Statistical Field Theory and Networks of Spiking Neurons - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Statistical Field Theory and Networks of Spiking Neurons

Pierre Gosselin
  • Fonction : Auteur
  • PersonId : 829854
Aïleen Lotz
  • Fonction : Auteur
  • PersonId : 1078336
Marc Wambst
  • Fonction : Auteur
  • PersonId : 964354

Résumé

This paper models the dynamics of a large set of interacting neurons within the framework of statistical field theory. We use a method initially developed in the context of statistical field theory Kl and later adapted to complex systems in interaction GL1GL2. Our model keeps track of individual interacting neurons' dynamics but also preserves some of the features and goals of neural field dynamics, such as indexing a large number of neurons by a space variable. This paper thus bridges the scale of individual interacting neurons and the macro-scale modelling of neural field theory.
Fichier principal
Vignette du fichier
NNJSM2005.pdf (999.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02953819 , version 1 (30-09-2020)
hal-02953819 , version 2 (20-05-2022)

Identifiants

  • HAL Id : hal-02953819 , version 2

Citer

Pierre Gosselin, Aïleen Lotz, Marc Wambst. Statistical Field Theory and Networks of Spiking Neurons. 2022. ⟨hal-02953819v2⟩
137 Consultations
57 Téléchargements

Partager

More