is bijective with inverse

E0 =

(
E0 E0

+

E0
− E0

−+

)
: `2(IN )× `2(J) −→ `2(IN )× `2(J),

where we added a superscript 0 for the same reason. Supposing that

(5.5) ‖δQω‖‖E0‖ < 1,

we see by a Neumann series argument that

Pδ
def
=

(
Pδ − z R−
R+ R+−

)
: `2(IN )× `2(J) −→ `2(IN )× `2(J),

is bijective and admits the inverse

Eδ =

(
Eδ Eδ+
Eδ− Eδ−+

)
: `2(IN )× `2(J) −→ `2(IN )× `2(J),

where

Eδ+ = (1 + E0(δQω))−1E0
+,

Eδ− = E0
−(1 + δQωE

0)−1,

Eδ = E0(1 + δQωE
0)−1,

Eδ−+ = E0
−+ − E0

−δQω(1 + E0(δQω))−1E0
+.

(5.6)

One obtains the following estimates

‖Eδ‖ ≤ ‖E0‖
1− ‖δQω‖‖E0‖

, ‖Eδ±‖ ≤
‖E0
±‖

1− ‖δQω‖‖E0‖
,

‖Eδ−+ − E0
−+‖ ≤

‖E0
+‖‖E0

−‖‖δQω‖
1− ‖δQω‖‖E0‖

.

(5.7)

Differentiating the equation EδPδ = 1 with respect to δ yields

(5.8) ∂δEδ = −Eδ(∂δPδ)Eδ = −
(
EδQωE

δ EδQωE
δ
+

Eδ−QωE
δ Eδ−QωE

δ
+

)
.

Integrating this relation from 0 to δ yields

(5.9) ‖Eδ − E0‖ ≤ ‖δQω‖‖E0‖2

(1− ‖δQω‖‖E0‖)2
, ‖Eδ± − E0

±‖ ≤
‖δQω‖‖E0

±‖‖E0‖
(1− ‖δQω‖‖E0‖)2

.

Since Pδ is invertible and of finite rank, we know that

|∂δ ln detPδ| = |tr(Eδ∂δPδ)|.
Letting ‖ · ‖tr denote the trace class norm, we get

(5.10) |∂δ ln detPδ| = |tr(QωEδ)| ≤ ‖Qω‖tr‖Eδ‖ ≤
‖E0‖‖Qω‖tr

1− ‖δQω‖‖E0‖
,
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where ‖Qω‖tr ≤ N1/2‖Qω‖HS. Integration from 0 to δ yields

(5.11)
∣∣∣ln | det Eδ| − ln |det E0|

∣∣∣ =
∣∣∣ln |detPδ| − ln |detP0|

∣∣∣ ≤ ‖E0‖‖δQω‖tr
1− ‖δQω‖‖E0‖

.

Sharpening the assumption (5.5) to

(5.12) ‖δQω‖‖E0‖ < 1

2
,

we get

(5.13) ‖Eδ‖ ≤ 2‖E0‖, ‖Eδ±‖ ≤ 2‖E0
±‖, ‖Eδ−+ − E0

−+‖ ≤ 2‖E0
+‖‖E0

−‖‖δQω‖.

By (5.8) we know that ∂δE
δ
−+ = −Eδ−QωEδ+. Therefore, using (5.7), (5.9) and (5.13) we get

‖∂δEδ−+ + E0
−QωE

0
+‖ ≤ ‖E0

−Qω‖‖Eδ+ − E0
+‖+ ‖QωEδ+‖‖Eδ− − E0

−‖
≤ 12δ‖Qω‖2‖E0

−‖‖E0
+‖‖E0‖.

(5.14)

By integration from 0 to δ, we conclude

(5.15) Eδ−+ = E0
−+ − E0

−(δQω)E0
+ +O(‖δQω‖2‖E0

−‖‖E0
+‖‖E0‖).

5.2. A Grushin problem for the perturbed operator. Recall from (4.9) that

PN (z) = (PS
Ñ
− z), Ñ = N +N− +N+

and from (3.31) that its spectrum is equal to p(Ŝ
Ñ

). Suppose that z /∈ Spec(PS
Ñ

). As in (4.11),

PN (z) is invertible with bounded inverse EN (z).

Suppose that

(5.16) dist(z,Spec(PS
Ñ

)) ≥ 1

CN

for some fixed sufficiently large constant C > 1 to be determined later on. Since the operator
PN (z) is normal, it follows that

(5.17) ‖EN (z)‖ =
1

dist(z, Spec(PS
Ñ

))
.

In particular

(5.18) ‖EN (z)‖, ‖EN− (z)‖, ‖EN+ (z)‖, ‖EN−+(z)‖ ≤ 1

dist(z,Spec(PS
Ñ

))
.

Suppose that

(5.19) 0 < δ � N−2.

Then, by (5.4), (5.18), (5.16), with probability ≥ 1 − e−N
2
, the assumption (5.12) is satisfied.

Therefore, by the discussion in Section 5.1 we conclude

Proposition 5.1. With probability ≥ 1 − exp(−N2) we have: Suppose (5.16), (5.19). Let
P0
N (z) = PN (z) be as in (4.9) and let E0

N (z) = EN (z) be as in (4.11). Then,

PδN (z)
def
=

(
P δIN − z RN−
RN+ RN+−(z)

)
: `2(IN )⊕ `2(J)→ `2(IN )⊕ `2(J)

is bijective with bounded inverse

EδN (z) =

(
EN,δ(z) EN,δ+ (z)

EN,δ− (z) EN,δ−+ (z)

)
: `2(IN )⊕ `2(J)→ `2(IN )⊕ `2(J).

Moreover,

‖EN,δ(z)‖, ‖EN,δ− (z)‖, ‖EN,δ+ (z)‖, ‖EN,δ−+ (z)‖ ≤ 2

dist(z,Spec(PS
Ñ

))
.
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5.3. A lower bound on the determinant of the effective Hamiltonian. Suppose that

Ω b C is a compact set. Let EN,δ−+ be as in Proposition 5.1. In this section we are interested in

estimating the probability that log |detEN,δ−+ (z)| ≤ a for a ∈ R and for some z ∈ Ω\p(Ŝ
Ñ

) which
may depend on N . To obtain this bound we will adapt the approach developed in [HaSj08,
Section 9].

Set

(5.20) α = α(z;N)
def
= dist(z, p(Ŝ

Ñ
)).

Until further notice we suppose that

(5.21) α ≥ 1

CNκ
, for some C > 1,

where κ ≥ 1 is fixed, and we strengthen assumption (5.19) to

(5.22) 0 < δ � N−1 min(α,N−1).

Recall Proposition 5.1 and (5.6). We want to study the map

QC1N 3 Q 7→ Eδ−+(z,Q) = E0
−+(z)− δE0

−(z)

(
Q+

∞∑
1

(−δ)nQ(E0(z)Q)n

)
E0

+(z)

def
= E0

−+(z)− δE0
−(z)(Q+ T (z,Q, δ,N))E0

+(z)

(5.23)

where by (5.18), (5.3),

(5.24) ‖T‖HS ≤ O
(
δ(C1N)2

α

)
.

Next, recall (5.2), and notice that the measure µN is invariant under the left and right action
of the group of unitary matrices U(N,C) on HN , i.e. for any U, V ∈ U(N,C), we have that

(5.25) µN (d(UQV )) = µN (dQ).

Furthermore, the left and right action of the group of unitary matrices U(N,C) leaves QC1N in-
variant, see (5.3), and therefore also the probability (5.4). Thus, we may choose any orthonormal
bases (ONB) to represent the matrix Q ∈ HN . Let ẽ1, . . . , ẽN and ê1, . . . , êN be two orthonormal
bases of CN and write

(5.26) Q =

N∑
i,j=1

qi,j ẽi ◦ ê∗j , where qi,j ∼ NC(0, 1) (iid).

By Lemma 4.2 and (5.21), we have for a compact set Ω b C and for z ∈ Ω\p(Ŝ
Ñ

), the following

bound on the singular values of EN±

(5.27)
1

C
≤ sN,±j ≤ 1

α
, j = 1, . . . , |J | = N+ +N−,

where the constant C > 0 is uniform in z ∈ Ω and independent of N .
By the polar decomposition we write E0

+ = S+D+ where S+ : C|J | → CN is an isometry,

with S∗+S+ = 1 and S+S
∗
+ is the orthogonal projection CN → R(E0

+), and D+ : C|J | → C|J | is

selfadjoint with eigenvalues s+
1 , . . . , s

+
|J |. Similarly,

(5.28) (E0
−)∗ = S−D−, E0

− = D−S
∗
−,

where S− : C|J | → CN is an isometry, with S∗−S− = 1 and S−S
∗
− is the orthogonal projection

CN → R((E0
−)∗), and D− : C|J | → C|J | is selfadjoint with eigenvalues s−1 , . . . , s

−
|J |.

From (5.42), we get

Eδ−+ = E0
−+ − δD−S∗−(Q+ T )S+D+

= D−
(
Ê0
−+ − δ(S∗−QS+ + S∗−TS+)

)
D+,

(5.29)
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where Ê0
−+ = D−1

− E0
−+D

−1
+ . Moreover, set

(5.30) T̂ = S∗−TS+.

View C|J | as a subspace of CN by considering that J ⊂ {1, . . . , N}. Let Π0 : CN → C|J | be the

orthogonal projection and, whenever convenient, view Π0 as the inclusion map Π0 : C|J | ↪−→ CN .
Let S+ : CN → CN be unitary with S+|C|J| = S+ and similarly for S−. Then,

(5.31) S+ = S+Π0,

where Π0 is viewed as a map C|J | → CN . Similarly,

(5.32) S− = S−Π0, S∗− = Π0S∗− = Π0S
−1
− .

Then,

(5.33) Eδ−+ = D−
(
Ê0
−+ − δ(Π0Q̂Π0 + T̂ )

)
D+, Q̂ = S∗−QS+.

Let δj ∈ CN , with δj(i) = 1 if i = j and = 0 else, denote the standard ONB of CN . For
k = 1, . . . , N set

êk
def
= S+δk, ẽk

def
= S∗−δk

in (5.26). Hence,

Q̂ = S∗−QS+ = (qj,k)1≤j,k≤N

where qj,k ∼ NC(0, 1) are independent and identically distributed complex Gaussian random
variables.

By (5.30), (5.31) and (5.32), we see that T̂ (Q) = Π0T̂ (Q)Π0 and that the map HN 3 Q 7→
T̂ (Q) ∈ H|J | satisfies

(5.34) ‖T̂ (Q)‖HS ≤ O
(
δ(C1N)2

α

)
.

where the estimate is uniform in Q ∈ QC1N .

By (5.33)

(5.35) QC1N 3 Q 7→ detEδ−+(z,Q) =

|J |∏
k=1

(s+
k s
−
k ) det

(
Ê0
−+(z)− δ(Π0Q̂Π0 + T̂ (Q))

)
Recall from (5.28) and from the discussion after (5.27) that s+

k (resp. s−k ) denote the singular
values of E0

+ (resp. (E0
−)∗).

The Cauchy inequalities and (5.34) imply that

(5.36) ‖dQT̂‖HN→H|J| ≤ O
(
δC1N

α

)
,

uniformly for Q ∈ QC1N . Technically, we can only apply the Cauchy inequalities in ‖Q‖HS ≤
η C1N for some η ∈]0, 1[. However, we have room for that if we start with a slightly large
parameter C1 > 0 to begin with and then restrict to a C1 > 0 such that (5.36) and (5.4) hold.

Next, we define the maps

κ : HN ⊃QC1N −→ κ(QC1N ) ⊂ HN

Q 7−→ κ(Q)
def
= Q̂+ T̂ (Q),

(5.37)

where we identify T̂ (Q) with its image in HN under the natural inclusion map H|J | ↪−→ HN ,
which has the left inverse

(5.38) Π̃0 : HN → H|J | : Q 7→ Π̃0(Q)
def
= Π0QΠ0
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Moreover, we define the map Π : HN ⊃ QC1N → H|J | by

(5.39) Π
def
= Π̃0 ◦ κ.

In analogy with (5.2) we define the probability measure µJ on H|J | by

(5.40) µJ(dQ)
def
= π−|J |

2
e−‖Q‖

2
HSL(dQ).

We will estimate the probability

(5.41) µN

(
log | detEδ−+(z,Q)|2 ≤ a and Q ∈ QC1N

)
.

To begin, we strengthen (5.22) to

(5.42) 0 < δ � α

(C1N)3
.

By (5.36), (5.37), we see that κ is injective, since for Q1, Q2 ∈ QC1N

‖κ(Q1)− κ(Q2)‖ ≥ ‖Q1 −Q2‖ −
∫ 1

0
‖dQT̂ (tQ1 + (1− t)Q2)‖ · ‖Q1 −Q2‖dt

≥
(

1−O
(
δC1N

α

))
‖Q1 −Q2‖.

Define the restricted measure

(5.43) (1QC1N
µN )(A)

def
= µN (A ∩QC1N ), ∀A ∈ B(HN ),

where B(HN ) denotes the Borel σ-algebra of HN . In view of the discussion after (5.24), the
measure 1QC1N

µN is invariant under the change of orthonormal basis of QC1N . Thus, by (5.39),

(5.35), the probability in (5.41) is equal to

(1QC1N
µN )

log

∣∣∣∣∣∣
|J |∏
k=1

(s+
k s
−
k ) det

(
Ê0
−+(z)− δ(Π0Q̂Π0 + T̂ (Q))

)∣∣∣∣∣∣
2

≤ a


= (1QC1N

µN )

[
log
∣∣∣det(δ−1Ê0

−+(z)−Π(Q))
∣∣∣2 ≤ b]

= Π∗(1QC1N
µN )

[
log |det(δ−1Ê0

−+(z)−Q′)|2 ≤ b
]
,

(5.44)

where by (5.35), (5.27),

b = a− 2|J | log δ − 2

|J |∑
j=1

log(s+
j s
−
j )

≤ a− 2|J | log δ + 4|J | logC.

(5.45)

Continuing, we will estimate the measure Π∗(1QC1N
µN ). We begin by studying the Jacobian

of κ, (5.37). By (5.36) and (5.42), we see that the differential of T̂ is bounded with norm � 1.

Moreover, since the rank of dQT̂ is bounded by |J |2, it follows that ‖dQT̂‖tr ≤ |J |2‖dQT̂‖. Thus,
by (5.36)

det
∂κ

∂Q
= det

(
1 + dQT̂

)
= 1 +O(‖dQT̂‖tr)

= 1 +O
(
δC1N

α

)
,

(5.46)

where in the last line we used as well that |J | is a constant independent of N .
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Since κ is a holomorphic map, it follows that

L(dκ(Q)) =

∣∣∣∣det
∂κ

∂Q

∣∣∣∣2 L(dQ)

=

(
1 +O

(
δC1N

α

))
L(dQ).

(5.47)

Next, we see by (5.37), (5.34), that for Q ∈ QC1N∣∣‖κ(Q)‖2HS − ‖Q‖2HS

∣∣ = |‖κ(Q)‖HS − ‖Q‖HS| (‖κ(Q)‖HS + ‖Q‖HS)

≤ ‖κ(Q)−Q‖HS(‖κ(Q)‖HS + ‖Q‖HS)

= O
(
δ(C1N)2

α

)(
C1N +O

(
δ(C1N)2

α

))
= O

(
δ(C1N)3

α

)
� 1,

which implies that on QC1N

(5.48) e−‖Q‖
2
HS =

(
1 +O

(
δ(C1N)3

α

))
e−‖κ(Q)‖2HS .

(5.47), (5.48) imply that for any bounded continuous function ϕ ∈ Cb(HN ;R+) with values in
R+, ∫

ϕκ∗(1QC1N
µN ) =

∫
QC1N

ϕ(κ(Q))µN (dQ)

=

(
1 +O

(
δ(C1N)3

α

))∫
QC1N

ϕ(κ(Q))e−‖κ(Q)‖2HS
L(dκ(Q))

πN2

=

(
1 +O

(
δ(C1N)3

α

))∫
κ(QC1N

)
ϕ(Q̃)e−‖Q̃‖

2
HS
L(dQ̃)

πN2 .

Thus,

(5.49) κ∗(1QC1N
µN ) =

(
1 +O

(
δ(C1N)3

α

))
1κ(QC1N

)µN .

This, together with (5.39), implies that for any ϕ ∈ Cb(H|J |;R+)

Π∗(1QC1N
µN )(ϕ) =

∫
(ϕ ◦ Π̃0)κ∗(1QC1N

µN )

=

(
1 +O

(
δ(C1N)3

α

))∫
ϕ ◦ Π̃0 1κ(QC1N

)µN

≤
(

1 +O
(
δ(C1N)3

α

))∫
ϕ ◦ Π̃0 µN

≤
(

1 +O
(
δ(C1N)3

α

))∫
ϕ(Q′)µJ(dQ′),

where in the last line we used that (Π̃0)∗µN = µJ . Hence, by (5.44) and a density argument,
we deduce that the probability in (5.41) is

≤
(

1 +O
(
δ(C1N)3

α

))
µJ

[
log | det(δ−1Ê0

−+(z)−Q′)|2 ≤ b
]
.(5.50)

The right hand side can be estimated by [HaSj08, Proposition 7.3].
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Proposition 5.2. Let N 3 M ≥ 1, let µM be the Gaussian measure on HM defined in (5.2).

Then, there exist constants C̃, C ′ > 0 such that for any fixed (deterministic) matrix D ∈ HM

µM (log | det(D +Q)|2 ≤ b) ≤ µM (log |detQ)|2 ≤ b)

≤ C̃ exp

[
−1

2

(
C ′ +

(
M − 1

2

)
lnM − 2M − b

)]
,

when b ≤ C ′ +
(
M + 1

2

)
lnM − 2M .

Combining, (5.50), (5.41), (5.44), (5.45) and (5.27) with Proposition 5.2, we deduce that there

exist constants C̃, C ′ > 0 such that

µN ({log |detEδ−+(z,Q)|2 ≤ a} ∩ QC1N )

≤ C̃ exp

[
−1

2

(
C ′ +

(
|J | − 1

2

)
ln |J | − 2|J | − b

)]
≤ C̃ exp

[
−1

2

(
C ′ +

(
|J | − 1

2

)
ln |J | − 2|J | − a+ 2|J | log δ − 4|J | logC

)]
when b ≤ C ′ +

(
|J |+ 1

2

)
ln |J | − 2|J | and thus, by (5.45), when

a ≤ C ′ +
(
|J |+ 1

2

)
ln |J | − 2|J |+ 2|J | log δ − 4|J | logC.

Here, the constants C̃, C ′ only depend on J and the constant C is given by the lower bounds in
(5.27) which are uniform in z ∈ Ω. Setting

C0 = C ′ +

(
|J |+ 1

2

)
ln |J | − 2|J | − 4|J | logC,

a = −t,

we conclude, by absorbing the factor e−
1
2

(C0−log |J |) into the constant C̃, that

(5.51) µN ({log | detEδ−+(z,Q)|2 ≤ −t} ∩ QC1N ) ≤ C̃ exp

[
−1

2
t− |J | log δ

]
when t ≥ C0 − 2|J | log δ. Finally, since

P[Ac ∩B] = P[B]− P[A ∩B],

where Ac denotes the complement of the measurable set A, we obtain, by combining (5.51)and
(5.4),

Proposition 5.3. Let κ ≥ 1, let Ω b C be a compact set, let C > 0 and let C1 > 0 be such that
(5.4) holds. Then, there exist constants C0 ∈ R and C2 > 0, such that for any z ∈ Ω, with

α(z;N) = dist(z, p(Ŝ
Ñ

)) ≥ 1

CNκ
,

we have that

P
[
log |detEδ−+(z,Q)|2 ≥ −t and ‖Q‖HS ≤ C1N

]
≥ 1− e−N

2 − C2 δ
−|J |e−t/2,

when

t ≥ C0 − 2|J | log δ

and

0 < δ � α

(C1N)3
.
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6. Counting eigenvalues

In this section we count the eigenvalues of the perturbed operator

(6.1) P δN = P 0
N + δQω,

near the curve p(S1), see also (5.1). Recall from (4.7) that P 0
N = PIN , see also(4.9). Similarly,

we have P δN = P δIN as in Proposition 5.1.

Until further notice, we will work in the restricted probability space where (5.3) holds (see
also (5.4)) and work under the assumptions that

(6.2) 0 < δ � α

N3
,

1

CN
≤ α ≤ O(1),

for some sufficiently large constant C > 0 to be determined later on, see also (5.16), (5.42). Here
α is as in (5.20).

Counting the number of eigenvalues of P δIN in some domain Ω b C is equivalent to counting the

number of zeros of the holomorphic function u(z;N) = det(P δIN −z) in Ω. The Shur complement

formula and Proposition 5.1 imply that, away from Spec(PS
Ñ

), P δIN − z is invertible if and only

if EN,δ−+ (z) is invertible, and that

(6.3) log |det(P δIN − z)| = log | detPδN (z)|+ log | detEN,δ−+ (z)|.

6.1. Counting zeros of holomorphic functions of exponential growth. We recall Theo-
rem 1.1 in [Sj10], in a form somewhat adapted to our formalism:

1) Domains with associated Lipschitz weight . Let N ≥ 1 be a large parameter, and let Ω b C be
an open simply connected set with Lipschitz boundary ω = ∂Ω which may depend on N . More
precisely, we assume that ∂Ω is Lipschitz with an associated Lipschitz weight r : ω →]0,+∞[,
which is a Lipschitz function of modulus ≤ 1/2, in the following way :

There exists a constant C0 > 0 such that for every x ∈ ω there exist new affine coordinates
ỹ = (ỹ1, ỹ2) of the form ỹ = U(y − x), y ∈ C ' R2 being the old coordinates, where U = Ux is
orthogonal, such that the intersection of Ω and the rectangle Rx := {y ∈ C; |ỹ1| < r(x), |ỹ2| <
C0r(x)} takes the form

(6.4) {y ∈ Rx; ỹ2 > fx(ỹ1), |ỹ1| < r(x)},

where fx(ỹ1) is Lipschitz on [−r(x), r(x)], with Lipschitz modulus ≤ C0.

Remark 6.1. Notice that (6.4) remains valid if we shrink the weight function r.

2) Thickening of the boundary and choice of points. Define

ω̃r =
⋃
x∈ω

D(x, r(x))

and let z0
j ∈ ω, j ∈ Z/MZ, with M ∈ N which may depend on N , be distributed along the

boundary in the positively oriented sense such that

r(z0
j )/4 ≤ |z0

j+1 − z0
j | ≤ r(z0

j )/2.

Theorem 6.2 (Theorem 1.1 in [Sj10]). Let C0 > 0 be as in 1) above. There exists a constant
C1 > 0, depending only on C0, such that if zj ∈ D(z0

j , r(z
0
j )/(2C1)) we have the following :

Let N ≥ 1 and let φ be a continuous subharmonic function on ω̃r with a distributional exten-
sion to Ω∪ ω̃r, denoted by the same symbol. Then, there exists a constant C2 > 0 such that if u
is a holomorphic function on Ω ∪ ω̃r satisfying

(6.5) log |u| ≤ Nφ on ω̃r,

(6.6) log |u(zj)| ≥ N(φ(zj)− εj), for j = 1, . . . ,M,



TOEPLITZ BAND MATRICES WITH SMALL RANDOM PERTURBATIONS 31

where εj ≥ 0, then the number of zeros of u in Ω satisfies∣∣∣∣#(u−1(0) ∩ Ω)− N

2π
µ(Ω)

∣∣∣∣
≤ C2N

µ(ω̃r) +
M∑
j=1

εj +

∫
D

(
zj ,

r(zj)

4C1

) ∣∣∣∣log
|w − zj |
r(zj)

∣∣∣∣µ(dw)

 .

Here µ
def
= ∆φ ∈ D′(Ω∪ ω̃r) is a positive measure on ω̃r so that µ(Ω) and µ(ω̃r) are well-defined.

Moreover, the constant C2 > 0 only depends on C0.

6.2. Upper bound on log | det(P δIN − z)|. Recall from (3.31), that #(p(Ŝ
Ñ

)) = Ñ where

Ñ = N +N− +N+. Then, define the subharmonic function

(6.7) φ(z)
def
= φ(z;N)

def
=

1

N

∑
λ∈p(Ŝ

Ñ
)

log |λ− z|.

Applying (5.11), (5.18), (6.2) to (6.3) we can express the contribution from the perturbed
Grushin problem in (6.3) by the function φ and a small error term, i.e.

log | det(P δIN − z)| = log |detP0
N (z)|+O(δ‖Qω‖tr‖EN,0‖) + log |detEN,δ−+ (z)|

= N

(
φ(z) +

log | detEN,δ−+ (z)|
N

+O
(
δ‖Qω‖HS

N1/2α

))
.

(6.8)

In the last line we used that ‖Qω‖tr ≤ N1/2‖Qω‖HS.
By (6.2), (5.4) we have that α−1δ‖Qω‖HS � N−2. Recall that the dimension of the matrix

Eδ−+ is |J | = N+ +N−. Therefore, using (6.2), (5.18) and Proposition 5.1, we can bound (6.8)
from above and get

(6.9) log |det(P δIN − z)| ≤ N
(
φ(z) +O(N−1| logα|) +O(N−5/2)

)
.

In conclusion, assuming (6.2), we have that

(6.10) log |det(P δIN − z)| ≤ Nψ(z;N)

with probability ≥ 1− e−N
2
. Here,

(6.11) ψ(z;N)
def
= φ(z) +

C logN

N
,

for some sufficiently large constant C > 0.

6.3. Lower bound on log |det(P δIN − z)|. Fix a ε0 ∈]0, 1[. By (6.2) and Proposition 5.3 we
have for any z0, satisfying

α(z0;N) ≥ 1

CN
,

that

(6.12) P
[
log |detEδ−+(z0, Q)|2 ≥ −N ε0 and ‖Q‖HS ≤ C1N

]
≥ 1− e−N

2 − C2δ
−|J |e−

1
2
Nε0

,

for

(6.13) exp

[
C0

2|J |
− N ε0

2|J |

]
≤ δ � α(z0;N)

N3
.

Thus, assuming (6.13) and combining (6.12), (6.8), (6.2) and (6.11), we get that ‖Q‖HS ≤ C1N
and

(6.14) log | det(P δIN − z0)| ≥ N
(
ψ(z0;N)− CN ε0−1

)
hold with probability

(6.15) ≥ 1− e−N
2 − C2δ

−|J |e−
1
2
Nε0

.
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6.4. Counting eigenvalues in a fixed smooth domain. Let Ω b C be an open simply
connected set with smooth boundary ∂Ω which is independent of N . Moreover, suppose that
(Ω1)–(Ω3) hold.

To estimate the number of zeros of det(PIN − z), see (6.3), in Ω, we will apply Theorem 6.2.
The boundary ∂Ω is uniformly Lipschitz at scale

(6.16) r(x)
def
=

1

C

(
dist(x, p(S1)) +

1

N

)
, x ∈ ∂Ω

which is Lipschitz of modulus ≤ 1/2. Here, C > 0 is chosen sufficiently large, and we will
potentially increase it later on.

Due to the singularities of ψ at p(Ŝ
Ñ

), see (6.11), (6.7), we cannot in general assure that the
weight function ψ (6.11) be continuous in⋃

x∈∂Ω

D(x, r(x)).

To remedy this problem we will consider two N -dependent perturbations of the boundary ∂Ω:
let z0 ∈ p(S1)∩∂Ω and pass to new affine coordinates ỹ ∈ R2 ' C (as in Section 6.1) so that the
boundary ∂Ω is given by the graph of the smooth function fz0 near 0, with derivative bounded
by C0 > 0. For C ′ > 1 and N > 0 sufficiently large, the intersection of ∂Ω with the rectangle

(6.17) Rz0(N)
def
= {y ∈ C ' R2; |ỹ1| ≤ 1/(C ′N), |ỹ2| ≤ 2C0/(C

′N)}

takes the form

{y ∈ C ' R2; |ỹ1| ≤ 1/(C ′N), ỹ2 > fz0(ỹ1)}.
Here, y ∈ C ' R2 denote the old coordinates and ỹ ∈ C ' R2 denote the new ones.

Next, define the continuous function χ̃, supported in [−1, 1] and of Lipschitz modulus 2, by

χ̃(x) =


2(x+ 1), −1 ≤ x < −1/2,

1, |x| ≤ 1/2,

1− 2(x− 1/2), 1/2 < x ≤ 1,

and set

χ(ỹ1)
def
= χ(ỹ1;N)

def
=

C0

4C ′N
χ̃(C ′Nỹ1).

Moreover, we define for η± ∈ [0, 1]

fη±z0 (ỹ1)
def
= fz0(ỹ1)± η±χ(ỹ1).

Since fz0 has Lipschitz modulus ≤ C0, if follows that f
η±
z0 has Lipschitz modulus ≤ 3C0/2, for

N > 0 sufficiently large.
By Proposition 3.5, it follows that the number of eigenvalues of PS

Ñ
contained in Rz0(N) is

bounded by a constant depending only p, C ′ and C0. Since the are only finitely many points to
avoid, there exist η± ∈ [0, 1] such that

(6.18) {y ∈ R2 ' C; |ỹ1| ≤ 1/C ′N, ỹ2 = fη±z0 (ỹ1)} ∩
(
Spec(PS

Ñ
) ∩Rz0(N)

)
= ∅.

For C,C ′, C̃ > 0 large enough we can arrange that

(6.19)

( ⋃
y∈R2 s.t. (ỹ1,f

η,±
z0

(ỹ1))

|ỹ1|≤1/C′N

D(y, r(y))

)
∩

⋃
λ∈Spec(PS

Ñ
)

D(λ, 1/(C̃N)) ∩Rz0(N) = ∅.

We perform these two deformations of ∂Ω near every point z0 ∈ p(S1)∩∂Ω, pick C > 0 in (6.16)
at least as large as the maximum over all constants C so that (6.19) holds, and call the resulting
deformed sets

(6.20) Ω± with boundary ∂Ω±.
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Here, we always take the local deformation f
η+
z0 for Ω+, and f

η−
z0 for Ω−. Notice that since

fη−z0 (ỹ1) ≤ fz0(ỹ1) ≤ fη+z0 (ỹ1), |ỹ1| ≤ 1/(C ′N),

we have

(6.21) Ω+ ⊂ Ω ⊂ Ω−,

where we do not denote the N dependence explicitly.
By (6.19) , (Ω1) and (Ω3), there exists a C > 0 such that

(6.22) dist

 ⋃
x∈∂Ω±

D(x, r(x)), Spec(PS
Ñ

)

 ≥ 1

CN
,

which also determines the constant C > 0 in (6.2). Next, choose points z0,±
j ∈ ∂Ω±, j ∈ Z/MZ,

such that

(6.23) ∂Ω± ⊂
⋃

j∈Z/MZ

D(z0
j , r
±
j /2), and r±j /4 ≤ |z

0,±
j+1 − z

0,±
j | ≤ r

±
j /2,

where r±j = r(z0,±
j ).

Lemma 6.3. Let M be as in (6.23). Then,

M = O(logN).

We will postpone the proof of Lemma 6.3 to the end of this section and carry on with the
proof of our main result.

First, notice that (6.10) holds in
⋃M
j=1D(z0

j , rj) with probability ≥ 1 − e−N
2
. By (6.22), it

follows that the weight function ψ(z;N) (6.11) is continuous on
⋃
x∈∂Ω±

D(x, r(x)). Moreover,

by (6.22), we have that for any zj ∈ D(z0
j , rj/2)

(6.24) α(zj ;N) ≥ 1

CN
,

and so it follows that (6.14) holds with probability (6.15), assuming (6.13). Hence, using Lemma
6.3, we have that (6.14) holds for z0

1 , . . . , z
0
M with probability

(6.25) ≥ 1−O(logN)
(

e−N
2

+ C2δ
−|J |e−

1
2
Nε0
)
.

In view of (6.14), we can pick εj = CN ε0−1 in Theorem 6.2, so using Lemma 6.3, we get

∣∣∣∣#(Spec(P δN ) ∩ Ω±)− N

2π

∫
Ω±

∆φ(z)L(dz)

∣∣∣∣
≤ O(N)

N ε0−1 logN + µ

 ⋃
x∈∂Ω±

D(x, r(x))

+

M∑
j=1

∫
D

(
z0j ,

r(z0
j
)

4C1

)
∣∣∣∣∣log
|w − z0

j |
r(z0

j )

∣∣∣∣∣µ(dw)

 ,

(6.26)

with probability (6.25), where we used as well that ∆ψ(z;N) = ∆φ(z), see (6.11). Moreover,
since ∆z log |z − w| = 2πδw, we have

(6.27) ∆φ = µ =
2π

N

∑
λ∈p(Ŝ

Ñ
)

δλ in D′(C).

The integral in the first line is up to an error of order O(1) the number of eigenvalues of PS
Ñ

contained in Ω ∩ p(S1). Hence, by (6.7) and (3.35),

(6.28)
N

2π

∫
Ω±

∆φ(z)L(dz) =
N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ) +O(1).
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By (6.22)

(6.29) µ

( ⋃
x∈∂Ω

D(x, r(x))

)
= 0

Similarly, the discs D(z0
j , r(z

0
j )/2) do not contain any eigenvalues of P0

N . Thus,

(6.30)
M∑
j=1

∫
D

(
z0j ,

r(z0
j
)

4C1

)
∣∣∣∣∣log
|w − z0

j |
r̃(z0

j )

∣∣∣∣∣µ(dw) = 0

Finally, from (6.21), it follows that

(6.31) #(Spec(P δN ) ∩ Ω+) ≤ #(Spec(P δN ) ∩ Ω) ≤ #(Spec(P δN ) ∩ Ω−).

Combining (6.26), (6.28), (6.29), (6.30) and (6.31) we get that

(6.32)

∣∣∣∣#(Spec(P δN ) ∩ Ω)− N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ)

∣∣∣∣ ≤ O(N ε0 logN).

with probability (6.25), provided (6.13) holds. This completes the proof of Theorem 2.1.

Proof of Lemma 6.3. 1. The perturbed boundaries ∂Ω± (6.20) coincide with ∂Ω outside the
rectangles (6.17). Recall from (Ω1) that there are only finitely many such rectangles. The
number of discs of radius r±j (6.23) needed to cover ∂Ω±, as in (6.23), inside these rectangles is

by (6.16) of order

(6.33) O(1).

It remains to estimate the number of discs needed to cover ∂Ω outside these rectangles, which
differs from order of the number of discs needed to cover the unperturbed ∂Ω by O(1). Hence,
it is sufficient to estimate the number of discs needed to cover ∂Ω.

2. Since Ω is relatively compact and intersects with p(S1) at most finitely many points,
we see that for any fixed constant C > 1 the number of discs needed to cover ∂Ω ∩ {z ∈
C; dist(z, p(S1)) ≥ 1/C}, is of order

(6.34) O(1).

3. It remains to estimate the number of discs needed to cover ∂Ω inside {z ∈ C; dist(z, p(S1)) ≤
1/C}. By assumption (Ω1) and the fact that Ω is relatively compact we see that for any ε > 0
there exists δ > 0 such that for any x ∈ ∂Ω

(6.35) dist(x, p(S1)) < δ =⇒ min
z0∈p(S1)∩∂Ω

dist(x, z0) < ε.

Hence, for any fixed C ′ > 0, we have for C > 0 sufficiently large

∂Ω ∩ {z ∈ C; dist(z, p(S1)) ≤ 1/C} ⊂
⋃

z0∈p(S1)∩∂Ω

D(z0, 1/C
′).

By (Ω1), may restrict our attention to one z0 ∈ ∂Ω ∩ p(S1) and

(6.36) β = ∂Ω ∩ {z ∈ C; dist(z, p(S1)) ≤ 1/C} ∩D(z0, 1/C
′).

For x, y ∈ β let distβ(x, y) denote the length of the curve in β with endpoints x and y. By the
transversality assumption (Ω3), we see that for C > 0 sufficiently large

(6.37) distβ(x, z0) � dist(x, p(S1)), x ∈ β,

and

(6.38) distβ(x, y) � |x− y|, x, y ∈ β.
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4. Notice that Mβ, the number of discs D(z0
i , ri/2) needed to cover β, as in (6.23), increases

when decreasing the scale r (6.16). Using (6.37) and by possibly increasing C > 0 in (6.16), we
shrink r to the new scale

(6.39) r(x) =
1

C

(
distβ(x, z0) +

1

N

)
, x ∈ β,

denoted by the same letter. Set

(6.40) dj
def
= distβ(z0

j , z0), 1 ≤ j ≤Mβ,

and let j1 be the smallest index so that dj1 ≥ N−1. Notice that j1 = O(1) and that dj1 � N−1.
By (6.40), (6.38), (6.39) we have for j > j1

dj = distβ(z0
j , z

0
j−1) + distβ(z0

j−1, z0)

≥ 1

C
|z0
j − z0

j−1|+ dj−1

≥ (1 + C−1)dj−1

≥ (1 + C−1)j−j1dj1 ,

(6.41)

where the constant C > 0 changes from the second to the third line. Similarly

(6.42) dj ≤ (1 + C)j−j1dj1 .

Thus,

(6.43) (1 + Ĉ−1)Mβ−j1dj1 ≤ dMβ
≤ (1 + C)Mβ−j1dj1 .

Using that the length of β is � 1, we get that Mβ � logN and therefore, by (6.33), (6.34), that

M = O(logN). �

6.5. Counting eigenvalues in thin N-dependent domains. In Section 6.4 we saw that
most eigenvalues of P δN lie “near” the curve p(S1). Now we want to give a quantitative estimate
on how close these eigenvalues are to the p(S1). For this purpose let Ω b C be an open simply
connected set with smooth boundary ∂Ω which is independent of N and satisfies (Ω1)–(Ω3), as
in Section 2.1.

We consider an open simply connected N -dependent set ΩN , with a unifromly Lipschitz
boundary ∂ΩN , which coincides with Ω in small tube around p(S1). More precisely, let

(6.44)
C

N
≤ τ ≤ O(1), C > 1,

and suppose that

(6.45) ΩN ∩ {z ∈ C; dist(z, p(S1)) < τ} = Ω ∩ {z ∈ C; dist(z, p(S1)) < τ},
and that ∂ΩN is uniformly Lipschitz, as in Section 6.1, with weight function

(6.46) r(x)
def
=

1

C

(
dist(x, p(S1)) +

1

N

)
, x ∈ ∂ΩN ∩ {z ∈ C; dist(z, p(S1)) < τ},

inside {z ∈ C; dist(z, p(S1)) < τ} and with constant weight function

(6.47) r(x)
def
= τ, x ∈ ∂ΩN ∩ {z ∈ C; dist(z, p(S1)) ≥ τ}

outside. Let

(6.48) `(N) > 0

be the length of ∂ΩN ∩ {z ∈ C; dist(z, p(S1)) ≥ τ}. To prove Theorem 6.5, we can follow the
proof of Theorem 2.1 in Section 6.4 with some modifications:

By (6.44) and (6.45), we may perform the same perturbations of ∂ΩN as for ∂Ω in (6.17)–
(6.18) so that (6.21) and (6.22) hold for the perturbed sets

(6.49) Ω±N with boundary ∂Ω±N .
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Next, choose points z0,±
j ∈ ∂Ω±N , j ∈ Z/MZ, such that

(6.50) ∂Ω±N ⊂
⋃

j∈Z/MZ

D(z0,±
j , r±j /2), and r±j /4 ≤ |z

0,±
j+1 − z

0,±
j | ≤ r

±
j /2,

where r±j = r(z0,±
j ).

Lemma 6.4. Let M be as in (6.50). Then,

M = O(`(N)τ−1) +O(log(τN)).

Proof. Following the exact same lines of Step 1, 3 and 4 of the proof of Lemma 6.3, while keeping
in mind (6.46) and that by (6.44), (6.45) the length of ∂ΩN ∩ {z ∈ C; dist(z, p(S1)) ≤ τ} is of
order � τ , we see that the number of discs needed to cover ∂ΩN ∩ {z ∈ C; dist(z, p(S1)) ≤ τ} is
of order

(6.51) O(log(τN)).

By (6.48), (6.47) we have that we have that the number of discs needed to cover ∂ΩN ∩ {z ∈
C; dist(z, p(S1)) ≥ τ} is of order

�(6.52) O(`(N)τ−1).

Since (6.22) holds for ∂Ω±N , the weight function ψ(z;N) (6.11) is continuous on⋃
x∈∂Ω±N

D(x, r(x)),

and that (6.10) holds in
⋃M
j=1D(z0

j , rj) (6.50) with probability ≥ 1 − e−N
2
. Moreover, since

(6.22) holds for ∂Ω±N , we have that for any zj ∈ D(z0
j , rj/2)

α(zj ;N) ≥ 1

CN
,

and it follows that (6.14) holds with probability (6.15), assuming (6.13). Hence, using Lemma
6.4, we have that (6.14) holds for z0

1 , . . . , z
0
M with probability

(6.53) ≥ 1−O(M)
(

e−N
2

+ C2δ
−|J |e−

1
2
Nε0
)
.

In view of (6.14), we may set εj = CN ε0−1 in Theorem 6.2 and, by following the exact same
arguments as above, from (6.26) to (6.31), while keeping in mind Lemma 6.4, we obtain

Theorem 6.5. Let p be as in (1.1), set M = N+ +N− and let P δN be as in (1.9). Let τ be as in
(6.44) and let ΩN b C be a relatively compact open simply connected set satisfying (6.45)–(6.48).
Pick a ε0 ∈]0, 1[.

There exists a constant C > 0 such that for N > 1 sufficiently large, if (2.2) holds,

Ce−N
ε0/(2M) ≤ δ ≤ N−4

C
,

then,

(6.54)

∣∣∣∣#(Spec(P δN ) ∩ Ω)− N

2π

∫
p−1(Ω∩p(S1))

LS1(dθ)

∣∣∣∣ ≤ O(N ε0`(N)τ−1 +N ε0 log(τN)).

with probability

(6.55) ≥ 1−O(`(N)τ−1 + log(τN))
(

e−N
2

+ C2δ
−|J |e−

1
2
Nε0
)
.

Remark 6.6. In the assumption 6.45 on ΩN we assumed that it coincides with an Ω with
smooth boundary, which is independent of N , inside a tube of radius τ around p(S1). Therefore,
Assumption 6.45 implies that `(N) ≥ 1/C > 0. However, the proof of Theorems 2.1 and 6.5
shows that we can allow Ω to be N dependent as long as its boundary ∂Ω remains uniformly
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Lipschitz in the sense discussed at the beginning of Section 6.1 and satisfies (Ω1)–(Ω3). Hence,
Theorem 6.5 holds as well for sets ΩN , satisfying (6.44)-(6.47) with

(6.56)
C

N
≤ `(N).

7. Convergence of the empirical measure

In this section we present the two proofs of Corollary 2.2. The first one, in Section 7.1, shows
that it is a consequence of Theorem 2.1. The second (alternative) proof in Sections Section 7.2,
Section 7.3, shows how one can obtain the result from our methods via analysing the convergence
of the associated logarithmic potentials, in perhaps a more direct way.

7.1. Proof of Corollary 2.2. Let Ω be a fixed domain as in Theorem 2.1 and choose a sequence
δ = δN satisfying (2.2). By the Borel-Cantelli lemma, we know that a.s. (almost surely)

(7.1)
1

N
#(σ(PNδ ) ∩ Ω)→ vol (p−1(Ω) ∩ S1), N →∞.

Let now Ω be a square of the form a1 ≤ Re z < a2, b1 ≤ Im z < b2, a2−a1 = b2−b1 > 0. Assume
that the corners aj + ibk do not belong to p(S1). Then the conditions (Ω1)–(Ω3) make sense.
If they are fulfilled, then (7.1) holds a.s.. Indeed, let Ωint, Ωext be sets with smooth boundary
such that Ωint ⊂ Ω ⊂ Ωext and coinciding with Ω away from a small neighborhood of the union
of the corners of Ω. Then (7.1) holds a.s. for Ωint and Ωext, and the common limit in the right
hand side is (2π)−1vol (p−1(Ω) ∩ S1). Since

1

N
#(σ(PNδ ) ∩ Ωint) ≤

1

N
#(σ(PNδ ) ∩ Ω) ≤ 1

N
#(σ(PNδ ) ∩ Ωext),

we conclude that (7.1) holds a.s. for Ω.
Write p(ζ) = p1(ζ) + ip2(ζ) so that pj |S1

are real analytic. Then for j = 1, 2:

1) The set Cj of critical values of pj |S1
is finite.

2) For j = 1, 2 and for every a ∈ R the equation pj(ζ) = a has at most finitely many
solutions in S1.

Let ε > 0. Then we can choose a, b ∈ R (depending on ε) such that a + Zε ∩ C1 = ∅,
b+Zε ∩ C2 = ∅. After a slight shift of b we can arrange so that we also have

(a+Zε) + i(b+Zε) ∩ p(S1) = ∅.

Then for each ε > 0 we have a.s. that (7.1) holds for Ω = Ωε,j,k for all j, k ∈ Z. Here, we put
Ωε,j,k = (a+ [j, j + 1[ε) + i(b+ [k, k+ 1[ε[). Let εν > 0, ν ∈ N be a decreasing sequence tending
to zero. Then a.s., (7.1) holds for all the Ωεν ,j,k.

Let G be the set of all step functions of the form,

(7.2) ψ =
∑
j,k

gj,k1Ωεν ,j,k
, gj,k ∈ Q,

Then a.s. we have for every ψ ∈ G, that

(7.3)

∫
ψ ξN (dz)→

∫
ψ p∗

(
1

2π
LS1

)
(dz), N →∞.

Let φ ∈ Cc(C;R). For every ε > 0, we can find ψ = ψε ∈ G, such that |φ − ψ| ≤ ε. ξN and
p∗((2π)−1LS1) are probability measures, so∣∣∣∣∫ φ ξN (dz)−

∫
ψ ξN (dz)

∣∣∣∣ ≤ ε,∣∣∣∣∫ φ p∗

(
1

2π
LS1

)
(dz)−

∫
ψ p∗

(
1

2π
LS1

)
(dz)

∣∣∣∣ ≤ ε.
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It follows that a.s., we have for all φ ∈ C0(C),

lim sup
N→∞

∣∣∣∣∫ φ ξN (dz)−
∫
φ p∗

(
1

2π
LS1

)
(dz)

∣∣∣∣ ≤
2ε+ lim sup

N→∞

∣∣∣∣∫ ψ ξN (dz)−
∫
ψ p∗

(
1

2π
LS1

)
(dz)

∣∣∣∣ .
A.s. the last limit is 0 for all ψ ∈ G, hence a.s. we have that for all ε > 0 and all φ ∈ Cc(C),

lim sup
N→∞

∣∣∣∣∫ φ ξN (dz)−
∫
φ p∗

(
1

2π
LS1

)
(dz)

∣∣∣∣ ≤ 2ε.

In other words, a.s. we have

lim
N→∞

∫
φ ξN (dz) =

∫
φ p∗

(
1

2π
LS1

)
(dz),

for all φ ∈ Cc(C), so a.s.:

ξN (dz) ⇀ p∗

(
1

2π
LS1

)
, N →∞.

Notice that almost surely, supp ξN is contained in a fixed compact set.

7.2. Logarithmic potential and weak convergence of measure. We begin by recalling
some basic facts concerning the weak convergence of measures. Let P(C) denote the space of
probability measures µ on C, integrating the logarithm at infinity

(7.4)

∫
log(1 + |x|)µ(dx) < +∞.

We define the logarithmic potential of µ by

(7.5) Uµ(z)
def
= −

∫
log |z − x|µ(dx).

Since Uµ ∈ L1
loc(C, L(dz)), it follows that Uµ(z) < +∞ for Lebesgue almost every (a.e.) z ∈ C.

One property of the logarithmic potential is that for a given sequence of probability measures
{µn}n ∈ P(C), satisfying some suitable uniform integrability assumption, one has that almost
sure convergence of the associated logarithmic potentials Uµn(z) → Uµ(z), for some µ ∈ P(C),
implies the weak convergence µn ⇀ µ.

There are various versions of the above observation known in the case of random measures, see
for instance [Ta02, Theorem 2.8.3] or [BoCa13]. In the following we describe a slightly modified
version of [Ta02, Theorem 2.8.3] for the reader’s convenience.

Theorem 7.1. Let K,K ′ b C be open relatively compact sets with K ⊂ K ′, and let {µn}n∈N ∈
P(C) be as sequence of random measures so that almost surely

(7.6) suppµn ⊂ K for n sufficiently large.

Suppose that for a.e. z ∈ K ′ almost surely

(7.7) Uµn(z)→ Uµ(z), n→∞,
where µ ∈ P(C) is some probability measure with suppµ ⊂ K. Then, almost surely,

(7.8) µn ⇀ µ, n→∞, weakly.

Proof. 1. Notice that the assumption that for a.e. z ∈ K ′ (7.7) holds almost surely is equivalent
to the statement that almost surely (7.7) holds for a.e. z ∈ K ′. To see this, consider the set
E = {(z, ω) ∈ K ′ × Ω;Uµn(z)→ Uµ(z), as n→∞} ⊂ K ′ × Ω, where Ω denotes the underlying
probability space. Applying the Tonelli theorem to 1Ec lets us conclude the claim.

2. Since log | · −w| ∈ L2(K ′) uniformly for w ∈ K ′, it follows by the Minkowski integral
inequalities that, almost surely, Uµn , Uµ ∈ L2(K ′) uniformly. Let us remark here that although
µn depends on the random parameter ω, we do not denote that explicitly.
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Combining this with (7.6) and step 1. above, we see that there exists an Ω′ ⊂ Ω with
P(Ω′) = 1, so that for each ω ∈ Ω′ we have that

• (7.7) holds for a.e. z ∈ K ′,
• there exists an n0 ≥ 1 such that suppµn ⊂ K for all n ≥ n0,
• there exists a CK′,Ω′ > 0, depending only onK ′ and Ω′, such that ‖Uµn‖L2(K′), ‖Uµ‖L2(K′) ≤
CK′,Ω′ for any n ≥ 1 .

To show (7.8) for any ω ∈ Ω′, it is enough to show that for any real-valued smooth function
φ ∈ C∞c (K ′;R) with support contained in K ′,

(7.9) µn(φ)→ µ(φ), n→∞.
3. Let ω ∈ Ω′, and set gMn (z) = min(|Uµn(z)− Uµ(z)|,M), z ∈ K ′, for M > 0. The dominated
convergence theorem shows that gMn → 0, as n → ∞, in L1(K ′) for any M > 0. Using the
L2(K) bound of Uµn and Uµ, we see that

‖gMn − |Uµn − Uµ|‖L1(K′) ≤
∫
|Uµn−Uµ|≥M

z∈K

|Uµn(z)− Uµ(z)|L(dz)

≤
√

2CK′

∫
|Uµn−Uµ|≥M

z∈K

L(dz)

1/2

≤
√

2CK′L(K ′)1/2

M
.

Hence, for any w ∈ Ω′ we have that Uµn → Uµ in L1(K ′) as n → ∞. Thus, almost surely
Uµn ⇀ Uµ in D′(K ′), and so (7.9) holds almost surely, since ∆zUµn = −2πµn, ∆zUµ = −2πµ in
D′(C). �

7.3. Proof of Corollary 2.2. Recall the definition of the empirical measure ξN (2.5) and
(1.9). By (1.3), (1.4) and the Fourier transform F (3.16) we see that the operator norm of the
unperturbed operator P 0

N is satisfies

(7.10) ‖P 0
N‖ ≤ ‖p‖L∞(S1).

Suppose (5.19), then by (5.4), (7.10) it follows that

(7.11) ‖P δN‖ ≤ ‖p‖L∞(S1) + 1

for N > 1 sufficiently large, with probability ≥ 1 − e−N
2
. We deduce by a Borel-Cantelli

argument that almost surely

(7.12) supp ξN ⊂ D(0, ‖p‖L∞(S1) + 1)
def
= K ⊂ D(0, ‖p‖L∞(S1) + 2)

def
= K ′

for N sufficiently large. For p as in (1.3), define the probability measure

(7.13) ξ = p∗

(
1

2π
LS1

)
which has compact support,

(7.14) supp ξ = p(S1) ⊂ K.
Here, 1

2πLS1 denotes the normalized Lebesgue measure on S1.
To conclude Corollary 2.2 from Theorem 7.1 it remains to show that for almost every z ∈ K ′

we have that UξN (z)→ Uξ(z) almost surely.

By (7.5) we see that for z /∈ Spec(P δN )

(7.15) UξN (z) = − 1

N
log |det(P δN − z)|.

For any z ∈ C the set Σz = {Q ∈ CN×N ; det(P0 + δQ− z) = 0} has Lebesgue measure 0, since
CN×N 3 Q 7→ det(P δN − z) is analytic and not constantly 0. Thus µN (Σz) = 0, where µN is the
Gaussian measure given in (5.2), and for every z ∈ C (7.15) holds almost surely (a.s.).
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Next, define the set

(7.16) EN
def
= {z ∈ C; dist(z, p(S1)) ≤ 1/(CN)}

which has Lebesgue measure L(EN ) = O(N−1). By (6.7), (6.8), (5.4) as well as Proposition 5.1
and (5.19) we have that for every z ∈ K ′\EN

(7.17)

∣∣∣∣ 1

N
log |det(P δN − z)| − φ(z)

∣∣∣∣ ≤ O(δN3/2) +N−1
∣∣ log |detEδ−+(z)|

∣∣.
with probability ≥ 1− e−N

2
. Using Proposition 5.1, we see that for every z ∈ K ′\EN

(7.18) log | detEδ−+(z)| ≤ O(logN).

with probability ≥ 1− e−N
2
. Let ε0 ∈]0, 1[ be as in Corollary 2.2 and let ε1 ∈]0, 1[ with ε0 < ε1.

Then, by replacing ε0 in (6.12) with ε1, we have that

(7.19) log |detEδ−+(z)| ≥ −N ε1

with probability ≥ 1− e−N
2 − C2δ

−|J |e−
1
2
Nε1 , when

exp

[
C0

2|J |
− N ε1

2|J |

]
≤ δ.� N−4

For z /∈ p(S1) the function S1 3 ζ 7→ log |z − p(ζ)| is continuous. Hence, by (6.7), (7.13), (7.5),
and a Riemann sum argument, we see that for

(7.20) |φ(z) + Uξ(z)| −→ 0, as N →∞.
For any z ∈ K ′\p(S1) we have that z ∈ K ′\EN for N > 1 suffciently large. Thus, by (7.15),
(7.17), (7.18), (7.19), and (7.20) we have for any z ∈ K ′\p(S1) and N > 1 sufficiently large that

(7.21) |UξN (z)− Uξ(z)| = o(1)

with probability ≥ 1 − O(1)e−
1
2
Nε1 (1−|J |Nε0−ε1 ). Here we also used (2.2). Since ε0 < ε1, we

conclude by the Borel-Cantelli theorem that for almost every z ∈ K ′

(7.22) UξN (z) −→ Uξ(z), as N →∞, almost surely,

which by Theorem 7.1 concludes the proof of Corollary 2.2.
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