Statistical Field Theory and Networks of Spiking Neurons - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Statistical Field Theory and Networks of Spiking Neurons

Pierre Gosselin
  • Fonction : Auteur
  • PersonId : 829854
Aïleen Lotz
  • Fonction : Auteur
  • PersonId : 1078336
Marc Wambst
  • Fonction : Auteur
  • PersonId : 964354

Résumé

This paper models the dynamics of a large set of interacting neurons within the framework of statistical field theory. We use a method initially developed in the context of statistical field theory [44] and later adapted to complex systems in interaction [45][46]. Our model keeps track of individual interacting neurons dynamics but also preserves some of the features and goals of neural field dynamics, such as indexing a large number of neurons by a space variable. Thus, this paper bridges the scale of individual interacting neurons and the macro-scale modelling of neural field theory.
Fichier principal
Vignette du fichier
NN290920soir.pdf (883.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02953819 , version 1 (30-09-2020)
hal-02953819 , version 2 (20-05-2022)

Identifiants

  • HAL Id : hal-02953819 , version 1

Citer

Pierre Gosselin, Aïleen Lotz, Marc Wambst. Statistical Field Theory and Networks of Spiking Neurons. 2020. ⟨hal-02953819v1⟩
137 Consultations
57 Téléchargements

Partager

More