Algebraic polygraphs modulo and linear rewriting - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Algebraic polygraphs modulo and linear rewriting

Benjamin Dupont
  • Fonction : Auteur
  • PersonId : 1109333
Philippe Malbos

Résumé

Convergent rewriting systems on algebraic structures give methods to prove coherence results and compute homological invariants of these structures. These methods are based on higher-dimensional extensions of the critical pair lemma that characterizes local confluence from confluence of critical pairs. The analysis of local confluence of rewriting systems on algebraic structures, such as groups or linear algebras, is complicated because of the underlying algebraic axioms, and local confluence properties require additional termination conditions. This article introduces the structure of algebraic polygraph modulo that formalizes the interaction between the rules of the rewriting system and the inherent algebraic axioms, and we show a critical pair lemma for algebraic polygraphs. We deduce from this result a critical pair lemma for rewriting systems on algebraic structures specified by rewriting systems convergent modulo associativity and commutativity axioms. As an illustration, we explicit our constructions on linear rewriting systems.
Fichier principal
Vignette du fichier
PolyAlg.pdf (275.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02945665 , version 1 (22-09-2020)
hal-02945665 , version 2 (15-09-2021)
hal-02945665 , version 3 (08-07-2023)

Identifiants

  • HAL Id : hal-02945665 , version 1

Citer

Cyrille Chenavier, Benjamin Dupont, Philippe Malbos. Algebraic polygraphs modulo and linear rewriting. 2020. ⟨hal-02945665v1⟩
115 Consultations
336 Téléchargements

Partager

More