Boundary singular solutions of a class of equations with mixed absorption-reaction - Archive ouverte HAL Access content directly
Journal Articles Calculus of Variations and Partial Differential Year : 2022

Boundary singular solutions of a class of equations with mixed absorption-reaction

Marie-Françoise Bidaut-Veron
  • Function : Author
  • PersonId : 849251
Laurent Veron

Abstract

We study properties of positive functions satisfying (E) −∆u + u p − M |∇u| q = 0 is a domain Ω or in R N + when p > 1 and 1 < q < min{p, 2}. We concentrate our research on the solutions of (E) vanishing on the boundary except at one point. This analysis depends on the existence of separable solutions in R N +. We consruct various types of positive solutions with an isolated singularity on the boundary. We also study conditions for the removability of compact boundary sets and the Dirichlet problem associated to (E) with a measure for boundary data.
Fichier principal
Vignette du fichier
Boundary singularities solutions30.pdf (450.88 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02909840 , version 1 (31-07-2020)
hal-02909840 , version 2 (02-11-2020)
hal-02909840 , version 3 (11-01-2022)
hal-02909840 , version 4 (23-01-2022)

Identifiers

Cite

Marie-Françoise Bidaut-Veron, Marta Garcia-Huidobro, Laurent Veron. Boundary singular solutions of a class of equations with mixed absorption-reaction. Calculus of Variations and Partial Differential, 2022, 61 (113), pp.1-46. ⟨10.1007/s00526-022-02200-z⟩. ⟨hal-02909840v4⟩
110 View
84 Download

Altmetric

Share

Gmail Facebook X LinkedIn More