On Scalar and Ricci Curvatures - Archive ouverte HAL
Article Dans Une Revue Symmetry, Integrability and Geometry : Methods and Applications Année : 2021

On Scalar and Ricci Curvatures

Gérard Besson
Sylvestre Gallot
  • Fonction : Auteur
  • PersonId : 1099529

Résumé

The purpose of this report is to acknowledge the influence of M. Gromov's vision of geometry on our own works. It is two-fold: in the first part we aim at describing some results, in dimension 3, around the question: which open 3-manifolds carry a complete Riemannian metric of positive or non negative scalar curvature? In the second part we look for weak forms of the notion of ''lower bounds of the Ricci curvature'' on non necessarily smooth metric measure spaces. We describe recent results some of which are already posted in [arXiv:1712.08386] where we proposed to use the volume entropy. We also attempt to give a new synthetic version of Ricci curvature bounded below using Bishop-Gromov's inequality.
Fichier principal
Vignette du fichier
sigma21-046.pdf (739.39 Ko) Télécharger le fichier
sigma21-046.zip (88.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02966630 , version 1 (15-10-2020)
hal-02966630 , version 2 (24-05-2021)

Identifiants

Citer

Gérard Besson, Sylvestre Gallot. On Scalar and Ricci Curvatures. Symmetry, Integrability and Geometry : Methods and Applications, 2021, ⟨10.3842/SIGMA.2021.046⟩. ⟨hal-02966630v2⟩
90 Consultations
271 Téléchargements

Altmetric

Partager

More