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Boundary singular solutions of a class of
equations with mixed absorption-reaction

Marie-Francoise Bidaut-Véron;
Marta Garcia-Huidobro |
Laurent Véron *

Abstract

We study properties of positive functions satisfying (E) —Au + u? — M|Vu|? =0 is a
domain © or in RY when p > 1 and 1 < ¢ < min{p,2}. We concentrate our research on the
solutions of (E) vanishing on the boundary except at one point. This analysis depends on
the existence of separable solutions in RY. We construct various types of positive solutions
with an isolated singularity on the boundary. We also study conditions for the removability
of compact boundary sets and the Dirichlet problem associated to (E) with a measure as
boundary data.
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1 Introduction

The aim of this article is to study some properties of solutions of the following
equation
Lomu = —Au+ |ulP~lu — M|Vul|? =0 (1.1)

in a bounded domain Q of R¥ or in the half-space RY, where M > 0 and p >
q > 1. We are particularly interested in the analysis of boundary singularities of
such solutions. If M = 0 the boundary singularities problem has been investigated
since thirty years, starting with the work of Gmira and Véron [15] who obtained an
almost complete description of the solutions with isolated boundary singularities.
When M > 0 there is a balance between the absorption term |u[P~u and the source
term M |Vul?, a confrontation which can create very new effects. Furthermore, the
scale of the two opposed reaction terms depends upon the position of ¢ with respect
to ]%. This is due to the fact that (1.1) is equivariant with respect to the scaling

transformation 7y defined for £ > 0 by Ty[u](z) = E%u(&c).
If ¢ < 1%’ the absorption term is dominant and the behaviour of the singular
solutions is modelled by the equation studied in [15]

—Au+ |ulP~tu = 0. (1.2)

Ifg > 1% , the source term is dominant and the behaviour of the singular solutions

is modelled by positive separable solutions of the equation without diffusion
u? — M|Vul? = 0. (1.3)

Another associated equation which plays an important role in the construction of
singular solutions since its positive solutions are supersolutions of (1.1) is

—Au — M|Vul? = 0. (1.4)



Note that in (1.3) and (1.4), M can be fixed to be 1 by replacing u by fu.

If ¢ = %, the coefficient M > 0 plays a fundamental role in the properties of the
set of solutions, in particular for the existence of singular solutions and removable
singularities. This situation is similar in some sense to what happens for equation

—Au = |ulP~tu + M|Vul? (1.5)

which is studied thoroughfly in [5], [6] in the case M > 0 and in [26] in the case
M < 0. In this last article the opposition of a forcing term |u|P~'u and an absorption
term M|Vul? creates a very rich configuration of unexpected phenomena and new
effects.

In the present paper we will consider the case where 1 < ¢ < 2, with a special
emphasis on the case ¢ = z% which allows to put into light the role of the value
of M. We first analyze the following problem: given a smooth bounded domain
Q C R~ such that 0 € 012, under what conditions involving p, ¢ and M is the point
0 a removable singularity for a solution of (1.1) continuous in Q\ {0} and vanishing
on 0\ {0} ? In the sequel we denote p(z) = dist (z,09) and for 1 < s < oo,
L5(Q) := L*(Q; pdz) and the space of test functions in ) is defined by

X(Q)={¢eC'(Q):(=00ndQ, A€ L®(Q)}. (1.6)
If €2 is replaced by RY, then
X(RY) = {¢ € C*(RY) with compact support in R}, AC € L*(RY)}.  (1.7)
Our first result is the following:
Theorem 1.1 Assume p > %, M >0 and
(i) eitherp =8 and 1 < g <1+ %.
(i) or p > £+ and 1 < q < 22

p+1°
Then any nonnegative solution u € C*(Q) N CHQ\ {0}) of

—Au+ [P~y — M|Vu|? =0 in Q (1.8)
u=0 in 002\ {0} '
verifies Vu € LE(Q), u € LEQ) and is a weak solution of
—Au+ [Pty — M|Vu|? =0 in (1.9)
u =0 in 0f, '
in the sense that
/ (—uAC + (JulP u — M|Vu|9)¢) dz =0 for all ¢ € X(1). (1.10)
Q

Furthermore, if we assume either (i), or



(m)p>NJrl cmd1<q< = or
N+1 _ 2
(iv) p> 51, 4= 3 and

M<m™ :=((p+1) (1.11)

((N—l)p—

2p

<N+1)>p«’i1

then uw = 0.

This result is optimal in the case p = %"'i, q= ]% as we will see in Section 4.
Combining the method used in proving Theorem 1.1 with the result of [18] we prove
the removability of compact boundary sets on 0f2, provided they satisfy some zero

Bessel capacity property.

Theorem 1.2 Assume p > Nfl and N‘H < r < p. If one of the following condi-
tions is satisfied:

o 2
(i) either ¢ = 7 and

M <m? = (p+1) (M)W, (1.12)

(ii) or 1 < q < r <3 and M is arbitrary.

p+1 ’
Then if K C 050 is a compact set such that capggzﬂ,(K) =0, any solution u of

—Au+ |ulP~tu — M|Vul? =0 in Q
u=0 on N\ K, (1.13)

is identically 0.

Note that m*%., = m™*. The capacitary framework allows to consider the Dirich-
N—

1
let problem for (1.1)

—Au+ |ulP~tu — M|Vul? =0 in

u=p in 092, (1.14)

where 1 is a Radon measure on 0f2. By a weak solution of (1.14) we understand a
function v € LY(Q) N LH(Q2) such that |Vu| € L(€2), which satisfies

/ (—uAC + (JulP~ u — M|Vul?)¢) do = —/ o¢ —dp for all ¢ € X(©2). (1.15)
Q a0 0n

When the two exponents are super-critical with respect to the equations (1.2) and
(1.4), the admissibility condition on the measure for (1.1) requires the introduction
of two different Bessel capacities defined on Borel subsets of 0.



Theorem 1.3 Letp > 1,1 < g <2 and p be a nonnegative Radon measure on OS2
which satisfies

#(E) < Cmin {capgglq q,(E)7 capggé,(E)} for all Borel set E C 0),  (1.16)

q "’ p’

for some C' > 0. Then there exists cog > 0 such that for any 0 < ¢ < ¢ there
exists a nonnegative weak solution of (1.14) with boundary data cp. Furthermore the
boundary trace of u is the measure cp.

The proof is based upon a non-standard application of the sub and supersolutions
technique since it relies of the dynamical (and more natural) aspect of the boundary
trace as it is exposed in [20]. Another surprising fact is the use of the equation

—Auy =uP in
u=p in 092,
which yields key estimates for our construction. The theorem admits several corol-

laries the proof of which is based on properties of Bessel capacities as exposed in [1].

It is noticeable that the results therein cover the full range (p, q) € (1,00) x (1,2).
Corollary 1.4 Assume p > N“ and +1 < g < 2. If uis a nonnegative Radon

measure on 082 which satzsﬁes for some C' > 0,
w(E) < Ceap?ly q,(E) for all Borel set E C 02, (1.17)
q b

there the conclusions of Theorem 1.3 hold.

The condition on the measure is also fulfilled under the following conditions.
Corollary 1.5 Assume M <q<; p . If p is a nonnegative Radon measure on

0S) such that for some constant C > O there holds for any Borel set & C 0f),
W) < Ceapl® (E), (1.18)
then the conclusions of Theorem 1.3 hold.

Since the exponents p and ¢ can be separately super or sub-critical, or even both
sub-critical, we have the following result in different configurations of exponents.

Corollary 1.6 Let p > 1,1 < g < 2 and pp € M (0N). There exists a function
u € LY(Q) N LE(Q) such that Vu € L(Q) which is a weak solution to (1.14) in the
following cases:

(i) When p < 821, g < 2L and there exists some ¢1 > 0 such that ||u|ly < c1.

(ii) When p < %*%, q> Nﬁl and p satisfies (1.17); in that case p has to be replaced
by cu with 0 < ¢ < ¢, for some co > 0, in problem (1.14).

(iii) When p > 351, g < H and p satisfies ||p|lgy < c3 for some c3 > 0 and

w(E) =0 for all Borel set E C 0N such that capggi;,(E) =0. (1.19)
p’



In [7] the same authors study the problem

—Au+ |ulP~tu — M|Vul? = p in

u=0 in 09, (1.20)

where 4 is a bounded Borel measure in ). There too sufficient conditions for solving
the problem involves Bessel capacities, but since the boundary trace argument is no
longer valid, an intensive utilization of potential theory with various kernels has to
be used.

In the sub-critical case (i) and when p is a Dirac mass at 0 on the boundary we
have no restriction on its weight.

Theorem 1.7 Assume 1 < p < NH and 1 < q¢ < NH. Then for any k > 0 there
exists a minimal positive solutzon U of

—Au+ |[uP7lu — M|Vu|? =0 in RY (1.21)
u=0 in ORY \ {0}, '
satisfying
(@) _ (1.22)

750 P(z)

where Py (z) = cyx ||~ is the Poisson kernel in RY . Furthermore this solution
2p
P
(RY;wdx), Vug € L (RY; 2 dz) and

0
/R (—urAC + (uf M\Vuﬂ))dxzk%

y N

is unique among the positve solutions of (1.21)-(1.22) if ¢ < This function

satisfies up € L} (RY)N LY |

(0) forall ¢ € X(RY).  (1.23)

The proof is completely different from the ones of Theorem 1.3 and Corollary 1.6
and is based upon a delicate construction of supersolutions and subsolutions. A
similar result holds if RY is replaced by a bounded smooth domain 2 C RY such
that 0 € 99).

Theorem 1.8 Assume 1 < p < NH and 0 < g < N+1. Then for any M > 0 and
k > 0 there exists a minimal solutwn up € CHQ\ {0} of (1.8) satisfying

1m Uk (x)
z—0 Pq (.CU)

=k, (1.24)

where Py is the Poisson kernel in Q. Furthermore u, € L*(Q)NLH(Q), Vuy € LE(R),
and

¢

o (0) for all ¢ € X(£2). (1.25)

/Q( upAC + (uf) — M|Vug|9)¢) do = —k—=



In order to study the behaviour of these solutions u; when k — oo we have to
introduce separable solutions of (1.1) in the model case RY. They are solutions of

~Au A JufP Y — M|Vl =0 in RY (1.26)
u=0 on ORY \ {0},
which have the following expression in spherical coordinates
u(r,o) = rip%lw(a) for all (r,0) € (0,00) x SY.
Put 9
o= P (1.27)

and denote by A’ and V' the Laplace-Beltrami operator and the spherical gradient,
then w satisfies

—ANw+a(N-2-a)w+ |wPlw—M(a?w? + |V ) =0 in S¥!

in 5’31_1.
(1.28)

| |
o

Theorem 1.9 There exists a positive solution w to problem (1.28) if one of the
following conditions is satisfied:

(i) either 1 < p < N+1 and M >0,
(ii) or p = N—fl andM>0
(iii) or 1 <p <3 orp> N+1, and M > M, = for some explicit value M, > 0.

The positive solutions of (1.28) allow to characterize the limit us, of the solutions
uy, constructed in Theorem 1.7.

Theorem 1.10 Let 1 <p < N+1 ,1<g< N+1 and M > 0, then

Uso ()
= 1.2
P (@) (1.29)
Furthermore
(1) If1<q<p+1
lim r%us(r,.) =9 uniformly on SY ™, (1.30)
r—0
where 1 is the unique positive solution of
A+ a(N—-2—a)y+ [Pty =0 in ST
. No1 (1.31)
=0 in OS],

and U 18 the unique positive function solution of (1.21) and satisfying (1.29).

(it) IfQ—m

lim r%us (r,.) = w  uniformly on SY 7', (1.32)
r—0

where w is the minimal positive solution of (1.28).



A similar result holds if RY is replaced by a bounded smooth domain 2 C RY,
which boundary contains 0. In that case we assume that Tpo(0) = 8Rﬂ\rf (i.e. 8Rf

is the tangent hyperplane to 9 at 0 in order to use the spherical coordinates (r, o)

as above. Finally, if (p,q) = (%, %) and 0 is ”very flat” near 0 in the sense

that dist (z, Ty (0)) < clz|Y for all 2 € 9N close to 0, we prove that the function e
defined in the previous theorem still satisfies (1.32). Note that the above flatness
condition is always satisfied if N = 2 since 99 is locally the graph of a C* real
valued function (k > 2) defined on Ty (0) N Bs and degenerate at 0.

When 1% < ¢ < min{2, p}, the situation is completely changed and the solutions
with strong boundary blow-up are modelized by equation (1.3). If 1 < ¢ < 2 we set

2—q
= 1.
f=""1, (1.33)
andifl<qg<p
q
v=—. 1.34
p— (1.34)

We prove the following result in the statement of which ¢; denotes the first
eigenfunction of —A’ in W(}’Q(Sf*l).

Theorem 1.11 Assume M > 0 and 1% < q < min{2,p}. Then there ezists a
positive solution u of (1.1) in RY, which vanishes on ORY \ {0} such that

meo1(o)r~7 <u(r,o) < ¢y max {rfa,Mﬁrf'y} for all (r,o) € (0,7") x S¥.
(1.35)
for some m > 0, r* € (0,00| and where ¢y = c4(N,p,q) > 0. If Ng > (N — 1)p,
r* = oo.

Note that our construction which is made by mean of supersolutions and subso-
lutions does not imply that in the case ]% <gqg< %, the solution us, obtained
in Theorem 1.10 satisfies (1.35). A similar result holds if RY is replaced by a
bounded smooth domain € C RY, such that 0 € 99, under the flatness condition

dist (x, Ty (0)) < c|a[7! for z € O near 0.

In the sequel C > 0 denotes a constant the value of which can change from one
occurence to another and ¢; (j = 0,1,2,...) a more specific positive constant the
value of which depends of more precise elements such as p, g, N or other previous
constants c;.

In a forthcomming article [8] we study the isolated singularities of positive so-
lution in a domains. Due to the number of parameters even the radial solutions
present an amazing rich complexity.

Aknowledgements The authors are grateful to the anonymous referee for his care-
ful checking of the work and his pertinent observations. This article has been pre-
pared with the support FONDECYT grants 1210241 and 1190102 for the three
authors.



2 Singular boundary value problems

2.1 A priori estimates

We give two series of estimates for solutions of (1.1) with a boundary singularity
according to the sign of M.

Theorem 2.1 Let Q be a domain such that 0 € 02, M € R and 1 < ¢ < min{p, 2}.
Ifu e CHQ\ {0}) is a solution of (1.1) vanishing on O\ {0}, there holds

1- If M > 0, there exists = c5(N,p,q) > 0 such that
ug () SC5maX{MTL1|x|_ﬁ,|x|_%} for all xz € Q. (2.1)
2- If M <0, there exist c¢ = c6(N,q) > 0 and c¢; = ¢7(N,p) > 0 such that
_1 2 _ 2
tu4(z) < min {66’M| a—1|z| =1, c7|x| P—l} for all x € Q. (2.2)

Proof. We first assume that Q C Bp, for some Ry > 0. Let € > 0, we set

0 if r<0
je(r)y =3 = if0<r<e
r—35 if r>e

If we extend w by 0 in Q° N Bsp, and set ve = je(u) we have
—Ave + ¢ — M|Vl = —ji(u) Au — 2 (w)[Vul* + (je(u))P — M (5(u))?|Vul?
< Mji(u) (1= (GE(u)?) [Vul? + (Ge(w)P — ji(u)ul;

U it
M — _ q
< € <1 6q1> ‘VU6| X{O<u<e}'

Letting ¢ — 0, we deduce from the dominated convergence theorem that vy = lin% Ve
€—

is nonnegative (actually it is the extension of u* by 0 outside 2\ {0}) and satisfies
Lvg := —Avg + v — M|Vuo|? <0 in D'(Bag, \ {0}). (2.3)

The case M > 0. Following the method of Keller [16] and Osserman [23], we fix
a € Br, \ {0}, and introduce U(z — a) = Ma|?> = |z — a|*)? for some b > 0. Then
putting r = |x — a| and U(r) = U(z — a), we have

10— g N-1

U’ — M|U'|7 + UP
= AJa|?> = r2)7270 [\=1(|a|? — #2)20=D) 4 2B(N — 2(b + 1))r? — 2Nb|a|?

_qubq)\qfqu(‘ap — T2)2+b—q(b+1)} )



If M > 0, the two necessary conditions on b to be fulfilled in order U be a superso-
lution in B, (a) are

(1) 2-bp-1)<0<=bp—1) =2

(11) 24b—qb+1)>2-b(p—1)<=blp—q) >q.

The above inequalities are satisfied if
b= max{ -2, L —maxfa,) 2.4
=maxq ——,—— p = max{a,v}. .
p—1'p—q
2
Ifq>1?plthenb:p¥1q and

2p—q(p+1)

LU >\ (|a\2 - r2)7% [)\q_l (AP~ — M2pIr?) (|a|2 - 7"2) = — (3b+1)N|a|*|.

There exists ¢5 > 0 depending on N, p and ¢ such that if we choose
1 g 2p(g—1)
A = ¢5 max {Mp—q la|p=a, |a| P=DG=0) } ,
there holds R
LU > 0. (2.5)
Since U(z) — oo when |z| — [a], we obtain by the maximum principle (see [24] for
a ) that vg < U in By, (a). In particular

~ _2q 1 _a __2_
uy(a) =wvo(a) < U(a) = Na| P=7 = ¢ max {MP*Q la| P=a,|a| P—1 } . (2.6)

2 2
Ifqurplthenb:ﬁand

- _2p_ 2 2 1 2N
LU > X(|a|* —r?) = [)\p_l + p— <N — (p+1)> r? — 71\&|2
p—= p-= p—

2pq(p+1):|

2 q
) ot
p_

P 4p—f1(p+3):|

2
>\ (!a|2 — 7“2)_7 [)\p_l —Clal]?> = C'X7 1 M|a|” »-1

Hence, if ¢ = %, (2.5) holds if for some c¢5 = ¢5(N,p,q) > 0,
pt1 2
A = ¢5 max {MP(P—U , 1} la|P-T,
which yields
=~ 4 _ptl __2
uy(a) =vo(a) <U(a) = Aa| P T =cs max{Mp(P—l) , 1} la| P-T. (2.7)

10



J 2p
While if ¢ < o1 We choose

1 4p—q(p+3) 2
A = ¢s max {Mp—q la|>=1=a) | |a|r-1 } ,
where ¢5 > 0 = ¢5(N, p, q), which yields
~ 4 1 a2
uy(a) =wvo(a) < U(a) = Aa| »~1 = ¢ max {MP*Q la| ?=a,|a| P—1 } . (2.8)
The case M < 0. We first assume that M < 0. By [22, Lemma 3.3] vy satisfies
—Avg + |[M||Vup|? <0 in D'(Bag, \ {0}). (2.9)
Therefore, since 1 < q < 2,
1 _2=a
i (a) = vo(a) < eo| M| 7 |a| "5, (2.10)
If M < 0 there also holds
—Avg+vh <0  in D'(Bag, \ {0}). (2.11)

Hence )
us(a) =vo(a) < crlal” »-1. (2.12)

In the above inequalities cg = ¢g(q, N) > 0 and ¢7 = ¢7(p, N) > 0. Combining these
estimates we derive

2 1 2—
s (a) < min {C7|a\—pﬁ,cﬁ|M|—ﬁ\a|—r—?}. (2.13)

Since the estimate is independent of Ry, the assumption that Q C Bp, is easily ruled
out. This ends the proof. O

Remark. If M = 0, estimate (2.1) is just
wy () < erla| 7T (2.14)

If M <0, (2.14) is valid what ever is the value of g. Furthermore there also holds

2—q

ws (x) < el Mlle| 5, (2.15)

whatever is the value of p, provided 1 < ¢ < 2.

The equation is not invariant by uw +— —u, hence the lower and upper estimates
are not symmetric.

11



Corollary 2.2 Under the assumptions of Theorem 2.1, there holds
1-If M >0

1 2 2
—min{c6\M| a—1|z| a1, c7|x| P—l}gu(x)

g s (2.16)
< ¢ max {Mpfq |x| P, |z] P*l} for all x € Q.
2- If M <0, there exist cg = c(N,q) > 0 and c¢; = c7(N,p) > 0 such that
—C5 max {Mplfq]a:rﬁ, ]a:|7%} < u(x)
(2.17)

1 2— 2
< min {cﬁ\Mrth\xrﬁ,cﬂxrﬁ} for all x € Q.
We infer from Theorem 2.1 an estimate of the gradient of w near 0.

Theorem 2.3 Let Q be a smooth bounded domain such that 0 € 9 and Tya(0) =
ORY, M >0,p>1and1<q<min{2p}. Ifuec CYQ)\{0}) is a nonnegative
solution of (1.1) wanishing on 0Q \ {0}, for any ro > 0 there holds there exists
cs = cg(N,p,q,Q, 19, M) > 0 such that

+1
|Vu(z)| < cg max {]x\_P%q, ]x\_gj} for all x € QN By,. (2.18)
The restriction that |x| < 1 is not needed if ¢ = %.

Proof. We assume first that B; C Q.

Case]:l<q§l%. For 0 <r <1 we set

2 2
u(x) =r P Tu () =r rTu.(y) with y= 2.

If £ <|z| < 2r, then § < |y| < 2 and u, > 0 satisfies

2p—q(p+1)

—Au, +ul — Mr~ » 1 |Vu,]9=0 in BJ\B;

2p—q(p+1)

and vanishes on 9(By \ BY). Since 0 < Mr~ » T < M as2p—q(p+1) >0, by

2
the standard regularity theory we have the estimate
max {|Vu,(2)] : % <|z] < 3} < comax{|u,(2)| : & < |2 < 2}, (2.19)

where ¢g depends on NV, p,q and M. Now it follows that
1 2 1 2p—q(p+1)
max{|ur(z)\ i3 < |Z| < 2} < 2p-1¢s max Mp—qr(?*l)(pfq)’l ,

by (2.1). Therefore

1 2p—q(p+1)

2 +1 1 p1).
max {[Vu(y)| : § < |y| < 2r} < 25T cscor »1 max Mr=ar®-1G-9 1

[l

} (2.20)

+1
< csmax{]x\_zﬂ%q, |z _ifl} ,

12



which is (2.18).
Case 2: I%<q<2. For 0 <r <1 we set

_2=g _2=
T z

u(x) =r o tu (%) =71 ﬁur(y) with y = Z.

If £ <|z| < 2r, then § < |y| < 2 and u, > 0 satisfies

a(p+1)—2p

—Aup +7r T ul — M|Vu,|7=0 in B;\BI’
2

We notice that g(p 4+ 1) — 2p > 0. Then inequality (2.19) holds. Now
1 = -2 __a
max {|u,(2)| : 3 < |2| < 2} < yret max {r =1y P*q},
thus
2 3 n =41 -2 -
max {[Vur(2)]: 3 < |2]| < 3} < cfret™ max {r =17 P*q}, (2.21)
which implies

+1
max {|Vu(z)| : & < [z] < 3} < cymax {r_%,r_ﬁ}. (2.22)

The general case; If 9 is not flat near 0 we proceed as in the proof of [22, Lemma
3.4], using the same scaling as in the flat case which transform the domain By \ B;")
into (B2 \ B1) N 1Q, the curvature of which is bounded when 0 < r < 1. The
same estimates holds, up to the value of the constant cg and we derive (2.18).

U

As a consequence we have the following.

Corollary 2.4 Under the assumptions of Theorem 2.3 the function u satisfies
1 __p _ptl
u(z) < egp(x) max {Mpfq |x| P=a,|z] P*l} for all x € QN By. (2.23)

The restriction that |x| < 1 is not needed if ¢ = 1%'

2.2 Removable singularities
Proof of Theorem 1.1. If M < 0, u is a nonnegative subsolution of —Awu + vP =0
which vanishes on 0 \ {0}, hence it is identically zero by [15].

Step 1. We assume M > 0. It is straightforward to verify from estimates (2.18) that
under conditions (i) or (ii), |Vu(x)| < cg|z|™* with a < N. Since these conditions
imply ¢ < 25 it follows that [Vul? € L},(Q).
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For any € > 0 we denote by w, the solution of

—Aw + wP = M|Vul? in Q.:=QNB;
w=0 in 092 ﬂ?i (2.24)
|1i‘m w(z) = 00 on 0B, N,
Tr|—€

which exists since |Vul? € L})(Q), see [19]. Then u < w, in Q. Let 2z, be the solution
of

—Az+2P=0 in Q,
2=0 in 90N B (2.25)
Ili‘m z(x) = 00 on 0B.N Q.
T|—€

Denote by Ggq[.] the Green operator in €. Since z. + M Gq[|Vul?]|q, is a supersolu-
tion of (2.24) in Q¢ we deduce

u < 2e + MGQHVU‘(]] la. in €. (2.26)
When € — 0, z. decreases to zg which satisfies

—Aw+wP =0 in Q

w=0 in 90\ {0}. (2.27)

Since p > £ it is proved in[15] that any solution of (2.27) extends as a continuous

solution in Q with boundary value 0, hence zyp = 0 by the maximum principle.
Therefore u < MGq[|Vul?] in © and the boundary trace Traq[u] of u is zero. By
20] the fact that [Vu|? € Lj(Q) jointly with Traglu] = 0 implies in turn that
uP € L} 5(2) and u is a weak solution of

—Au+uP = M|Vul|? in Q
u=20 on 0f), (2.28)
in the sense that there holds
/ (—uA( + uP¢{ — M|Vu|i()de =0 V(¢ € WQ’OO(Q) N C’g(ﬁ) (2.29)
Q

Step 2. Let us assume that p > NH

. If u is nonnegative and not identically zero,
then by the maximum principle 1t is posmve in Q. We set u =" with 0 < b < 1.

Then

2
—Av—(b—1)—- Vel 20@*1)”“ — Mba~ b= Dla=D gy = o, (2.30)

(Y

For € > 0,

|vu|2 2—q @-1g20-1)
v 2=q .

(b1f11|v |q<

2€2-4

14



Therefore

—1 2 2 B B B
—Av + (1 —b— quq ¢ ) Vol + %U(P—l)b-ﬁ-l — M1 2 1%% —0

2 v 2€2-a
(2.31)
We notice that the following relation is independent of b
(2b—1)g—2(b—1) 2p
<p—-Lb4+1l<=qg< ——,
>4 <(-1) 1<
with simultaneous equality. We take
N +1 2
- 1b+l=——<—=b=——— 2.32

hence p > % if and only if 0 < b < 1.

We first assume that 0 < g < % and choose € > 0 such that

ghiles C20-b0)\!  [2AA(N-Dp-N-1)\?
SRR _0(:}6_<qu“> _(quql(N—l)(p—1)>'(2'33)

This transforms (2.31) into

Eh 2% —
- - — - — 2b—1)q—2(b—1
o D@ g @oab BT (g )T eepme
2 2 2(1—b)
(2.34)
Then, as
(2b—-1)g—2(b—-1) N+1
2—q N -1’
there exists A > 0, depending on M and b, such that
N -1 -1
—Av + (i(p)um < A. (2.35)
Since v vanishes on 90\ {0}, ¥ = (v — c19ANT) Y ! with ¢19 = <W)
satisfies N )
NG+ (—jl(p—)ﬁ = (2.36)

— 2
By [15], ¥ = 0 which implies v < cloA%7+i and therefore u(z) < c;; ANFNE-1) in Q.
Since u vanishes on 992 \ {0} we extend it in a neighborhood of 0 by odd reflection
trough 0f2 and denote by u the new function defined in B, where it satisfies

—divA(z,Vu) +aP + B(zx,Va) =0 in B, \ {0}. (2.37)

15



In this expression the operator A : (z;&) € By, x RY — A(z,£) € RN is smooth in
x in B, and linear in & (see e.g. [4, Lemma 2.5] in a more general setting), it and
satisfies for all (z;€) € B, x R¥,

A(x,€).£ > 2/¢)? and |A(x, &) < 4)¢| for all (x;¢) € By X RV,

Since we can write |B(.,Va)| < 2|Va|? = 2|Va|?l|Va| = O(x)|Vi| in By, then
B:(z,§) € By x RY — B(z,§) € R verifies
[B(z, ) < C()[¢],
_ (p+1)(g=1) _

and C(x) < 2cg|x| ot by Theorem 2.3. Since g < }%, % < 1. Hence
C € LN*7 for some 7 > 0. By Serrin’s theorem [25, Theorem 10] the singularity at
0 is removable and @ can be extended as a regular solution of (2.37) in B,. Hence
u € Cl(B%), and as a consequence u € C(Q). If u is not zero, it is positive in
2 and achieves its maximum at some zg € € where Au(zg) < 0 and Vu(zg) = 0.
Contradiction.

Next we assume that ¢ = z%' By the choice of b in (2.32), inequality (2.31) becomes

Mpbreies \ Vo2 (1 Mbre
—A 1—b— T | Wbl <) (2.38
v+( p+1 ) v +<b (p—l—l)epﬂ)v < 0. (2:38)

We need to make both coefficients positive so that we obtain

—AU—I—TU% <0 in Q

(2.39)
v=20 on 00\ {0}.
We first choose )
ptl M \» _2
er >|——| brt1,
<p + 1>
say
1
pt+1 M \r» _2
& = <>p b 4 ¢, (2.40)
p+1

+1
with € > 0 so that the coefficient of v ¥-1 is positive, and we can choose € thanks to

the assumption m** > M: we have

p+1

Mpbst M \7 M\ Mpbi

p+1 2 p—1

1—p— 2P < )pbw+e :1—b—<> T 2P G
p+1 p+1 p+1 p+1

p+1 ptl
1-5 M P Mpbr-1 _
=b|—— —— p| ———¢€
b p+1 p+1

b<(N—1)p—(N+1)< M >’T>Mpb§3€

2p p+1 p+1
x| PEL pt1 ptl
b m P M P _ Mpbr—1 :
-P p+1 p+1 p+1

(2.41)
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and the right-hand side is positive if € small enough. Hence we obtain (2.39). By

[15], v = 0 and the same holds for u. This ends the case p > {+1.
Step 3. Finally we assume p = % and 1 < ¢ < 1% = %, then

_gbtl _
M|Vu(z)|? < eralz| 1 = epalz| "™ := e13Q(x).

Hence u < uy := ¢13Gq[Q)]. At this point we need the following intermediate result:
Claim. Assume w, = Gq[Q,] where Qq(z) = |z|~* with o < N + 1, then

we(z) < colz*~@ for all z € Q. (2.42)

If this holds true, then u(x) < c13¢,n|2[>79Y. By the scaling method of Theorem 2.3,
we obtain

Vu(@)] < escrzeqnlal' ™1 = |Vu(@)|? < erala] 107N = c1aQqevg-1) (@),

(2.43)
and thus
wq(Nq_l)(x) = CMGQ[Qq(Nq_l)](.%') < 014Cq(Nq_1)’:E|2_q(Nq_1) for all z € Q.
(2.44)
Since ¢ < 1+ %, q(Ng—1) —2 < Nq — 2. Tterating this process, we finally obtain
that u is bounded and we end the proof as in Step 2. O

Remark. It is noticeable that the equation exhibits a phenomenon which is charac-
teristic of Emden-Folwer type equations

Au=uP in B\ {0} (2.45)
If w is nonnegative then there exists @ > 0 such that
Au=uP +ady in D'(By). (2.46)

Ifl<p< % then a can be positive, but if p > %, then @ = 0. This means that
the singularity cannont be seen in the sense of distributions, however there truly
exist singular solutions, e.g. if p > NL_Q,

us(z) = cN,p\m|_p%1. (2.47)

A similar phenomenon exists for solutions of

—Au=uP in BfL

w=0 in B\ {0}, (248)

N+1 N+41

In such a case the critical value is N7 since for p > N1 the boundary value is

achieved in the sense of distributions in BBfr .
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2.3 Proof of Theorem 1.2

As in Theorem 1.1, the proof differs according to whether 0 < ¢ <3 1 orgq=g +1’
and we first assume that u > 0. We perform the same change of unknown as in the
previous theorem putting u = v?, but now we choose b as follows

r—1
p—1

p—1b+1l=r<=b= (2.49)

and we first assume that

2 q q
L g lea B (21 =b)\2 2(p—r) 2
1-b-M g = 0= e= (quql =\ Mg =1t ) - (2.50)

Hence (2.34) becomes
_9

— )7L = (2r—p—1)q+2(p—7)
VI S g)b ((q )>2qM22wmg0. (2.51)

r—1 2(1-b

The condition r > 2~ (5 B(ng(ﬁ’ ") is equivalent to 2p — qlp+1)<r(2p—qlp+1))

since 1 <7 < p.
Assuming first that g < z%’ we obtain from (2.51)

p—1
—-A v < A 2.52
vVt =1 ) (2.52)
for some constant A > 0. Since cap (K ) = 0 and v vanishes on 0 \ K, it follows

from [18] that v < cAr for some c > 0, hence u is also uniformly bounded above in
Q by some constant a. Next we have to show that Vu € L%(Q). We also denote by
®1 the first eigenfunction of —A in WO (Q) normalized by sup®; = 1 and by A;
the corresponding eigenvalue. Since +1 < r < 3 we infer from [1, Theorem 5.5.1],
that ) )
(cap?(5)) ™ < B (cap®, (1)) 7
27 o
Therefore cap‘zgr,(K ) = 0 implies cap‘z%(K ) = 0 and there exists a decreasing se-
; 3

quence {(,} c C2(09) such that ¢, = 1 in a neighborhood of K, 0 < ¢, < 1
and HCHHWLQ(BQ) — 0 when n — oo, furthermore (, — 0 quasi everywhere. Let

Pg : C?(09) — C%(Q) be the Poisson operator. It is an admissible lifting in the
sense of [18, Section 1] in the sense that

Po[nlloe=7n and n > 0= Pqly] > 0.

Put 7, = 1 — (,. Then, multiplying equation (1.13) by u(Pq[n,])? and integrating,
we obtain

/]Vu|2(]P’Q[nn])2d$ + 2/ ulPq [N, |Vu.VPq[n,]dx
Q Q
+ /S]Up+1(IP)Q[77n])2d$ — M/Q|Vu]qu(IP’Q[77n])2dx =0,

18



which implies

i Eaimlras -2 ( [ |Vur2a%[nn]>2dac>é ([ 1vPalm)ias)
+ [ Balnds = M [ [Vulu(Pal]Pdo < o
Q Q

2

It is standard that

2 2 _
[ IVPam e < izl . = A

Set X, = [|[Pa[ns]|Vul| 2, then
X2 — 24, X, — Ma|Q| "2 X1 < 0.

Hence there exist two positive real numbers a; and ay depending only on ¢, |2 and

a = ||u|| ; such that
1
=

Xp < al AT 4 agM T, (2.53)

Now A, — 0 and X, — ||VUH%27 therefore by Fatou’s Lemma
1-2 2 2 1
Q" [Vul7e < [Vullzz: < asM 2 < oo.

Let ¢ € C3(Q) and 7, as above. Since 7, vanishes in a neighborhood of K and ¢
vanishes on 02,

/IP’Q[nn]Vu.VCda?+/CVU.VPQ[nn]daz+/upC]P’Q[nn]dx = M/]Vu|qCIP’Q[nn]da;.
Q Q Q Q

Letting n to infty and using the fact that Vu € L?(Q) and VPq[n,] — 0 in L*(Q),

we derive
/Vu.VCdz+/upCdx :M/|Vu|qu:r.
Q Q Q

Hence u is a nonnegative bounded weak solution of

—Au + [uP~lu — M|Vu|? =0 in

u=0 on Of). (2.54)

It is therefore C2. Again, by the maximum principle we see that « cannot achieve a
positive maximum in €2, this yields a contradiction.

Next we assume g = pzfl. We choose b = ;j and (2.38) becomes

Mpbsiie's \ [Vof2 (1 Mbeir
—Av+ [1-b- S 2P )<, (255
U+< p+1 ) v +<b (p—l—l)eP“)v - (2:35)
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From there the argument is similar to the one of Step 2-Case ¢ = :r% in the proof
of Theorem 1.1: we claim that for some suitable choices the function v satisfies

—Av+710" <0 in €
v=20 in 00\ K.

We first choose € > 0 so that (2.40) holds, hence the coefficient of v, say 7 is positive.
Then the expression

p—1 ptl ptl ptl p+1
L—b Mpbr+ie » p(r—1) (( m ) P ( M > P > Mpbr=1 _
—b— — _ _ ¢

p+1 p—1 p+1 p+1 p+1
(2.56)
is positive provided € > 0 is small enough. Since capg%,(K ) = 0 it follows from [18§]
that v = 0. Hence v = 0, which ends the proof. i Il

2.4 Measure boundary data

Let o be a nonnegative Radon measure on 9€2. The results concerning the following
two types of equations

—Av+vP =0 in Q
v=4 in 09, (2.57)
and | |
—Aw = M|Vwl|? in Q
w=cp in 09, (2.58)

allow us to consider the measure boundary data for equation (1.1). We recall the
results concerning (2.57) and (2.58).
1- Assume p > 1. If p satisfies

For all Borel set E C 012, capggi),(E) =0= u(E) =0, (2.59)
p’
then problem (2.57) admits a necessarily unique weak solution v := vy, see [18], i.e.

v, € LY (Q)NLH(Q) and for any function ¢ € X(Q) := {n € C}(Q) s.t. Anpe L®(Q)},
there holds

0
/ (—vAC 4+ vP() dx = —/ —Cd,u. (2.60)
Q O on
Notice that there is no condition on p if 1 < p < %

2- Assume 1 < ¢ < 2. If there exists C' > 0 such that u satisfies
For all Borel set E C 99, u(E) < Ccap??, ,(E), (2.61)

2—q s
q 7q

then problem (2.58) admits at least a positive solution w for ¢ > 0 small enough, see
[9, Theorem 1.3], in the sense that w € L}(Q), Vw € L}(2) and for any ¢ € X(12),
there holds

%
0 on

[ (~wa - Mupic do = - [ S (2.62)
Q
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Notice that if 1 < ¢ < % there is no capacitary condition on p.

We use also the following result.

Lemma 2.5 Let p > {41 and p € M (09). If p € W_%’p((?Q), then there exists
C > 0 such that

1
wk)<C <cap29p,(E)) ’ for all Borel set E C 0f). (2.63)
p?
Conversely, if p satisfies
u(E) < Ccapg%,(E) for all Borel set E C 09, (2.64)
p7

for some C > 0, then pu € W_%’p(aﬁ).

Proof. Assume pu € WP (0Q) N M (09). If E is a compact subset of 9Q2 and
¢ € C?(09) with 0 < ¢ <1, with ¢ =1 on E, then

WE) < [ = 10 <l 5, 1€0, 30
Therefore, by the definition of the capacity,

R
o

(2}9)
u(E) <l (cart®(E)

Conversely, if (2.64) holds, then there exists c16 such that for any 0 < ¢ < ¢14 there
exists a z¢y, to
—Az=2P in Q

z=cl in 09, (2.65)

(see [9, Theorem 1.5]) in the sense that z., € L'(Q) N LH(Q) and Pqolu] < 2z
Hence Pq[u] € L5(£2), which implies p € W_%’p(ﬂ) by [18]. O

Those weak solutions are characterized by their boundary trace. Let ¥, = {z €
Q:p(xr) =€>0} and X9 = 90Q. For 0 < € < ¢y the hypersurfaces ¥5 defines a
foliation of the set 2, = {z € Q: 0 < p(z) < ¢}. Let n(z) be the orthogonal
projection of z € Q, on Q. Then |z — n(z)| = p(z) and n, = (p(z)) " (r(z) — ).
The mapping

2 11(z) = (p(x), 7(2)),

from €, onto (0, €y] x ¥ is a C? diffeomorphism and the restriction II. of IT to X is

a C? diffeomorphism from ¥, onto ¥¢. Let dS. be the surface measure on X, then

a continuous function u defined in €2 has boundary trace the Radon measure x4 on

o0 if

lim | uZdS.= /Zdu for all Z € C(Q). (2.66)
S b

e—0
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Equivalently, if ¢ € C(9€2) and (. = ( o II_1 € C(Z,), then

lim [ uldS. = /Cd,u for all ¢ € C(09). (2.67)
e—0 Ee »

The functions v, solution of (2.57) and w solution of (2.58) admit for respective
boundary trace p and cu. Furthermore, for the equations in (2.57) and (2.58), the

existence of a boundary trace of a positive solution is equivalent to the fact that
v, € LY(Q) N LH(Q) and w € LY(Q) with Vw € LE(Q) respectively.

Proof of Theorem 1.3. If we assume that (1.16) holds, the measure p is Lipschitz

continuous with respect to capgﬂp, and capg " By [9, Theorem 1.3] there exists
p’ q ’
c17 > 0 such that for any 0 < ¢ < ¢17 there exists a weak solution w = w,, to (2.58)

and there holds for some positive constant c;g depending on ¢ and €2
wey < c1gcPap]. (2.68)

By [18] there exists a unique solution v, to (2.57) with p replaced by cu. The
functions we, and v, are respectively supersolution and subsolution of (2.57) with
boundary data cu and there holds,

Vep < cPolp] < wey, (2.69)
Hence there exists a nonnegative function u satisfying (1.1) and such that
0 < ey L u < wey < crgcPop]. (2.70)

Moreover v, € LB(Q) and Vwe, € L}(Q). Because ve, and we, have boundary
trace cp in the sense of (2.66) and (2.67), the function u has the same property and
we denote it by uc,. Assuming that ¢ < min{cig, c17}, there exists also 2., solution
of (2.65) which satisfies z., € LH(Q?) and cPqlu] < 2z, by the maximum principle.
Therefore we, € LH(Q) and finally u., € LH(12).

Let ¢ = Gq[uk,], then ¢ > 0 and

_A(Uc,u + ¢) = |vuc,u|q'

The function uc, + ¢ is a nonnegative superharmonic function in 2. By Doob’s
theorem [12, Chapter II], —A(uc, + ¢) € L,(Q). Hence |Vue,| € Lj(Q). This
implies that w,, is a weak solution of (1.15). O

Proof of Corollary 1.4. We use [1, Theorem 5.5.1], with the same cases (a), (b),
(c) and (d), and we denote by K is any compact subset of 92 and by A a positive
constant the value of which may vary from one case to another.

(a) If ¢ > 1% and p > {1, equivalently % < [% < N — 1, then
Nfl—%
N—1--2_
cap‘z&g,(K) <A <cap?jo/(K)> e (2.71)
q
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2—q

_N-1-2
Since Ni‘zgl > 1, thus
—1--%

capl?, ,(K) < excapl’ (K). (2.72)
p7

q

If (1.17) holds, then

u(E) < C’capg q,(K) = C'min {cap‘zgq q,(K), cmcapggi), (K)}
q b q b I,

p

< C'max{1, co1 } min {cap‘gg_lq q,(K), cap‘ZQ,(K)}

q b p7p
and the proof follows by Theorem 1.3.
(b) If ¢ = % and p > 3L then p > ¢, thus
cap?, q,(K) < CQQCCLpgS;,(K). (2.73)
q’ p’
The proof follows as in (a).

2
(c) If p= % and g > #’1, then for some A > cap%yq,(@ﬁ),

A N-T
In —s———— < Al cap? (K . 2.74
) <A () 270
Tvq
Since for any r > 1
_ 2 _ 2
(Inr)™" > 7" N-T,
we deduce
N-1\"7
— 2
capg& J(K) < () A%capgﬂ/(K) = czgcapgg,(K). (2.75)
Sha 2 2 2D
The proof follows as in (a).
(d) If p= T+l and ¢ = % = MEL then as above

q—1 p—1
<cap‘29q y (K)) <A <cap‘29,(K)> = cap‘(g& q,(K) < 624capgﬂp,(K). (2.76)
q b 9 p7

q

The proof follows.
O

Proof of Corollary 1.5. We adapt again the formulation of [1, Theorem 5.5.1] to
our framework permuting the two capacities and only statement (a) and (c) therein

apply.
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2P there exists a constant A > 0 such that if K C 9Q is a

N+1
(a) IfT < q < I

compact set, then

2

N-1--21
N-1-2=9
ca (1) < 4 (capl, (1)) (277)
p’ q "’
Since NH <qg< +1 is equivalent to N — 1 — ]% >N-—-1- % > 0, we deduce
cap?®, (K) < exscap?®, (K. (2.78)
p7 q K

We end the proof as in the proof of Corollary 1 4-(a).
(o) I X =g < then for some A > cap$ (GQ)

P

+17

1
In capagé(K) <A <cap2?q y (K)) " : (2.79)
2,
Since for r > 1,
(Inr)~ ' > %7‘_%,
e fnler cap%%,(K) < NNANHcapg%’q, (K) := 026cap‘2%2q7q,(K), (2.80)
and the proof follows. O

The proof in the partially sub-critical case is simpler.

Proof of Corollary 1.6. If 1 <p < NH for any p € M (0N) problem (2.57) admits

a unique solution v, (see [15]). If 1 < q < NH then there exists ap > 0 such that
for any non-empty Borel set E C 09, capd® ) q,(E) > ag. Therefore

[l
w(E) < lpllgy < Om

p2 q q/(E)

It follows from [9, Theorem 1.3] that problem (2.58) admits a solution w,, whenever
|| ]l is small enough. By [10] problem (2.65) admits a solution z, with cu replaced
by p provided ||p]lgy is small enough. Furthermore

wy < Polu] < 2. (2.81)

Since z, € LL(Q), w, € LH(2). Hence by the same arument as in Theorem 1.3,
there exists a solution w,, of (1.1) which satisfies v, < u, < w,. Hence u, € L5(Q)
and by the previous argument Vu, € L}(Q). This implies again that u, is a weak
solution of (1.15).

Ifl<p< M and % < g < 2, then problem (2.57) is uniquely solvable for
any pu € My (0 ) while problem (2.65) admits a solution z, with cu replaced by
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p provided |||y, is small enough and since (2.61) holds, problem (2.58) admits a
weak solution provided 0 < ¢ < ¢p. Since (2.81) holds with z, € L5(£2), the result
follows as above.

Ifp> 8 1< g < & and p € M, (99Q) absolutely continuous with respect to

capg%,, there exists u,, solution of (2.57) and w), solution of (2.58) provided c ||||gy is

p7

small enough. Since [Vw,|? € L,(Q) the function w, belongs to the Marcinkiewicz
N1 N+l

space M," " (Q) (see eg. [31]). Since M, '(Q) C LH(Q) as 1 < p < FH, it

implies that w, and therefore u,, belongs to LH(2). The end of the proof is as

before. 0

3 Separable solutions

Separable solutions of (1.1) in R¥ \ {0} are solutions which have the form

u(z) =u(r,o) =r "w(o) for (r,o) € Ry x SN-1.

2P 1 to 2 (recall that this defines o) and w satisfies

This forces ¢ to be equal to i1 o1

_p
~ANw+a(N-2-aw+ |[wPlw—M(a?w? + |[Vwf?)» T =0 in V-1
(3.1)
Constant positive solutions are solutions of

XP1 - Mot X i —2-0a)=
ar P+ (N —-2—a)=0. (3.2)

This existence of solutions to (3.2) and their stability properties will be detailled in
a forthcoming article [8]. The understanding of boundary singularities of solutions
of (1.1) is conditioned by the knowledge of separable solutions in RY vanishing on
ORN \ {0}. Then w is a solution of

~ANw+a(N-2-a)w+ [wPlw—M(cPw? + \V’wP)# =0 in S}

w=0 in 9SY .

(3.3)
3.1 Existence of singular solutions

We recall the following result proved in [32, Corollary 1.4.5] is a variant of Boccardo-
Murat-Puel’s result [11, Theorem 2.1] dealing with the quasilinear equation in a
domain G'C RV.

Q(u) := —Au+ B(.,u,Vu) =0 in D'(G), (3.4)

where B € C(G x R x R¥) satisfies, for some continuous increasing function I' from
Rt to RT,

|B(z,r, )| <T(Ir))(1 + [£]?) for all (x,7,€) € G xR x RN, (3.5)
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Theorem 3.1 Let G be a bounded domain in RN . If there exist a supersolution ¢
and a subsolution 1 of the equation Qu = 0 belonging to W1>°(G) and such that
Y < @, then for any x € WH(QG) satisfying 1 < x < ¢ there exists a function
u € WH3(G) solution of Qu =0 such that 9 <u < ¢ andu — x € Wol’Q(G).

Remark. Mutatis mutandi, the same result holds if R¥ is replaced by a Riemannian
manifold.

Their result is actually more general since the Laplacian can be replaced by a
quasilinear p-Laplacian-type operator and B by a perturbation with the natural p-
growth. This theorem has direct applications in the construction of solutions on
ST, but also for the construction of singular solutions in several configurations.

Proposition 3.2 Let 2 be a bounded smooth domain containing 0, p > 1,1 < q <2
and M € R. Assume that equation

—Au+uP — M|Vu|? =0, (3.6)
admits a radial positive and decreasing solution v in RN \ {0} satisfying

lim v(x) = oo. (3.7)
|z|—0
Then there exists a positive function u satisfying (3.6) in '\ {0}, vanishing on 09
and such that

(v(z) —max{v(z) : 2] = do}), <u(z) <wv(z) forall z €\ {0} (3.8)
where §y = dist (0, 0).

Proof. Put m = max{v(z) : |z| = do} = v(dp). The function v,, = (v —m)4 is a
radial subsolution of (3.6) in €, positive in Bg, \ {0} and vanishing in Q \ Bs,. For
€ > 0set Q. =0 \EE. Since vy, is dominated by the supersolution v, there exists a
solution wu, of (3.6) in Q¢ such that v, < ue < v and ue — vy, € HE(Qe). By standard
regularity estimates, u, is C2, hence it solves

—Aue +uf — M|Vu|? =0 in Q.
Ue = Uy on OB (3.9)
U =10 on 0f).

Notice that u, is unique by the comparison principle. If 0 < ¢ < € the function
ue solution of (3.9 ) in Q. with the corresponding boundary data is larger than vy,
and in particular ug |9, > vmlop.= uc|op.. Hence ug > ue in Q.. When € | 0, u,
increase and converges in the Cllo’g (©2\ {0})-topology toward some function u which
satisfies (3.6) in 2\ {0}, is larger that v,, and smaller than v, vanishes on 9 and
such that (3.9) holds. O

The previous result can be adapted to the study of solutions with a boundary
singularity in bounded domains which are flat enough near the singular point or in
RY.

+
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Proposition 3.3 Letp >1,1<¢ <2 and M € R. Assume that the equation (3.6)
admits a positive solution w in RY belonging to C(RY \ {0}), radially decreasing in
RY and satisfying

lim w(to) = oo uniformly on compact sets K C Sy . (3.10)
t—0

Assume also

(i) either w\_aRf\{O} is bounded,

(ii) or Q C RY is a bounded smooth domain such that 0 € OS2 starshapped with
respect to 0 and such that wLag\{o} 1 bounded.

Then there exists a positive function u satisfying (3.6) in RY in case (i), or Q in
case (4) , vanishing on ORY \ {0} in case (i), or O\ {0} in case (ii), and such that

(w(z) — sup {w(z) : z € ORY \ {0}})Jr <wu(z) <w(zx) forall zeRY, (3.11)

where K = sup {lim supw(z),sup {w(z) : z € ORY \ {O}}} in case (i) or

|z]—o0
(w(x) —sup{w(z) : 2 € I\ {0}}), < wu(x) <w(z) forall €. (3.12)
in case (ii).

Proof. The proof is a variant of the preceding one, only the geometry of the domains
is changed.
In case (i) set m = sup{w(z):z € 92\ {0}}. Then the function z +— wy,, =
(w(z) —m)4 is a subsolution of (3.6) in 2. It vanishes on 9\ {0} and is dominated
by w. For € < dg, let Q. denote Q2 N EC. We consider the problem of finding wu.
solution of

—Aue +uf — M|Vu|? =0 in Q.
Ue = Wiy, on 0B, NN (3.13)
ue =0 on BN oA.

Again since ue — wy, € H& (Q) and since wy, is smaller than w|g,, the solution wu.
exists and it satisfies w,, < ue < win Q. If 0 < € <€, ue |90, > el 90, = vm. Hence
ue > € in Q. As in the proof of Proposition 3.2 the sequence {uc} is relatively
compact in the C?(Q\ {0})-topology, which ends the proof.

loc
In case (i), for n > 0 set K, = sup{w(z):z € 0B, \ {0}} where, we recall it,
B;f = B, NRY. The function wg, = (w — K,)+ is a subsolution of (3.6) in B;;
which vanishes on 9B, \ {0} and is smaller than w. For 0 < € < n we denote by
Ue,, the unique function satisfying

—Atep +uby — M|Vuenel? =0 in Tep =B \Ej
Uen = W on 0B, NRY B (3.14)
Uen =0 on (0B NRY)U (T, NORY).
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For ¢ < e < n < n' there holds wg, < ten < ue,y < w in I'c,. Letting n — oo
and € — 0 there exists a subsequence still denoted by {u,,} which converges to a
solution of u of (3.6) in R vanishing on ORY \ {0} and satisfying (3.11). O

Remark. The assumption that 'LUI_@Q\{(J} is bounded is restrictive. For example if
w(to) =t w(o) the flatness assumption means that dist (z, RY) = O(|z|*™!) for
all x € 0Q near 0 (remember that Tho(0) = ORY). This assumption is always
satisfied if p > 3 since a < 1, and it can be avoided if there exists a subsolution.

Proposition 3.4 Letp >1,1<¢<2and M € R. Assume that the equation (3.6)
admits a positive supersolution w in RY belonging to C(RY \ {0}) satisfying (3.10).
Assume also

(i) either there ezists a positive subsolution Z € C(RY \ {0}) vanishing on ORY \ {0},
smaller than w and satisfying (3.10),

(ii) or Q C RY is a bounded smooth domain such that 0 € 02 and there exists a
positive subsolution Z € C(Q\ {0}), vanishing on 0Q \ {0} such that Z < w|g and
satisfying (3.10).

Then there exists a positive function u satisfying (3.6) in RY (resp. 1), vanishing
on ORY \ {0} (resp. 0\ {0}) and such that

Z(x) <u(x) <w(z) forall x € RN + (resp. xz € ). (3.15)
Ezample. If 1 < p < % it is proved in [15] that if  C RY is a smooth bounded
domain such that 0 € 9, there exists a nonnegative function Z,, € C(Q\ {0}) N
C?(9) satisfying the equation

-AZ+7Z°P=0 in Q

Z=0 on 09\ {0}, (3.16)
and such that tPQTlZOO(tG) — t(o) uniformly on compact sets K C S¥ ' ast — 0
where 9 is the unique a positive solution of

~AYp+a(N—-2—a)p+yP =0 in Sﬁ;,l (3.17)
=0 on OS] .
Furthermore, for any k > 0 there exists a nonnegative function Z, € C(2\ {0}) N
C%(Q) satisfying (3.16) and such that t¥=1Zy(to) — k¢i(c) where ¢ has been
introduced in Theorem 1.11, uniformly on compact subsets of S} ~'. Furthermore
Zi 1 Zoo when k — oo. If the equation (3.6) admits a positive supersolution w in
R¥ belonging to C(RY \ {0}) and such that Z < w in Q for some 0 < k < oo, then
there exists a positive function u satisfying (3.6) in €2, vanishing on 0Q \ {0} and
such that

Zi(z) <u(zx) <w(z) forall z €. (3.18)

The same result holds if €2 is replaced by RY.
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3.2 Existence or non-existence of separable solutions

Since any large enough constant is a supersolution of (3.1), it follows by Theorem 3.1
that if there exists a nonnegative subsolution z € T/VO1 °(S571), there exists a solution
in between.

3.2.1 Proof of Theorem 1.9

We recall that ¢; is the first eigenfunction of —A’ in WO1 72(5 ¥) with corresponding
eigenvalue Ay = N — 1. Put

p

HW) = ~Aw+a(N =2 = ajw + 9w — M (a%? + |Vuf?) 7,
then
H(61) = (N = 1+ a(N =2 =) 61+ 6f = M (a0 + [V'6n[2) 77

If ¢y is small enough, there holds ¢} — M (a?¢? + \V’qﬁl\Q)P% < 0, hence ¢ is a
subsolution. However the condition N — 1+ (N —2 — a) < 0 is too stringent.
We can use the fact that, up to a good choice of coordinates, ¢; = ¢1(0) = coso

with o € [0, §]. Furthermore the statement ”¢; is small enough” can be achieved
by ¢1 = d coso with § > 0 small enough. Then

5*1H(5% cos o)

=(N—-1+a(N-2—-a))coso+ 6PTlcosPo — Mé(aQCOSQU—i—SinQU)#.

The problem is to find § > 0 such that for all o € [0, 7] we have H(é%i coso) < 0.

Put Z = coso and (5‘1H(51€%i coso) = 5‘1H(5%Z) = Ks5(Z), then
Ks(Z)=(N—1+a(N—2—qa))Z+ 620 — M5((a® — 1)Z2+ 1)1,
where 0 < Z < 1. We use the fact that
o? cos? o + sin® o > min{a?, 1}(cos? o + sin? o) := k% > 0,
hence
S TH(6r 1 coso) < (N —1+a(N —2—a))coso + 6" cos? 0 — Mk,
Then

K5(Z) < K5(Z) = (N —1+a(N -2 —a)) Z+ 6P 2P — Mowoit,  (3.19)
K§{(Z)=N—-1+a(N -2—a)+psPTtzr L, (3.20)
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IfN—1+a(N—-2-a)>0,equivalently p > %, then f((’; > 0 on [0, 1], hence

K5(2) < Ks(1) = N =1+ a(N =2 — a) + 67! — Mo,

1
~ 2 P
The function 6 — Ks(1) achieves its minimum for § = dp := S+t <£) " and

P+l
M ptl
~ P
Ks,(1)=N —1 N—-2—a)—pr? | — .
W) =N =1t a(v -2 ) - pe (A1)
Therefore, Whenpz%, K5, <0on [0,1] if
(M)pzl><MN7p)le:N—1+a(N—2—a)
p+1 =\ ptl ' pmin{1, a2}

(3.21)

(p+1) (N -1)—(N+1))
pmin{(p —1)%,4} '

If N -1+ a(N —2—«a) <0, equivalently p < %ﬂ, it is clear from (3.19 ) that
Ks(Z) <0 for any Z € [0,1] as soon as § < K+ M.

Improvement in the case a > 1, equivalently 1 < p < 3 . We set

F(z) =07 HL
Z v
Then
F'(z) (p—1)(*-1)Z>—(p+1)
F(z)  pl(a2-1)22+1)Z
Since

K5(Z) <0< (N —1+a(N —2—aq))+ 6Pt 2r 1t < M§F71(Z)  (3.22)
for all Z € (0,1], it is sufficient to prove

(N—1+a(N—-2—q))+" <Ms Juin F#i1(Z) (3.23)
€(0,
The function F' is minimal on (0, 1] at Z = Zy = va? — 1 (remember that oo = Z%)
and F(Zo) = (o + 2)(a — 1)z,
If Zy <1, equivalently o > 2, inequality (3.23) is satisfied if one find ¢ such that
(N =1+ a(N —2—a)) + 6P < MOF#1(Z,),

and a sufficient condition is

p+1 pt1
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If Zy > 1, equivalently 1 < a < 2, the minimum of F on (0, 1] is achieved at Z =1
with value F(1) = o2, hence a sufficient condition is

(N —1+a(N—2—a)+ 8 < Moart),

and we obtain the desired inequality as soon as

ptl ptl
p(M)p >p<MN”’>p :N—l—i—a(N—Z—a) (3.25)
p+1 - p+1 ' a? ' ’
This ends the proof. U

Remark. Introducing m** defined in (1.11), inequality (3.21) takes the form

2p+1)  \PT .
w2 (i) (320

in the general case and a more complicated expression in the case a > 1.

3.2.2 Non-existence

Theorem 3.5 Let p > N'H and M < m™*, defined by (1.11). Then equation (3.1)
admits no positive solutzon

Proof. If w is a positive solution of (3.1) the function 7 defined by w = 7 for some
b > 0 satisfies

1+(p—1)b

V2 «alN-2-a« 1
TP e 2ma)

=1 (=1

Mn p+1
_T

—A'n+(1-0)

(a2 + b2wzn|2)p% —0.

Since for any € > 0 we have by Holder’s inequality,

b=1)(p=1) p
/N N L+ == (a n? + b?|V'n)? )p+1 ds
S

p+1

€Erp 2,2 | 12\ |2 1 / 2+(p—1)b
< b —_— P=bdS
- p+1/sf+“(a (RS )+(p+1)ep+1 Si“n ’
it follows that
p+1l b p+1
P P
2—b—M6 ) [ IenPas+ S (N —2-a-nEE / n2ds
b p+1 gN—1
+
1 L / n2+(p_1)bd8 <0.
b (p+ 1)ept! sy -1

(3.27)
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If b€ (0,2), e >0 and M > 0 are linked by the relation

p+1
= s (2—b)(p+1

2 b M g e < B2W D (3.28)
p+1 bp

inequality (3.27) turns into

—2—q« e% a?
((2—5)(N—1)+0‘(N b2 )_M p((N—1)b+b>>/Sfln2dS

p+1
1 M
(1 —— 2+(r-1bgs < 0.
o (1= i) [y s
(3.29)
Next we choose M
Pl = — 3.30
€ D + 1 ’ ( )
and we define the function b — L(b) by
a(N —-2—a) M\ a?
L():=(2-b)(N—-1)+ 2 —p P (N—l)b+? . (3.31)

Because N — 1 is the first eigenvalue of —A’ in W01’2(5’N71), (3.29) combined with
(3.30) yields

L(b) / n*dS < 0. (3.32)
syt
Furthermore, if inequality (3.28) is strict, and since 1 is not a first eigenfunction,
inequality (3.32) is also strict. Then L(b) > 0 if

p+1

p(A) T < p = DN eV 2y
Now 2(N —1)?
f(b) = ((N_—<1)b2_+)a2)2 (b+a) <b - 1)
Notice that N N1
S T ey v

If 1 < p < &+, then f/ > 0 and in such a case the maximum of f over (0,1] is

achieved at b = 1 and for such a value L(b) < 0.

Ifp> %, then f is increasing on [0, x*7) and decreasing on (x>, 1], hence the
maximum is achieved at b = %5, which gives
o' N—-1-a (N-1)p—(N+1)
= = . 3.34
/ (N — 1> o 2 ( )
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N +1

Therefore there exists no solution if p > N1 and
pt+1 pt+l
M v m™\r (N—-1)p—(N+1) (3.35)
p+1 “\p+1 o 2p ’ )

0

Remark. Using Theorem 1.1 we can prove the previous result in the case M < m** .
Indeed, if w is a positive solution of (3.1), uy(r,.) = rip%lw(.) is a positive solution
of (1.1) in RY vanishing on ORY \ {0}. Let 2 C RY be any smooth domain such
that 0 € 9Q and 99 is flat near 0. Then u, < K on 92 for some K > 0. Put
v = (u, — K)4, then it is a nonnegative subsolution of (3.1). For any € > 0 small
enough there exists a solution u. of

~Au+uP — M|Vu|rT =0 in Q :=0nB°
U =0 on 0B, N (3.36)
u=0 on BN oS

Then v < u, < wu,. Furthermore, for 0 < € < €, uc < ue in Q.. Hence {uc}
converges, when € — 0 to a solution ugy of (1.9), which satisfies v < uy < u,, and
therefore vanishes on 992 \ {0}, which is a contradiction.

4 Solutions with an isolated boundary singularity

4.1 Uniqueness of singular solutions

In this section we use scaling transormations to prove uniqueness of singular solu-
tions.

Theorem 4.1 Assume N >2,p>1,1<q<2 and M > 0. Let a such that

(i) 0<a<fB ifq< ifl (37
(11) B <a if a> 5

Letf e Cl(S’ffl) be a nonnegative function, positive in Sffl, vanishing on 85_11_\[71,
and & be a real number. Then there exists at most one nonnegative solution of (1.21)
satisfying

u(r,o) = r=%Inr|% (o) (1 + o(1)) as r — 0. (4.38)

Proof. The proof is an adaptation to the configuration where the singularity lies on
the boundary of [8, Theorem 1.15]. If u is a solution of (1.1) in RY, £ > 0 and b > 0,
define uzy by
wp(x) = u(l).
Then
—Auyyp + €2_b(p_1)uzb — M€2_q_b(q_1)|VuM|q =0 in Rf.
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If £ > 1, ugyp is a supersolution of (1.1) in ]Rf if and only if

a<b<p.

These conditions are compatible if and only if 1 < ¢ < 22. Then we take b €

p+1
(a,00) ([, ], then
ugp(r, o) = 7%~ Inr|?0(0) (1 4 o(1)) asr — 0.

By (2.1) all u(z) tends to 0 when |x| — oco. Hence, for any € > 0 the super solution
ugp + € which is larger than u for |x| small enough and large enough is larger than
another solution u in Rf . Letting £ | 1 and € — 0 yields v > 4. In the same way
U > u.

If ¢ < 1, ugyp is a supersolution of (1.1) in %G if and only if

B<b<a,

and these conditions are compatible if and only if z% <q < 2. If a > we choose
be (0,a) N[B,a] and we conclude as in the first case. O

Remark. In the case a = [ a more precise expansion of the singular solution u at
x = 0 yields uniqueness as it is proved in [8] in the case of an internal singularity.
Since the proof of the next result is based upon a easy adaptation of the ideas in [8,
Theorem 4.4], we omit it.
Theorem 4.2 Assume N >2,p>1,1<¢< %, M >0 and a € [0, 8]. Assume
0 and 0 are Cl(SiV_l) functions positive in Siv_l and vanishing on BSiV_l and a is
a real smaller than a. Then there exists at most one nonnegative solution of (1.21)
satisfying

u(r,o) = r~*0(c) + r~%(c)(1 + o(1)) as v — 0. (4.39)

When problem (1.21) is replaced by (1.8) the scaling method becomes much
more delicate to apply. However we give below an easy extension when 02 is flat
near x = 0.

Theorem 4.3 Assume N >2,p>1,1<q <2, M >0 and Q) is a bounded smooth
domain such that 0 € 9Q and there exists § > 0 such that 9 N Bs = Tpa(0) N Bs.
Let a such that

(i) 0<a<fB ifq< pzfl (1.10)
) B <a if > 25

Let 0 € C’l(SfrV*l) be a nonnegative function, positive in Sffl, vanishing on GSivfl,
and a be a real number. If Q is starshaped with respect to 0, then there exists at
most one nonnegative solution of (1.21) satisfying

u(r,o) = r~%1Inr|?0(c)(1 + o(1)) as r — 0. (4.41)
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Proof. We use the same change of scale as in Theorem 4.1. In case (i) with ¢ > 1

and b € (a,00) N [e, B] , ugp is a supersolution in Qy = 10 c Q and 09, N Bsje =

Tya(0) N Bse. If 4 is another solution, @|sn,= he and hy — 0 uniformly as £ | 1

since u € C1(Q N BE) for any € > 0. The function u, + max hy is a supersolution of
14

1.1 in Q larger than @ on 09 \ {0} and near x = 0, hence it is larger than 4 in €.
Letting £ | 1 yields u > .

In case (ii), for £ < 1, Q C y and with b € (0,a) N [3, a], uyp is a supersolution in
2 larger that @ on 9\ {0} and near x = 0 it is larger than @ in 2. We conclude as
in case (i). O

4.2 Construction of fundamental solutions

Let 2 be either RY or a bounded domain with 0 € 9€2. A function v satisfying (1.8)
is a fundamental solution if it has a singularity of potential type, that is

N
T

= 4.42
50 p(z) enks (4.42)

for some k£ > 0. The function u can also be looked for as a solution of

—Au+uP — M|Vu|? =0 in Q
w=ksy in0Q, (4.43)

in the sense that u € LY(Q N B,), Vu € LZJOC(Q N B,.,) for any r > 0, and for any
¢ € CLQ) N W?2>(Q) there holds

/ (—uAC + uP¢ — M|Vulic) dz = —k 2% (0). (4.44)
Q on

We first consider the problem in RY.

Proof of Theorem 1.7. The scheme of the proof is surprising since we first show

that, in the case ¢ = 1%’ there exists M; > 0 such that for any £ > 0 and any
0 < M < M there exists a solution. Using this result we prove that if 1 < ¢ < z%’
then for any M > 0 and k > 0 there exists a solution. Then we return to the case
q= ]% and using the result in the previous case, we prove that when q = 1% we
can get rid of the restriction on M > 0 and k > 0 for the existence of solutions.

I- The case q = 1% and M upper bounded.
For £ > 0 the transformation 7T, defined by

Tyfu(z)] = OrTu(lz), (4.45)

leaves the operator £ . invariant. We can therefore write
P+

Tﬁ[uk] = ukzp%lﬂ—zvv
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in the sense that if uy satisfies (4.42) then Tj[uy] satisfies the same limit with &

2
replaced by k£ 11N However this identity to hold needs some uniqueness for the
solutions under consideration satisfying (4.42). This is achieved if uy is the minimal
solution satisfying (4.42) in which case Tp[ug] is the minimal solution satisfying (4.42)

with k replaced by k717N Therefore if there exists a solution to (1.8) in RY,
vanishing on ORY \ {0} satisfying (4.47) for some k > 0, then there exists such a
solution for any k& > 0.

Step 1- Construction of a subsolution. For k > 0 we denote by vy the solution of

—Av+vP =0 in Rﬁ

v="kSy  on ORY \ {0}, (4.46)

Such a solution exists thanks to [15] if RY is replaced by a bounded domain 2.
If case of a half-space the problem is first solved in B, and by letting n — oo,
we obtain the solution in RY. Clearly vy is a subsolution of problem (1.8), and it

satisfies
u()

250 P_(2)

=k, (4.47)

, . N . . N
for some ¢/, > 0, where P (v) = Cy i 1s the Poisson kernel in RY.

Step 2- Construction of a supersolution. It is known that
VP, ()] = [a| 2N ?(x), (4.48)
where ¢(.) is smooth and verifies
0<é <c(x) <é for some ép,é > 0.

We construct wy in RY of the form

wy = kP +w, (4.49)
where w satisfies -
2INp
—Aw + wP = a72‘x|_p+1 in Ri (4 50)
w=0 on ORY,

for some a > 0 to be chosen later on. Then

gy 0k = —Aw + (kP +w)P — M (|kV P, + Vuw|?) 1

2N b
— (kPy +w)? —wP + axalal 5 — M (VP + Vo) 7

_2Np 2p Lpl _2Np 2p
> kaprfl + avyo|z| PFL — 2M | kpH1 72”* |z|”PH + |[Vaw|p+T ) .

Now it is easy to check using Osserman’s type construction as in [29, Lemma 2.1]
and scaling techniques that

1 2N N
'U}(x> S Y3 min {a;‘x’_ﬁ’ a’fl}"Q(l_prl)} 7
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" . 2N 2Np
’Vw(x)\ < 74 min {aE ‘x’_pﬁ—l’ G’[I}‘l_m}
-

2p 2 _2p(@N+4p+1))  2p 2p(p+1—2Np)
|Vw(z)|[P*+T < 5 min {apﬂ lg| " @0 aptl|g| D2 } ,

Therefore, if we put
P’ -1
T= ,
2p(N +1—p(N —1))

then 7 > 0 since N +1 > p(N — 1) and

p—1 2p(N+1-p(N-1))

2Np 2p Do 2p
lz[PH L, LW =72 @ — 2M kv V) = 2Mysa vt |z (r+1)2
e b 2ol (4.51)
> (@ — 2MEPH )™ | —2M~ysa in B,

a

and similarly,

2Np 2p P21
[P+ L, LWk =72 <a — 2MEr+iygt > —2M~sain (B})C. (4.52)

I

Replacing 7 by its value, we obtain a very simple expression from (4.51) and (4.52),
valid both in B}, and (B];)¢, namely

2N 2p P—L

|1:]PT§)£ L e <a — 2MI<:P+Z7172”+1> —2M~ysa in RY. (4.53)
pTI’

When o
M < M = —, 4.54
275 (4:54)

then for fixed k, if we take
2p
OMi~f kit
Y2 — 2Mnys

we infer that the right-hand side of (4.53) is nonnegative, hence wy, is a supersolution.

Step 3-Fxistence. For 0 < k < kg wy, is a supersolution which dominates the subso-
lution vg. Hence, by [32, Theorem 1-4-6] there exists a solution wuy to (1.8) in RY,
vanishing on ORY \ {0} and such that v < wuy < wy. Since

i R wk(@)
z—0 PN (l’) z—0 PN (SU)

)

it follows that w; inherits the same asymptotic behaviour. Since k < kg can be
replaced by any k > 0, the existence of a solution follows.
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I1I- The case 1 < g < }%. Assume M < My, k > 0 and g is the minimal solution
of (1.8) in RY with ¢ = 1%, vanishing on ORY \ {0} and such that (4.47). Since

V|2 > | V|7 — 1, there holds

— Aty —i—ﬁz + M — M’Vﬂk’q > 0.

Hence uj, = uy + M v is a supersolution (1.8) in RY and it dominates v, defined
in (4.46). By [32, Theorem 1-4-6] there exists a solution ug of (1.8), vanishing on
ORY \ {0} and satisfying (4.47) under the following weaker form

im uk(t:c)
t—0 P (tx)

=k uniformly on compact subsets of RY. (4.55)

Since |z|V—!

ug () is uniformly bounded and vanishes on ORY \ {0}, it is bounded in
the C} (RY)-topology. Hence (4.47) holds. This proves the result when M < M.
Next let M > 0 arbitrary and & > 0. In order to find a solution u := uy to (1.8),

we set u(x) = E_P%Ug(%). Then L, pru = 0 is equivalent to

2p—q(p+1)

L, U= —AU+ UL = My[VU|" =0 with My =M¢ o1
and (4.47) is equivalent to

Ue(z)
z—0 PN ($)

2
— eﬁ'f‘l—Nk

2p—q(p+1)
Since 2p — q(p + 1) > 0 it is enough to choose ¢ > 0 such that M/ o < My,
and we end the proof using the result when M < M;.
III- The case q = [% revisited. Let p < p < % Then % < ;fl. This implies
that for any M > 0 and k > 0 there exists a positive solution 4 to

~ 2
—Adiy, + @ — M|Vi|# 1 =0 in RY,
vanishing on ORY \ {0} and such that

'INLk({L') _
z—0 PN (1’)

Since p > p we have ﬂ’; > ﬂz — 1 and therefore
2
—Adiy, + i — M|Vig|?#T >1>0  in RY. (4.56)
The function ¥, solution of

—Av+vP =0 in Rfﬁ

v=kdoy  on ARV \ {0}, (4.57)
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is a subsolution of (4.56), hence the exists a solution uj of such that v < up < U
of (1.8) in RY, vanishing on ORY \ {0} and such that (4.42) holds.

1V- The case ]% < q < % We follow the ideas of Case I. We look for a

supersolution wy, of the form (4.49) where wy, satisfies

—Aw +wP = avyolz| N in RY

w =0 on ORY, (4.58)
for some a > 0. Then
q
L, ywp = —Aw+ (kPy +w)? — M (|[kVP, + Vw|?)?
q
= (kPy + w)P — wP + aya|z| N1 — M (|kVP, 4+ Vw|?)2
> pkPywP™t + ayo|z| N — 2M (k94 |z| N9 + [Vw|?) .
As in Case I, by scaling techniques,
1 N
w(z) < g min {a? |z 7", ala[*~ N |
and . No
V()| < o min {av|a] > ale =N}
Hence
. q ,L‘Pf 1—N
IVw(z)|? < ysmind ar|z|” » 9 alz[10ND L
We set
1 p—1
T=— =— .
2 —Ng  2p—Ng(p—1)
Then, by the definition of 7,
‘_r‘NQEq!ka > o (a _ ngqug—l) _ QM%aq’x‘q(NHqu)
L+ N—p(N-1) (4.59)
> (a — 2Mk:qug_1) —9Mnysa TNV iy B
and
1+N—p(N—1)
2np L )
lz| P L, LWk =72 (a — 2M kI~] ) —2M~sa @ N®7Y in (BhL)e.  (4.60)

p+1I

We obtain a very simple expression from (4.59) and (4.60), valid both in B, and
(B;)¢, hence

1+N—p(N—1
2Np p( )

[P L,  we > (a - 2qu'yg_l> — 2M~ysa FNe-D gy RY. (4.61)

pHI’
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Using the scaling transformation 7, defined in (4.45), the problem of finding wy
solution of (4.43) is equivalent to looking for a solution of

2p—q(p+1)

—Au—+uP — MC 71T |Vu|?=0 in RY

BN : N
u=kfr=1"""9p in ORY.

(4.62)

2p—q(p+1)

+1
If we replace M by My := M{~ 7T and k by k; := M%_N, the inequality (4.53)
turns into

2Np 1;15\]71)(]\,71)
(2L 4, ke =2 (0= 2Mpk{ad ) = 2Mppsa TV i RY,  (463)

p+1-

2
where wgy = w + k¢R instead of (4.49). Notice that Mk} = M1 NI We
1

choose £ > 0 such that Mykjvs ~ = ¢, hence
2Np ay 1;;5\77;7(1\171)
x|+t L W p > LRy 5, k™9 @ N in RY. 4.64
2p /7 /72 +
M 2

It is now sufficient to choose a > 0 such that the right-hand side of (4.64) is nonneg-
ative and thus wy, ¢ is a supersolution. Since ¥y ¢ is a subsolution smaller that wy, ¢,
we end the proof as in Case 1.

V- Uniqueness or existence of a minimal solution. If 1 < g < 1%’ uniqueness follows
from Theorem 4.1 applied witha =N —1< 8 = %. If I% <g< % and if uy 1

and uy, 2 are solutions, they are larger than vy, and the function uy 1 o = inf{uy 1, ug 2}
is a supersolution larger than v;. Hence there exists a solution 4 such that

v < Up < Uk 2.

Let & be the set of nonnegative solutions of (1.8) in RY, vanishing on ORY \ {0}
and such that (4.42) and put

up = inf{v : v € &}.

Then there exists a decreasing sequence {v;} such that v; converges to u, on a
countable dense subset of RY. By standard elliptic equation regularity theory, v;
converges to uy on any compact subset of RY \ {0}. Hence uy, is a solution of (1.8)
in RY, it vanishes on ORY \ {0} and (4.47) since uj, > vi. Hence uy, is the minimal
solution. 0

Next of we consider the same problem in a bounded domain €.

Proof of Theorem 1.8. We give first proof when @ C RY. We adapt the proof of
Theorem 1.7. The solution vy of

—Av+vP =0 in Q

v=Fké,  on o9, (4.65)
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is a subsolution for (1.8) in € and satisfies (1.24 ). The solution uy of (1.8) in RY
vanishing on ORY \ {0} and satisfying (4.42) is larger than vy, in 2. Hence the result
follows by Proposition 3.4.

When (2 is not included in RY, estimates (4.48 ) is valid with the same type of
bounds on c¢. We also consider separately the cases q = 2p and M upper bounded,

q < z% and M > 0 arbitrary and ¢ = m and M > 0 arbitrary and finally
=5 <q< N H As supersolution we consider the function wy, := kP +w where w
satlsﬁes
_2Np
—Aw 4+ wP = ay|z| PH1 in Q (4.66)
w=20 on 0},

for some a > 0. The estimates on w endow the form
1
w(z) < ysar 2277,
and
V()| < yaar |z~

where 3 and 4 depend on Q. Hence (4.53) holds in © instead of RY, and we have
existence for M < M;, where M; is defined by (4.54). Then we prove existence for
any M > 0 and k£ > 0 when ¢ < i1 7 then for any M > 0 when g = —1 and finally

When 1 <g< NH as in Theorem 1.7. 0

4.3 Solutions with a strong singularity

4.3.1 Thecase1<q<erl

fp=17% N+1 and 1 < ¢ < N+1 and if p > & N+1 andelther1<q< 1 and M > 0 or
q= 2p and M > m** deﬁned in (1.11), the smgularlty is removable by Theorem 1.1.

Thus the ranges of exponents that we consider are the following,
(1) 1<q< and 1 <p< ¥+

N-1>
(@) (pa)= (%%)

If (4.67)-(i) holds, ¢ < N'H , and in this range the limit of the fundamental solutions
up, when £ — oo is a solutlon with a strong singularity with an explicit blow-up
rate. In the case of a bounded domain our construction requires a geometric flatness
condition of 9 near 0. We consider first the case 0 = RY.

(4.67)

Theorem 4.4 Assume (4.67)-(i) holds, then for any M > 0 there exists a positive
solution w of (1.1) in RY wanishing on ORY \ {0} such that

G
P @)

(4.68)

Furthermore,
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(i) If 1 <q <22,

lim r%u(r, ) =1 uniformly in SY71, (4.69)

r—0
where 1) is the unique positive solution of (3.17).
(it) If ¢ = i’

2
liH(l) re—Tu(r,.) = w uniformly in SY*, (4.70)
r—

where w is the minimal positive solution of (1.28).
Proof. If k > 0, we denote by u = uy ps the solution of

—Au+uP = M|Vul? in RY

u = kb in ORY. (471)
The mapping k — uy, is increasing. We set Ty[u] = ug, where Ty is defined in (4.45).
Since 1 < ¢ < ]%,

Tolug ) =u 2p—q(p+1) -
[tk ] kep—T PN AT T

It follows from Theorem 2.1 and Theorem 2.3 that the sequences {uy as} and {Vug ar}
converge locally uniformly in RY, when k£ — oo, to a function us 37 which satisfies
(1.1) in RY. Furthermore

Toltoo,m] = u 2p—a(p+1) for all £ > 0. (4.72)
oco,M¢ p-1
In the case ¢ = 1% the function us s is self-similar, hence

o~

Uso, M (1, 0) =17 %0 (0),

where @ is a nonnegative solution of (1.28). Inasmuch wy s > upo = vy (already
defined by (4.46)), it follows that

Uoo, M (T,0) > U o(r,0) =177 %Pp(0) = & > in ST (4.73)

Since ug, s is dominated by any self-similar solution of (1.1), it implies that @ is the
minimal positive solution of (1.28) that we denote by w hereafter. Up to a subse-
quence, {1y, [too,nr]} converges locally uniformly in RY \ {0} to uee,a7. Consequently

Zlimo C5Uoo, v (bn,0) = w(o)  uniformly in ST
n—r

Because of uniqueness, the whole sequence converges, which implies (4.70).

In the case g < I%, using the a priori estimates from Theorem 2.1 and Theorem 2.3,

we obtain that Ty, [use, 1] (1, 0) = €8 Uso pr(€n, o) converges locally uniformly in S~
t0 Uoo,0(1,0). Since uso0(1,.) > 1, it follows that

Elimoﬁguw,M(ﬁn, o) =v¢(0) uniformly in SY¥".
n—
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Hence (4.70) follows by uniqueness of the function .
Uniqueness of positive solution of (1.21) satisfying (4.68) follows from Theorem 4.1
i i —a= -2 < 229_
applied with a = a = 1 < g1 B.
O

As a consequence of Theorem 1.9-(ii) we have

Theorem 4.5 Assume (4.67)-(ii) holds, then for any M > 0 there exists a positive
separable solution w of (1.1) in RY wvanishing on ORY \ {0}

When RY is replaced by a bounded domain there holds.

Theorem 4.6 Assume 2 C RY is a bounded smooth domain such that 0 € 0Q and
Tra(0) = ORY, and (p,q) satisfies (4.67)-(i). Then for any M > O there ezists a
positive solution u of (1.1) in Q vanishing on 0Q\ {0} such that

()
ili% Polt) 00, (4.74)

where Pq s the Poisson kernel in Q). Furthermore

(1) If1<q< z%’ then

lim r%u(r,.) =9 locally uniformly in Sy, (4.75)

r—0

where 1 is the unique positive solution of

—A'Yp+a(N—-2—a)p+9yP =0 msf—l
=0 in 9SY .

g 2
(i1) If ¢ = [?pl, then

¢ < liminf r®u(r,.) < limsup r®u(r,.) < w locally uniformly in SY~'. (4.76)
=0 r—0

Proof. As in the proof of Theorem 4.4, the sequence {uy} of the solution of (1.8)
which satisfy (4.42) is increasing. Since it is bounded from above by the restriction to
2 of the solutions of the same equation in RY, vanishing on ORY \ {0} and satisfying
(4.68), it admits a limit u~, which is a solution of 1.8 which vanishes on 99 \ {0}
and satisfies (4.74). In order to have an estimate of the blow-up rate, we recall that
the solution vy of (4.65) is a subsolution of (1.1) and uy > v Furthermore {vy}
converges to {vUs} which is a positive solution of (1.1) in €2, vanishing on 99 \ {0}
and such that

lim 7% (r,0) = 9(0) locally uniformly in S~ (4.77)

r—0
Combined with (4.69) and (4.70) it implies (4.75) and (4.76) since the solution wu
in  is bounded from above by the solution in RY.

lim i(I)lf r%Use(r,0) > (o) locally uniformly in S¥™. (4.78)
T—

g
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Theorem 4.7 Assume 2 C RY is a bounded smooth domain such that 0 € 9 and
Taﬂ( ) 8R-§]\—I7 p= Ni—tl and q = p—‘fl - N+1 If
dist (z, RY) < cor|z|N for all o € 9QN B, (4.79)

for some constants §,co7 > 0, then there exists a positive solution u of (1.1) in Q,
vanishing on 0\ {0} such that

lim r*u(r,0) = w(o) locally uniformly in SY". (4.80)
r—0
Proof. The function u(r,.) = r'~Nw satisfies (1.1) in RY and vanishes on ORY \{0}.
Since Vw is bounded, it satisfies

u(z) < e for all x € 90\ {0},

for some constant c1g > 0. Then the result follows from Proposition 3.3. Il

4.3.2 Thecase—<q<p

If
N+1 2p N+1

d — <qg< —+— 4.81
N—1™ 11N (4.81)
there exists fundamental solutions uy in RY by Theorem 1.7, or in {2 by Theorem 1.8.
Since the mapping k — uy is increasing and wuy is bounded from above the function

Uoo = hm uy, is a solution of (1.1) in RY (resp. €2) vanishing on RY \ {0} (resp.

Q\ {0}) Wthh satisfies (4.68) (resp. (4.74)). However the blow-up rate of us is

not easy to obtain from scaling methods since the transformation 7y transform (1.1)
2pfq(p+1)

into (4.62) where M is replaced by M{¢  »-1 " which is not bounded when ¢ — 0.

l<p<

When g > +1, the natural exponent is v defined by (1.34) The transformation Sy
defined for E > 0 by
Selu](x) = Ou(lx), (4.82)
transforms (1.1) into
q p+1) 2p 1
—L Au+ |ulP™ u — M|Vu|? = 0. (4.83)

When ¢ — 0, the limit equation is an eikonal equation (up to change of unknown),
lu[P~ 1 — M|Vul? = 0. (4.84)

Separable solutions of (1.3) in RY are under the form w,(r,.) = r~7n and 7 satisfies
[l = M (0?4 [V9*)2 =0 in Y (4.85)

Clearly this equation admits no C' solution but for the constant ones. As limit of
solutions with vanishing viscosity, the solutions that we obtain are viscosity solutions
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outside the origin. We will look for solutions having a strong singularity by the
method of sub and supersolutions. Note that (1.3) admits an explicit radial singular
solution, namely

U(z) = wolz| ™ := 1" M|z 7. (4.86)
Proof of Theorem 1.11. For n > 0 set Uy(r) = nr=7. As

2p—q(p+1
v(p—1)+2=—Q(p+1)+v+2=p_q),

we have
nr P Ly Un = —(v 42 = N) 407 (P70 — M )r?= =1,

2p

P N+1
p+1

Since v+ 2 — N > 0 because ¢ > and p < {3, for any n > wg there exists

ry, > 0 such that
nd=(nP=9 — fqu)rTZf(pfl)V =v(y+2—N).

It implies that U, is a super solution of (1.1) in B, \ {0}. Furthermore

np—l W
[ (’Y(’Y—FQ—N)> (I+0(1)) when n — co. (4.87)

For a subsolution we set
Wi (r,o) = mr~7¢1(0), (4.88)

where m > 0. Then

a(p+1)—2p

L W =—mr ¢ (¥ =(N—=2)y+1-N)¢

o (4.89)
+ m4 <mp_q¢]19 — M (v?¢7 + \V'¢1\2)5) ;

and this expression is negative for m > 0 small enough. Set
P(X)=X?-(N-2)X+1-N=(X+1)(X+1-N).

Then
Ply) = p(Ng— (N; Up)
(p—q)

We first give the proof when Nq > (N — 1)p. In such case P(y) > 0. Hence there
exists mg > 0 such that for any 0 < m < mg, W, is a subsolution in RY, smaller
than U,, and it is bounded on dB;" \ {0}. When m < myg, the function W,, defined
in (4.88) is a subsolution of (1.1) in RY. Since W,, is bounded on B, \ {0} there
exists a nonnegative solution u, of (1.1) in B, which vanishes on B, \ {0} and
there holds

(Wi (z) —mry, ")y < up(z) < Up(z) forall z € B . (4.90)
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The fact that B;: is just a Lipschitz domain is easily bypassed by smoothing it in a
neighborhood of dB,, NRY. Furthermore, by (2.1) and (2.18),

un(z) < cs max{|xra,Mﬁ|xw}. (4.91)
and for any ro > 0, there exists cg > 0 depending on ry such that
[V (2)] < cgmax{\x\—a—l,Mﬁm—v—l}. (4.92)

By standard local regularity theory, there exists a subsequence {u,,} which con-
verges in the C'(K)-topology for any compact set K C RY \ {0} to a positive
solution u of (1.1) in RY which vanishes on ORY \ {0} and satisfies (1.35).

Next we assume Nq < (N — 1)p. Observe that 42¢7 + |[V/¢1|> > 62 > 0, then
9
mP @l — Mm? (72¢% + \V'qﬁl\z) 2 < mP — Mms9.
Thus, from (4.89) we obtain

a(p+1)—2p
VL W < —mr 7= P(y) +mP — Mm%, (4.93)
and P(vy) < 0. If we choose )
M\ p=a
m=r ()7
then 5
mP — Mmi6? = —MWQL d .

Therefore £_,, Wy, <0 on B/ where

(MmQ15q) q(pi?)q72p
Ty = | —mm——
—2P(7)

If a = mr,”, then W, < a in OB}, thus Wy, o = (Wy, — a)+ is nonnegative in
B;f and it is a subsolution of (1.1) in B;f which vanishes on 9B;" \ {0}. If we
extend it by 0 in RY, the new function is a a subsolution of (1.1) which belongs

to Wl’oo(@ \ {0}). We end the proof using Proposition 3.4 as in the previous

loc
case. O

If RY is replaced by a bounded domain we have the following result.
Theorem 4.8 Let M > 0 and z% <q<p. IfQCRY is a bounded smooth domain
such that 0 € 9Q and Tyo(0) = ORY . If
dist (x, ORY) < @dx\ﬁ for all x € 02 near 0, (4.94)

for some constant ca3 > 0. Then there exists a positive solution u of (1.1) in Q
vanishing on 0Q \ {0} satisfying, for some m > 0,

mei(o) <liminfru(r, o) < limsupr’u(r,o) < wo, (4.95)
r—0 r—0

uniformly on any compact set K C SY*.
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Proof. We recall that ¢ is the first eigenfunction of —A’ in Wol’Z(SN_l). Let R >0
and B := Bp(a) C Q be an open ball tangent to 992 at 0. Up to rescaling and since
the result does not depend on the value of M we can assume that R = 1. We set
wp(z) = m|z|~?Pg(x) where # = v +1 — N and Pg is the Poisson kernel in B
expressed by

1|z —al?

PB(.T) =

Y

onlz|Y
where o is the volume of the unit sphere in R¥. Then
-1
m= L W,

= (62 + (2~ N)O)[a] "2Pp(x) + 20]x[ " (V P(a), &) + mL|a| 7 Ph(2)

T

[0S

a1 <92|x‘—2(6—1)p§(x) + |2|7# |V Pg(x)|* - 20]x| >~V Pg(), £ >)

’ Jaf

(4.96)
e N(-|z—aP) & 2c-a)
1 l—jx—a x 2(x —a
VP = —— _ ,
o) =~ (M )
then .
_P xN - - N _ 1 1 _ _ 2 2
N -1 1
—___°p s
R
which implies in particular
N -1 1
P >_— P _
|v B($)| - ’l" B($) + UN‘.’E’N_I

If ¢ > %p, equivalently 6 > 0, we have

Vwm|* = 62| 2D PE(2) + |2| 7|V Pp(2)* — 20]2| "V Pp(x), )

|z

N -1 1 2
> 02]0|20+1) PY(2) + |x\—29( P +>
i

N -1 1
20 —20—-1 P
+ |:I:‘ |$’ B(IE) + O'N‘-’B|N_1

> (07 + (N = 1)) ]| 2D Py(a).

Wy < —(0% + NO)|z| 92 Pg(z) + mp_1|x|_p9P§(:c)
—mI M (0% + (N = 1)%)3 |2| 2O+ D P (x)
< mt o] P P(x) (mP=1PG I (x) = M(62 + (N = 1)?)[a|-00-1)
(4.98)
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Now

2 )p Y| 0-M -0

Pp(z) < —
oN

2
P—q
e = @ < (

Since (1 — N)(p — q) = (p — q)0 — ¢, we obtain finally that,

2 p—q
mL, wm < mi7Ha| 7 PR (z) (mpq (UN> — M(6? + (N — 1)2)> .
Choosing m small enough we deduce that w,, is a subsolution in B. If we extend
it by 0 in 2\ B, the new function denoted by w is a nonnegative subsolution of
(1.1) in © which vanishes on 99 \ {0} and satisfies (4.95). The proof follows from
Proposition 3.4.

If ¢ < X71p, then 6 < 0. Since (VPg(z), %) < 0, (4.97) is replaced by

||

Vwm|? = 6%a| 2D PR (x) + o] ~|V Pp(2)* — 20]2| 7'~ (VPp(2), &)

||

N-1 1 2
> 92 —2(9+1)P2 —20 P
> Plaf 20D PR (@) + ol (S Pola) + oy

N-—-1 1
20 —20—1 . °p -
+ |‘T| |l‘| B(aj) + O.N|:L,|N71

1 20
> (62 N —1)2 —2(6+1) p2
> (0% +( )7)|] 5(x) + o2 x| 2N+6-1) + o || N2

1 0
200 (e + ) Pole)
(4.99)

r in {2 ! o 4.100
T = min ,<20'N’9|> . (4.100)

If x € BN By(0), the two last terms in (4.99) are nonnegative, hence

Set

|Vw|? > (62 + (N — 1)2)]z|~20+D) PE () for all € BN By(0). (4.101)

Note that B N B;(0) = B if # = 2. Choosing m > 0 small enough we infer that
Wy, 18 a subsolution of (1.1) in B N Bz(0). Denoting by  the maximum of w,, on
d(BNBy(0))\ {0}, then (w,, —m)4 is a subsolution in €. Since the restriction to 2
of the solution constructed in Theorem 1.11 dominates (w,, —m), the proof follows
as in the first case. O

4.3.3 Open problems

Problem 1. Under what conditions are the positive solutions of problem (1.28)
unique ? If instead of separable solutions in RY vanishing on ORY \ {0} one looks
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for separable radial solutions of (1.1) in RV \ {0} (with ¢ = 2Z) , then they are

p+1
under the form
U(x) = Alx|™@ (4.102)
and A is a positive root of the polynomial
2 —1
P(X)=XP~l — Map T X+ +a(N -2 — a). (4.103)

A complete study of the radial solutions of (1.1) is provided in [7], however it is
straightforward to check that if 1 < p < %, there exists a unique positive root,
hence a unique positive separable solution, while if p > %, there exists a unique
positive root (resp. two positive roots) if

M= (p+1) (WV_Q;)_N) L m*, (4.104)

(resp. M > m™*). Uniqueness of solution plays a fundamental role in the description

and classification of all the positive solutions with an isolated singularity at O.

Problem 2. 1t is proved in [7] that if max{~5, %} < ¢ <min{2,p} and M > 0,
there exist infinitely many local radial solutions of of (1.1) in R¥ \ {0} which satisfies

u(r) = &yr=P(1+0(1)) as r—0 (4.105)
where )
2-—gq 1 ((N—-1)g—N\#1
p=imt e =5 ()T 100

These solutions present the property that there blow-up is smaller than the one
of the explicit radial separable solution. It would be interesting to construct such
solutions of (1.1) in RY (or more likely B},), vanishing on R~ \ {0}.

Problem 3. Is it possible to define a boundary trace for any positive solution of (1.1)
in RY, noting the fact such a result holds separately for positive solutions of (1.2)
and (1.4) 7 A related problem would be to define an initial trace for any positive

solution of the parabolic equation
Ou — Au+ uP — M|Vu|? =0, (4.107)

in (0,7) x R~¥. Initial trace of semilinear parabolic equations (M = 0 in (4.107))
are studied in [17], [14].

Problem /. Are the positive solutions of 1.8 satisfying (1.24) or (4.75) unique without
the flatness and the starshapedness assumptions of Theorem 4.2. More generaly, are
the weak solutions of the Dirichlet problem with measure boundary data (1.14)
unique ?

49



References

[1]

[10]

[11]

[12]

[13]

[14]

D. Adams, L. Hedberg. Function Spaces and Potential Theory, Theory,
Springer-Verlag, London-Berlin-Heidelberg-New York (1996).

D. R. Adams, M. Pierre. Capacitary strong type estimates in semilinear prob-
lems, Ann. Inst. Fourier (Grenoble) 41, 117-135 (1991).

P. Baras, M. Pierre. Singularités éliminables pour des équations semi-linéaires,
Ann. Inst. Fourier (Grenoble) 34, 185-206 (1986).

M.F. Bidaut-Véron, M. Garcia-Huidobro, L. Véron. Boundary singularities of
positive solutions of quasilinear Hamilton-Jacobi equations, Cal. Var. Part.
Diff. Equ. 54, 3471-3515 (2015).

M.F. Bidaut-Véron, M. Garcia-Huidobro, L. Véron. A priori estimates for ellip-
tic equations with reaction terms involving the function and its gradient, Math.
Annalen 378, 13-56 (2020).

M.F. Bidaut-Véron, M. Garcia-Huidobro, L. Véron. Radial solutions of scaling
invariant nonlinear elliptic equations with mixed reaction terms. Discrete Cont.
Dyn. Systems 40, 933-982 (2020).

M.F. Bidaut-Véron, M. Garcia-Huidobro, L. Véron. Measure Data Problems for
a Class of Elliptic Equations with Mixed Absorption-Reaction, Adv Nonlinear
Studies 21, 261-280 (2020).

M.F. Bidaut-Véron, M. Garcia-Huidobro, L. Véron. Singular solutions
of some elliptic equations involving mixed absorption-reaction, submitted,
arXiv:2107.13399v2.

M.F. Bidaut-Véron, G. Hoang, Q. H. Nguyen, L. Véron. An elliptic semilinear
equation with source term and boundary measure data: the supercritical case,
J. Funct. Anal. 269, 1995-2017 (2015).

M.F. Bidaut-Véron, L. Vivier. An elliptic semilinear equation with source term
involving boundary measures: the subcritical case, Rev. Mat. Iberoamericana
16, 477-513 (2000).

L. Boccardo, F. Murat, J. P. Puel. Résultats d’existence pour certains problemes

elliptiques quasilinéaires, Annali della Scuola Normale Superiore di Pisa -
Classe di Scienze Ser. 4, T. 11, 213-235 (1984).

J. Doob. Classical Potential Theory and Its Probabilistic Counterpart, Springer-
Verlag, London-Berlin-Heidelberg-New York (1984).

D. Gilbarg, N. S. Trudinger. Elliptic Partial Differential Equations of Second
Order, reprint of the 1998 edition, Classics in Math. Springer-Verlag, New York
(2001).

K. Gkikas, L. Véron. Complete Classification of the Positive Solutions of Heat

Equation with Super Critical Absorption, Advanced Nonlinear Studies 14, 47-
113 (2014).

50



[15]
[16]
[17]
[18]
[19]

[20]

[21]

A. Gmira, L. Véron. Boundary singularities of solutions of nonlinear elliptic
equations, Duke Mathematical J. 64, 271-324 (1991).

J. B. Keller. On the solutions of Au = f(u), Comm. Pure Appl. Math. 10,
503-510 (1957).

M. Marcus, L. Véron. Initial trace of positive solutions of some nonlinear
parabolic equations, Comm. part. Diff. Equ. 24, 1445-1499 (1999).

M. Marcus, L. Véron. Removable singularities and boundary traces, J. Math.
Pures Appl. 80, 879-900 (2001).

M. Marcus, L. Véron. Maximal solutions of semilinear elliptic equations with
locally integrable forcing term, Israel J. Math. 152, 333-348 (2006)

M. Marcus, L. Véron. Nonlinear Elliptic Equations involving Measures, De
Gruyter Series in Nonlinear Analysis and Applications. 21 xiii+pp. 1-262
(2013).

V. H. Nguyen. Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on
half space via mass transport and consequences, Proc. London Math. Soc.111,
127-148 (2015).

P. T. Nguyen, L. Véron. Boundary singularities of solutions to elliptic viscous
Hamilton-Jacobi equations, J. Funct. Anal. 263, 1487-1538 (2012).

R. Osserman. On the inequality Au > f(u), Pacific J. Math. 7, 1641-1647
(1957).
P. Pucci, J. Serrin. The mazimum principle, Progress in Nonlin- ear Differential

Equations and Their Applications, Birkhaiiser Verlag, Basel (2007).

J. Serrin. Isolated singularities of solutions of quasilinear equations, Acta Math-
ematica 34, 247-302 (1964).

J. Serrin, H. Zou. Existence and nonexistence results for ground states of quasi-
linear elliptic equations., Arch. Rat. Mech. Anal. 121, 101-130 (1992).

E. M. Stein Singular Integrals and Differentiability Properties of Functions,
Princeton University Press, Princeton, New Jersey (1970).

I. E. Verbitsky, R. L. Wheeden. Weighted norm inequalities for integral opera-
tors, Trans. Amer. Math. Soc. 350, 3371-3391 (1998).

L. Véron. Singular solutions of some nonlinear elliptic equations, Ann. Fac. Sci.
Toulouse 6, 1-31 (1984).

L. Véron. Singular solutions of some nonlinear elliptic equations, Nonlinear
Anal. Theory, Methods Appl. 5, 225-242 (1981).

L. Véron. Elliptic Equations Involving Measures, Handbook of Differential
Equations, Vol. 1, Chapter 8, pp 593-712. Stationary Partial Differential Equa-
tions (2004).

L. Véron. Local and Global Aspects of Quasilinear Degenerate Elliptic Equa-
tions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017).

o1



