Confluence of algebraic rewriting systems - Archive ouverte HAL
Article Dans Une Revue Mathematical Structures in Computer Science Année : 2021

Confluence of algebraic rewriting systems

Résumé

Convergent rewriting systems on algebraic structures give methods to solve decision problems, to prove coherence results, and to compute homological invariants. These methods are based on higher-dimensional extensions of the critical branching lemma that proves local confluence from confluence of the critical branchings. The analysis of local confluence of rewriting systems on algebraic structures, such as groups or linear algebras, is complicated because of the underlying algebraic axioms. This article introduces the structure of algebraic polygraph modulo that formalizes the interaction between the rules of an algebraic rewriting system and the inherent algebraic axioms, and we show a critical branching lemma for algebraic polygraphs. We deduce a critical branching lemma for rewriting systems on algebraic models whose axioms are specified by convergent modulo rewriting systems. We illustrate our constructions for string, linear, and group rewriting systems.
Fichier principal
Vignette du fichier
algebraicPolygraphs.pdf (402.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Commentaire Ce pdf est la version preprint de l'article (version soumise à l'éditeur, avant peer-reviewing).

Dates et versions

hal-02945665 , version 1 (22-09-2020)
hal-02945665 , version 2 (15-09-2021)
hal-02945665 , version 3 (08-07-2023)

Identifiants

Citer

Cyrille Chenavier, Benjamin Dupont, Philippe Malbos. Confluence of algebraic rewriting systems. Mathematical Structures in Computer Science, 2021, 32 (7), pp.870-897. ⟨10.1017/S0960129521000426⟩. ⟨hal-02945665v2⟩

Collections

ICJ-AGL
115 Consultations
336 Téléchargements

Altmetric

Partager

More