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We study properties of positive functions satisfying (E) -∆u + u p -M |∇u| q = 0 is a domain Ω or in R N + when p > 1 and 1 < q < min{p, 2}. We concentrate our research on the solutions of (E) vanishing on the boundary except at one point. This analysis depends on the existence of separable solutions in R N + . We construct various types of positive solutions with an isolated singularity on the boundary. We also study conditions for the removability of compact boundary sets and the Dirichlet problem associated to (E) with a measure as boundary data.

Introduction

The aim of this article is to study some properties of solutions of the following equation L q,M u := -∆u + |u| p-1 u -M |∇u| q = 0 (1.1) in a bounded domain Ω of R N or in the half-space R N + , where M > 0 and p > q > 1. We are particularly interested in the analysis of boundary singularities of such solutions. If M = 0 the boundary singularities problem has been investigated since thirty years, starting with the work of Gmira and Véron [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] who obtained an almost complete description of the solutions with isolated boundary singularities. When M > 0 there is a balance between the absorption term |u| p-1 u and the source term M |∇u| q , a confrontation which can create very new effects. Furthermore, the scale of the two opposed reaction terms depends upon the position of q with respect to 2p p+1 . This is due to the fact that (1.1) is equivariant with respect to the scaling transformation T defined for > 0 by T [u](x) = 2 p-1 u( x). If q < 2p p+1 , the absorption term is dominant and the behaviour of the singular solutions is modelled by the equation studied in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] -∆u + |u| p-1 u = 0.

(1.2)

If q > 2p p+1 , the source term is dominant and the behaviour of the singular solutions is modelled by positive separable solutions of the equation without diffusion u p -M |∇u| q = 0.

(1.3)

Another associated equation which plays an important role in the construction of singular solutions since its positive solutions are supersolutions of (1.1) is -∆u -M |∇u| q = 0.

(1.4)

Note that in (1.3) and (1.4), M can be fixed to be 1 by replacing u by u.

If q = 2p p+1 , the coefficient M > 0 plays a fundamental role in the properties of the set of solutions, in particular for the existence of singular solutions and removable singularities. This situation is similar in some sense to what happens for equation

-∆u = |u| p-1 u + M |∇u| q (1.5)
which is studied thoroughfly in [START_REF] Bidaut-Véron | A priori estimates for elliptic equations with reaction terms involving the function and its gradient[END_REF], [START_REF] Bidaut-Véron | Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms[END_REF] in the case M > 0 and in [START_REF] Serrin | Existence and nonexistence results for ground states of quasilinear elliptic equations[END_REF] in the case M < 0. In this last article the opposition of a forcing term |u| p-1 u and an absorption term M |∇u| q creates a very rich configuration of unexpected phenomena and new effects.

In the present paper we will consider the case where 1 < q < 2, with a special emphasis on the case q = 2p p+1 which allows to put into light the role of the value of M . We first analyze the following problem: given a smooth bounded domain Ω ⊂ R N such that 0 ∈ ∂Ω, under what conditions involving p, q and M is the point 0 a removable singularity for a solution of (1.1) continuous in Ω \ {0} and vanishing on ∂Ω \ {0} ? In the sequel we denote ρ(x) = dist (x, ∂Ω) and for 1 ≤ s < ∞, L s ρ (Ω) := L s (Ω; ρdx) and the space of test functions in Ω is defined by

X(Ω) = ζ ∈ C 1 (Ω) : ζ = 0 on ∂Ω, ∆ζ ∈ L ∞ (Ω) . (1.6) 
If Ω is replaced by R N + , then

X(R N + ) = ζ ∈ C 1 (R N + ) with compact support in R N + , ∆ζ ∈ L ∞ (R N + ) . (1.7)
Our first result is the following:

Theorem 1.1 Assume p ≥ N +1 N -1 , M > 0 and (i) either p = N +1 N -1 and 1 < q < 1 + 1 N . (ii) or p > N +1

N -1 and 1 < q ≤ 2p p+1 . Then any nonnegative solution u ∈ C 2 (Ω) ∩ C 1 (Ω \ {0}) of

-∆u + |u| p-1 u -M |∇u| q = 0 in Ω u = 0 in ∂Ω \ {0} (1.8)
verifies ∇u ∈ L q ρ (Ω), u ∈ L p ρ Ω) and is a weak solution of

-∆u + |u| p-1 u -M |∇u| q = 0 in Ω u = 0 in ∂Ω, (1.9) 
in the sense that Ω -u∆ζ + (|u| p-1 u -M |∇u| q )ζ dx = 0 for all ζ ∈ X(Ω).

(1.10)

Furthermore, if we assume either (i), or (iii) p > N +1 N -1 and 1 < q < 2p p+1 or (iv) p > N +1

N -1 , q = 2p p+1 and M < m * * := (p + 1) (N -1)p -(N + 1) 2p p p+1

, (1.11) then u = 0.

This result is optimal in the case p = N +1 N -1 , q = 2p p+1 as we will see in Section 4. Combining the method used in proving Theorem 1.1 with the result of [START_REF] Marcus | Removable singularities and boundary traces[END_REF] we prove the removability of compact boundary sets on ∂Ω, provided they satisfy some zero Bessel capacity property.

Theorem 1.2 Assume p > N +1

N -1 and N +1 N -1 < r < p. If one of the following conditions is satisfied: (i) either q = 2p p+1 and M < m * * r := (p + 1)

p -r p(r -1) p p+1 , (1.12) 
(ii) or 1 < q < 2p p+1 , r ≤ 3 and M is arbitrary. Then if K ⊂ ∂Ω is a compact set such that cap ∂Ω 

-∆u + |u| p-1 u -M |∇u| q = 0 in Ω u = µ in ∂Ω, (1.14) 
where µ is a Radon measure on ∂Ω. By a weak solution of (1.14) we understand a function u ∈ L 1 (Ω) ∩ L p ρ (Ω) such that |∇u| ∈ L q ρ (Ω), which satisfies When the two exponents are super-critical with respect to the equations (1.2) and (1.4), the admissibility condition on the measure for (1.1) requires the introduction of two different Bessel capacities defined on Borel subsets of ∂Ω.

Theorem 1.3 Let p > 1, 1 < q < 2 and µ be a nonnegative Radon measure on ∂Ω which satisfies µ(E) ≤ C min cap ∂Ω 2-q q ,q (E), cap ∂Ω for some C > 0. Then there exists c 0 > 0 such that for any 0 < c ≤ c 0 there exists a nonnegative weak solution of (1.14) with boundary data cµ. Furthermore the boundary trace of u is the measure cµ.

The proof is based upon a non-standard application of the sub and supersolutions technique since it relies of the dynamical (and more natural) aspect of the boundary trace as it is exposed in [START_REF] Marcus | Nonlinear Elliptic Equations involving Measures[END_REF]. Another surprising fact is the use of the equation

-∆u = u p in Ω u = µ in ∂Ω,
which yields key estimates for our construction. The theorem admits several corollaries the proof of which is based on properties of Bessel capacities as exposed in [START_REF] Adams | Function Spaces and Potential Theory, Theory[END_REF].

It is noticeable that the results therein cover the full range (p,

q) ∈ (1, ∞) × (1, 2). Corollary 1.4 Assume p ≥ N +1 N -1 and 2p p+1 ≤ q < 2.
If µ is a nonnegative Radon measure on ∂Ω which satisfies, for some C > 0, µ(E) ≤ Ccap ∂Ω 2-q q ,q (E) for all Borel set E ⊂ ∂Ω, (1.17) there the conclusions of Theorem 1.3 hold.

The condition on the measure is also fulfilled under the following conditions.

Corollary 1.5 Assume N +1 N ≤ q < 2p p+1 .
If µ is a nonnegative Radon measure on ∂Ω such that for some constant C > 0, there holds for any Borel set E ⊂ ∂Ω,

µ(E) ≤ Ccap ∂Ω 2 p ,p (E), (1.18) 
then the conclusions of Theorem 1.3 hold.

Since the exponents p and q can be separately super or sub-critical, or even both sub-critical, we have the following result in different configurations of exponents.

Corollary 1.6 Let p > 1, 1 < q < 2 and µ ∈ M + (∂Ω). There exists a function u ∈ L 1 (Ω) ∩ L p ρ (Ω) such that ∇u ∈ L q ρ (Ω) which is a weak solution to (1.14) in the following cases: (i) When p < N +1 N -1 , q < N +1 N and there exists some

c 1 > 0 such that µ M ≤ c 1 . (ii) When p < N +1 N -1 , q ≥ N +1
N and µ satisfies (1.17); in that case µ has to be replaced by cµ with 0 < c ≤ c 2 , for some c 2 > 0, in problem (1.14). (iii) When p ≥ N +1 N -1 , q < N +1 N , and µ satisfies µ M ≤ c 3 for some c 3 > 0 and

µ(E) = 0 for all Borel set E ⊂ ∂Ω such that cap ∂Ω 2 p ,p (E) = 0. (1.19)
In [START_REF] Bidaut-Véron | Measure Data Problems for a Class of Elliptic Equations with Mixed Absorption-Reaction[END_REF] the same authors study the problem

-∆u + |u| p-1 u -M |∇u| q = µ in Ω u = 0 in ∂Ω, (1.20) 
where µ is a bounded Borel measure in Ω. There too sufficient conditions for solving the problem involves Bessel capacities, but since the boundary trace argument is no longer valid, an intensive utilization of potential theory with various kernels has to be used.

In the sub-critical case (i) and when µ is a Dirac mass at 0 on the boundary we have no restriction on its weight.

Theorem 1.7 Assume 1 < p < N +1
N -1 and 1 < q < N +1 N . Then for any k ≥ 0 there exists a minimal positive solution u k of

-∆u + |u| p-1 u -M |∇u| q = 0 in R N + u = 0 in ∂R N + \ {0}, (1.21) 
satisfying

lim x→0 u k (x) P N (x) = k (1.22)
where

P N (x) = c N x N |x| -N is the Poisson kernel in R N + .
Furthermore this solution is unique among the positve solutions of (1.21)- (1.22) 

if q ≤ 2p p+1 . This function satisfies u k ∈ L 1 loc (R N + ) ∩ L p loc (R N + ; x N dx), ∇u k ∈ L q loc (R N + ; x N dx) and R N + -u k ∆ζ + (u p k -M |∇u k | q )ζ dx = k ∂ζ ∂x N (0) for all ζ ∈ X(R N + ). (1.23)
The proof is completely different from the ones of Theorem 1.3 and Corollary 1.6 and is based upon a delicate construction of supersolutions and subsolutions. A similar result holds if R N + is replaced by a bounded smooth domain Ω ⊂ R N + such that 0 ∈ ∂Ω.

Theorem 1.8 Assume 1 < p < N +1
N -1 and 0 < q < N +1 N . Then for any M > 0 and k > 0 there exists a minimal solution

u k ∈ C 1 (Ω \ {0}) of (1.8) satisfying lim x→0 u k (x) P Ω (x) = k, (1.24) 
where P Ω is the Poisson kernel in Ω. Furthermore

u k ∈ L 1 (Ω)∩L p ρ (Ω), ∇u k ∈ L q ρ (Ω), and 
Ω -u k ∆ζ + (u p k -M |∇u k | q )ζ dx = -k ∂ζ ∂n (0) for all ζ ∈ X(Ω). (1.25)
In order to study the behaviour of these solutions u k when k → ∞ we have to introduce separable solutions of (1.1) in the model case R N + . They are solutions of

-∆u + |u| p-1 u -M |∇u| 2p p+1 = 0 in R N + u = 0 on ∂R N + \ {0}, (1.26) 
which have the following expression in spherical coordinates

u(r, σ) = r -2 p-1 ω(σ) for all (r, σ) ∈ (0, ∞) × S N -1 + . Put α = 2 p -1 , (1.27) 
and denote by ∆ and ∇ the Laplace-Beltrami operator and the spherical gradient, then ω satisfies

-∆ ω + α(N -2 -α)ω + |ω| p-1 ω -M α 2 ω 2 + |∇ ω| 2 p p+1 = 0 in S N -1 + ω = 0 in ∂S N -1 + . (1.28) 
Theorem 1.9 There exists a positive solution ω to problem (1.28) if one of the following conditions is satisfied:

(i) either 1 < p < N +1 N -1 and M ≥ 0, (ii) or p = N +1
N -1 and M > 0, (iii) or 1 < p < 3 or p > N +1

N -1 , and M ≥ M N,p for some explicit value M N,p > 0. The positive solutions of (1.28) allow to characterize the limit u ∞ of the solutions u k constructed in Theorem 1.7.

Theorem 1.10 Let 1 < p < N +1 N -1 , 1 < q < N +1 N and M > 0, then lim x→0 u ∞ (x) P N (x) = ∞. (1.29) Furthermore (i) If 1 < q < 2p p+1 lim r→0 r α u ∞ (r, .) = ψ uniformly on S N -1 + , (1.30) 
where ψ is the unique positive solution of

-∆ ψ + α(N -2 -α)ψ + |ψ| p-1 ψ = 0 in S N -1 + ψ = 0 in ∂S N -1 + , (1.31)
and u ∞ is the unique positive function solution of (1.21) and satisfying (1.29).

(ii

) If q = 2p p+1 lim r→0 r α u ∞ (r, .) = ω uniformly on S N -1 + , (1.32) 
where ω is the minimal positive solution of (1.28).

A similar result holds if R N + is replaced by a bounded smooth domain Ω ⊂ R N + , which boundary contains 0. In that case we assume that T ∂Ω (0) = ∂R N + (i.e. ∂R N + is the tangent hyperplane to ∂Ω at 0 in order to use the spherical coordinates (r, σ) as above. Finally, if (p, q) = N +1 N -1 , N +1 N and ∂Ω is "very flat" near 0 in the sense that dist (x, T ∂Ω (0)) ≤ c|x| N for all x ∈ ∂Ω close to 0, we prove that the function u ∞ defined in the previous theorem still satisfies (1.32). Note that the above flatness condition is always satisfied if N = 2 since ∂Ω is locally the graph of a C k real valued function (k ≥ 2) defined on T ∂Ω (0) ∩ B δ and degenerate at 0. When 2p p+1 < q < min{2, p}, the situation is completely changed and the solutions with strong boundary blow-up are modelized by equation (1.3). If 1 < q < 2 we set

β = 2 -q q -1 , (1.33) 
and if 1 < q < p γ = q p -q .

(1.34)

We prove the following result in the statement of which φ 1 denotes the first eigenfunction of -∆ in W 1,2 0 (S N -1 + ).

Theorem 1.11 Assume M > 0 and 2p p+1 < q < min{2, p}. Then there exists a positive solution u of (1.1) in R N + , which vanishes on ∂R N + \ {0} such that

mφ 1 (σ)r -γ ≤ u(r, σ) ≤ c 4 max r -α , M 1 
p-q r -γ for all (r, σ) ∈ (0, r * ) × S N -1 + .

(1.35) for some m > 0, r * ∈ (0, ∞] and where c 4 = c 4 (N, p, q) > 0. If N q ≥ (N -1)p, r * = ∞. Note that our construction which is made by mean of supersolutions and subsolutions does not imply that in the case 2p p+1 < q < N +1 N , the solution u ∞ obtained in Theorem 1.10 satisfies (1.35). A similar result holds if R N + is replaced by a bounded smooth domain Ω ⊂ R N + , such that 0 ∈ ∂Ω, under the flatness condition dist (x, T ∂Ω (0)) ≤ c|x| γ+1 for x ∈ ∂Ω near 0.

In the sequel C > 0 denotes a constant the value of which can change from one occurence to another and c j (j = 0, 1, 2, ...) a more specific positive constant the value of which depends of more precise elements such as p, q, N or other previous constants c i .

In a forthcomming article [START_REF] Bidaut-Véron | Singular solutions of some elliptic equations involving mixed absorption-reaction[END_REF] we study the isolated singularities of positive solution in a domains. Due to the number of parameters even the radial solutions present an amazing rich complexity.
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Singular boundary value problems 2.1 A priori estimates

We give two series of estimates for solutions of (1.1) with a boundary singularity according to the sign of M . Theorem 2.1 Let Ω be a domain such that 0 ∈ ∂Ω, M ∈ R and 1 < q < min{p, 2}.

If u ∈ C 1 (Ω \ {0}
) is a solution of (1.1) vanishing on ∂Ω \ {0}, there holds 1-If M > 0, there exists = c 5 (N, p, q) > 0 such that

u + (x) ≤ c 5 max M 1 p-q |x| -q p-q , |x| -2 p-1
for all x ∈ Ω.

(2.1)

2-If M ≤ 0, there exist c 6 = c 6 (N, q) > 0 and c 7 = c 7 (N, p) > 0 such that

u + (x) ≤ min c 6 |M | -1 q-1 |x| -2-q q-1 , c 7 |x| -2 p-1 for all x ∈ Ω. (2.2)
Proof. We first assume that Ω ⊂ B R 0 for some R 0 > 0. Let > 0, we set

j (r) =    0 if r ≤ 0 r 2 2 if 0 ≤ r ≤ r -2 if r ≥ .
If we extend u by 0 in Ω c ∩ B 2R 0 and set v = j (u) we have

-∆v + v p -M |∇v | q = -j (u)∆u -j (u)|∇u| 2 + (j (u)) p -M (j (u)) q |∇u| q ≤ M j (u) 1 -(j (u)) q-1 |∇u| q + (j (u)) p -j (u)u p + ≤ M u 1 - u q-1 q-1 |∇v | q χ {0<u< } .
Letting → 0, we deduce from the dominated convergence theorem that v 0 = lim →0 v is nonnegative (actually it is the extension of u + by 0 outside Ω \ {0}) and satisfies

Lv 0 := -∆v 0 + v p 0 -M |∇v 0 | q ≤ 0 in D (B 2R 0 \ {0}). (2.
3)

The case M > 0. Following the method of Keller [START_REF] Keller | On the solutions of ∆u = f (u)[END_REF] and Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF], we fix a ∈ B R 0 \ {0}, and introduce U (x -a) = λ(|a| 2 -|x -a| 2 ) -b for some b > 0. Then putting r = |x -a| and Ũ (r) = U (x -a), we have

L Ũ = -Ũ - N -1 r Ũ -M | Ũ | q + Ũ p = λ(|a| 2 -r 2 ) -2-b λ p-1 (|a| 2 -r 2 ) 2-b(p-1) + 2b(N -2(b + 1))r 2 -2N b|a| 2
-M 2 q b q λ q-1 r q (|a| 2 -r 2 ) 2+b-q(b+1) .

If M > 0, the two necessary conditions on b to be fulfilled in order Ũ be a supersolution in B |a| (a) are

(i) 2 -b(p -1) ≤ 0 ⇐⇒ b(p -1) ≥ 2, (ii) 2 + b -q(b + 1) ≥ 2 -b(p -1) ⇐⇒ b(p -q) ≥ q.
The above inequalities are satisfied if

b = max 2 p -1 , q p -q = max {α, γ} . (2.4) If q > 2p p+1 then b = q p-q and L Ũ ≥ λ |a| 2 -r 2 -2p-q p-q λ q-1 λ p-q -M 2 q b q r q |a| 2 -r 2 2p-q(p+1) p-q -(3b + 1)N |a| 2 .
There exists c 5 > 0 depending on N , p and q such that if we choose

λ = c 5 max M 1 p-q |a| q p-q , |a| 2p(q-1) (p-1)(p-q)
, there holds L Ũ ≥ 0.

(2.5)

Since Ũ (x) → ∞ when |x| → |a|, we obtain by the maximum principle (see [START_REF] Pucci | The maximum principle[END_REF] for a ) that v 0 ≤ Ũ in B |a| (a). In particular

u + (a) = v 0 (a) ≤ Ũ (a) = λ|a| -2q p-q = c 5 max M 1 p-q |a| -q p-q , |a| -2 p-1 . (2.6) If q ≤ 2p p+1 then b = 2 p-1 and L Ũ ≥ λ |a| 2 -r 2 -2p p-1 λ p-1 + 2 p -1 N - 2(p + 1) p -1 r 2 - 2N p -1 |a| 2 -M 2 q 2 p -1 q λ q-1 r q |a| 2 -r 2 2p-q(p+1) p-1 ≥ λ |a| 2 -r 2 -2p p-1 λ p-1 -C|a| 2 -C λ q-1 M |a| 4p-q(p+3) p-1
.

Hence, if q = 2p p+1 , (2.5) holds if for some c 5 = c 5 (N, p, q) > 0,

λ = c 5 max M p+1 p(p-1) , 1 |a| 2 p-1 , which yields u + (a) = v 0 (a) ≤ Ũ (a) = λ|a| -4 p-1 = c 5 max M p+1 p(p-1) , 1 |a| -2 p-1 .
(2.7)

While if q < 2p p+1 , we choose

λ = c 5 max M 1 p-q |a| 4p-q(p+3) (p-1)(p-q) , |a| 2 p-1
, where c 5 > 0 = c 5 (N, p, q), which yields

u + (a) = v 0 (a) ≤ Ũ (a) = λ|a| -4 p-1 = c 5 max M 1 p-q |a| -q p-q , |a| -2 p-1 .
(2.8)

The case M ≤ 0. We first assume that M < 0. By [START_REF] Nguyen | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]Lemma 3.3] v 0 satisfies

-∆v 0 + |M ||∇v 0 | q ≤ 0 in D (B 2R 0 \ {0}).
(2.9) Therefore, since 1 < q < 2,

u + (a) = v 0 (a) ≤ c 6 |M | -1 q-1 |a| -2-q q-1 .
(2.10)

If M ≤ 0 there also holds

-∆v 0 + v p 0 ≤ 0 in D (B 2R 0 \ {0}). (2.11) 
Hence u + (a) = v 0 (a) ≤ c 7 |a| -2 p-1 .
(2.12)

In the above inequalities c 6 = c 6 (q, N ) > 0 and c 7 = c 7 (p, N ) > 0. Combining these estimates we derive

u + (a) ≤ min c 7 |a| -2 p-1 , c 6 |M | -1 q-1 |a| -2-q q-1 . (2.13)
Since the estimate is independent of R 0 , the assumption that Ω ⊂ B R 0 is easily ruled out. This ends the proof.

Remark. If M = 0, estimate (2.1) is just

u + (x) ≤ c 7 |x| -2 p-1 . (2.14) If M < 0, (2.14)
is valid what ever is the value of q. Furthermore there also holds

u + (x) ≤ c 6 |M ||x| -2-q q-1 , (2.15)
whatever is the value of p, provided 1 < q < 2.

The equation is not invariant by u → -u, hence the lower and upper estimates are not symmetric.

Corollary 2.2 Under the assumptions of Theorem 2.1, there holds 1-If M > 0

-min c 6 |M | -1 q-1 |x| -2-q q-1 , c 7 |x| -2 p-1 ≤ u(x) ≤ c 5 max M 1 p-q |x| -q p-q , |x| -2 p-1
for all x ∈ Ω.

(2.16)

2-If M ≤ 0, there exist c 6 = c 6 (N, q) > 0 and c 7 = c 7 (N, p) > 0 such that

-c 5 max M 1 p-q |x| -q p-q , |x| -2 p-1 ≤ u(x) ≤ min c 6 |M | -1 q-1 |x| -2-q q-1 , c 7 |x| -2 p-1 for all x ∈ Ω.
(2.17)

We infer from Theorem 2.1 an estimate of the gradient of u near 0.

Theorem 2.3

Let Ω be a smooth bounded domain such that 0 ∈ ∂Ω and

T ∂Ω (0) = ∂R N + , M > 0, p > 1 and 1 < q < min{2, p}. If u ∈ C 1 (Ω \ {0}
) is a nonnegative solution of (1.1) vanishing on ∂Ω \ {0}, for any r 0 > 0 there holds there exists

c 8 = c 8 (N, p, q, Ω, r 0 , M ) > 0 such that |∇u(x)| ≤ c 8 max |x| -p p-q , |x| -p+1 p-1 for all x ∈ Ω ∩ B r 0 .
(

The restriction that |x| ≤ 1 is not needed if q = 2p p+1 .

Proof. We assume first that B + 2 ⊂ Ω. Case 1: 1 < q ≤ 2p p+1 . For 0 < r < 1 we set

u(x) = r -2 p-1 u r ( x r ) = r -2 p-1 u r (y) with y = x r . If r 2 < |x| < 2r, then 1 2 < |y| < 2 and u r > 0 satisfies -∆u r + u p r -M r 2p-q(p+1) p-1 |∇u r | q = 0 in B + 2 \ B + 1 2
, and vanishes on

∂(B + 2 \ B + 1 2 
). Since 0 < M r 2p-q(p+1) p-1 ≤ M as 2p -q(p + 1) ≥ 0, by the standard regularity theory we have the estimate

max |∇u r (z)| : 2 3 < |z| < 3 2 ≤ c 9 max |u r (z)| : 1 2 < |z| < 2 , (2.19) 
where c 9 depends on N, p, q and M . Now it follows that

max |u r (z)| : 1 2 < |z| < 2 ≤ 2 2 p-1 c 5 max M 1 p-q r 2p-q(p+1) (p-1)(p-q) , 1 , by (2.1). Therefore max |∇u(y)| : r 2 < |y| < 2r ≤ 2 2 p-1 c 5 c 9 r -p+1 p-1 max M 1 p-q r 2p-q(p+1) (p-1)(p-q) , 1 ≤ c 8 max |x| -p p-q , |x| -p+1 p-1 , (2.20) 
which is (2.18).

Case 2: 2p p+1 < q < 2. For 0 < r < 1 we set

u(x) = r -2-q q-1 u r ( x r ) = r -2-q q-1 u r (y) with y = x r . If r 2 < |x| < 2r, then 1 2 < |y| < 2 and u r > 0 satisfies -∆u r + r q(p+1)-2p q-1 u p r -M |∇u r | q = 0 in B + 2 \ B + 1 2
,

We notice that q(p + 1) -2p > 0. Then inequality (2.19) holds. Now

max |u r (z)| : 1 2 < |z| < 2 ≤ c 9 r 2-q q-1 max r -2 p-1 , r -q p-q , thus max |∇u r (z)| : 2 3 < |z| < 3 2 ≤ c 9 r 2-q q-1 -1 max r -2 p-1 , r -q p-q , (2.21) 
which implies

max |∇u(x)| : 2r 3 < |x| < 3r 2 ≤ c 8 max r -p+1 p-1 , r -p p-q . ( 2.22) 
The general case; If ∂Ω is not flat near 0 we proceed as in the proof of [START_REF] Nguyen | Boundary singularities of solutions to elliptic viscous Hamilton-Jacobi equations[END_REF]Lemma 3.4], using the same scaling as in the flat case which transform the domain

B + 2 \ B + 1 ) into (B 2 \ B 1 ) ∩ 1
r Ω, the curvature of which is bounded when 0 < r < 1. The same estimates holds, up to the value of the constant c 8 and we derive (2.18).

As a consequence we have the following.

Corollary 2.4 Under the assumptions of Theorem 2.3 the function u satisfies

u(x) ≤ c 8 ρ(x) max M 1 p-q |x| -p p-q , |x| -p+1 p-1 for all x ∈ Ω ∩ B 1 .
(2.23)

The restriction that |x| ≤ 1 is not needed if q = 2p p+1 .

Removable singularities

Proof of Theorem 1.1. If M ≤ 0, u is a nonnegative subsolution of -∆u + v p = 0 which vanishes on ∂Ω \ {0}, hence it is identically zero by [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF].

Step 1. We assume M > 0. It is straightforward to verify from estimates (2.18) that under conditions (i) or (ii), |∇u(x)| ≤ c 8 |x| -a with a ≤ N . Since these conditions imply q < N +1 N , it follows that |∇u| q ∈ L 1 ρ (Ω).

For any > 0 we denote by w the solution of

-∆w + w p = M |∇u| q in Ω := Ω ∩ B c w = 0 in ∂Ω ∩ B c lim |x|→ w(x) = ∞ on ∂B ∩ Ω, (2.24) 
which exists since |∇u| q ∈ L 1 ρ (Ω), see [START_REF] Marcus | Maximal solutions of semilinear elliptic equations with locally integrable forcing term[END_REF]. Then u ≤ w in Ω . Let z be the solution of -∆z

+ z p = 0 in Ω z = 0 in ∂Ω ∩ B c lim |x|→ z(x) = ∞ on ∂B ∩ Ω. (2.25) Denote by G Ω [.] the Green operator in Ω. Since z + M G Ω [|∇u| q ] Ω is a supersolu- tion of (2.24) in Ω we deduce u ≤ z + M G Ω [|∇u| q ] Ω in Ω . (2.26)
When → 0, z decreases to z 0 which satisfies

-∆w + w p = 0 in Ω w = 0 in ∂Ω \ {0}. (2.27) 
Since p ≥ N +1 N -1 it is proved in [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] that any solution of (2.27) extends as a continuous solution in Ω with boundary value 0, hence z 0 = 0 by the maximum principle. Therefore u ≤ M G Ω [|∇u| q ] in Ω and the boundary trace T r ∂Ω [u] of u is zero. By [START_REF] Marcus | Nonlinear Elliptic Equations involving Measures[END_REF] the fact that |∇u| q ∈ L 1 ρ (Ω) jointly with T r ∂Ω [u] = 0 implies in turn that u p ∈ L 1 ρ (Ω) and u is a weak solution of

-∆u + u p = M |∇u| q in Ω u = 0 on ∂Ω, (2.28) 
in the sense that there holds

Ω (-u∆ζ + u p ζ -M |∇u| q ζ) dx = 0 ∀ζ ∈ W 2,∞ (Ω) ∩ C 1 c (Ω). (2.29)
Step 2. Let us assume that p > N +1 N -1 . If u is nonnegative and not identically zero, then by the maximum principle it is positive in Ω. We set

u = v b with 0 < b ≤ 1. Then -∆v -(b -1) |∇v| 2 v + 1 b v (p-1)b+1 -M b q-1 v (b-1)(q-1) |∇v| q = 0. (2.30) For > 0, v (b-1)(q-1) |∇v| q ≤ q 2 q 2 |∇v| 2 v + 2 -q 2 2 2-q v (2b-1)q-2(b-1) 2-q . Therefore -∆v + 1 -b -M qb q-1 2 q 2 |∇v| 2 v + 1 b v (p-1)b+1 -M b q-1 2 -q 2 2 2-q v (2b-1)q-2(b-1) 2-q = 0.
(2.31) We notice that the following relation is independent of b

(2b -1)q -2(b -1) 2 -q ≤ (p -1)b + 1 ⇐⇒ q ≤ 2p p + 1 ,
with simultaneous equality. We take

(p -1)b + 1 = N + 1 N -1 ⇐⇒ b = 2 (N -1)(p -1) , (2.32) 
hence p > N +1 N -1 if and only if 0 < b < 1. We first assume that 0 < q < 2p p+1 and choose > 0 such that

1 -b -M qb q-1 2 q 2 = 0 ⇐⇒ = 2(1 -b) M qb q-1 q 2 = 2((N -1)p -N -1) M qb q-1 (N -1)(p -1) q 2 . (2.33)
This transforms (2.31) into

-∆v + (N -1)(p -1) 2 v N +1 N -1 - (2 -q)b 2(q-1) 2-q 2 q 2(1 -b) q 2-q M 2 2-q v (2b-1)q-2(b-1) 2-q ≤ 0. (2.34) Then, as (2b -1)q -2(b -1) 2 -q < N + 1 N -1 ,
there exists A > 0, depending on M and b, such that

-∆v + (N -1)(p -1) 4 v N +1 N -1 ≤ A. (2.35) Since v vanishes on ∂Ω \ {0}, ṽ = (v -c 10 A N -1 N +1 ) N +1 N -1 + with c 10 = 4 (N -1)(p-1) N +1 N -1 satisfies -∆ṽ + (N -1)(p -1) 4 ṽ N +1 N -1 ≤ 0. (2.36)
By [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF], ṽ = 0 which implies v ≤ c 10 A

N -1 N +1 and therefore u(x) ≤ c 11 A 2 (N +1)(p-1)
in Ω. Since u vanishes on ∂Ω \ {0} we extend it in a neighborhood of 0 by odd reflection trough ∂Ω and denote by ũ the new function defined in B α where it satisfies

-divA(x, ∇ũ) + ũp + B(x, ∇ũ) = 0 in B α \ {0}.
(2.37)

In this expression the operator A : (

x; ξ) ∈ B α × R N → A(x, ξ) ∈ R N is smooth in
x in B α and linear in ξ (see e.g. [4, Lemma 2.5] in a more general setting), it and satisfies for all (x; ξ)

∈ B α × R N , A(x, ξ).ξ ≥ 2|ξ| 2 and |A(x, ξ)| ≤ 4|ξ| for all (x; ξ) ∈ B α × R N .
Since we can write |B(., ∇ũ

)| ≤ 2|∇ũ| q = 2|∇ũ| q-1 |∇ũ| = C(x)|∇ũ| in B α , then B : (x, ξ) ∈ B α × R N → B(x, ξ) ∈ R verifies |B(x, ξ)| ≤ C(x)|ξ|,
and

C(x) ≤ 2c 8 |x| - (p+1)(q-1) p-1
by Theorem 2.3. Since q < 2p p+1 , (p+1)(q-1) p-1 < 1. Hence C ∈ L N +τ for some τ > 0. By Serrin's theorem [START_REF] Serrin | Isolated singularities of solutions of quasilinear equations[END_REF]Theorem 10] the singularity at 0 is removable and ũ can be extended as a regular solution of (2.37) in B α . Hence ũ ∈ C 1 (B α 2 ), and as a consequence u ∈ C 1 (Ω). If u is not zero, it is positive in Ω and achieves its maximum at some x 0 ∈ Ω where ∆u(x 0 ) ≤ 0 and ∇u(x 0 ) = 0. Contradiction. Next we assume that q = 2p p+1 . By the choice of b in (2.32), inequality (2.31) becomes

-∆v + 1 -b - M pb p-1 p+1 p+1 p p + 1 |∇v| 2 v + 1 b - M b p-1 p+1 (p + 1) p+1 v (p-1)b+1 ≤ 0. (2.38)
We need to make both coefficients positive so that we obtain

-∆v + τ v N +1 N -1 ≤ 0 in Ω v = 0 on ∂Ω \ {0}.
(2.39)

We first choose

p+1 p > M p + 1 1 p b 2 p+1 , say p+1 p = M p + 1 1 p b 2 p+1 + ˜ , (2.40) 
with ˜ > 0 so that the coefficient of v

N +1
N -1 is positive, and we can choose ˜ thanks to the assumption m * * > M : we have

1 -b - M pb p-1 p+1 p + 1 M p + 1 1 p b 2 p+1 + ˜ = 1 -b - M p + 1 p+1 p pb - M pb p+1 p-1 p + 1 ˜ = b 1 -b b - M p + 1 p+1 p p - M pb p+1 p-1 p + 1 ˜ = pb (N -1)p -(N + 1) 2p - M p + 1 p+1 p - M pb p+1 p-1 p + 1 ˜ = pb m * * p + 1 p+1 p - M p + 1 p+1 p - M pb p+1 p-1 p + 1 ˜ (2.41)
and the right-hand side is positive if ˜ small enough. Hence we obtain (2.39). By [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF], v = 0 and the same holds for u. This ends the case p > N +1 N -1 .

Step 3. Finally we assume p = N +1 N -1 and 1 < q < 2p p+1 = N +1 N , then

M |∇u(x)| q ≤ c 12 |x| -q p+1 p-1 = c 12 |x| -qN := c 13 Q(x). Hence u ≤ u 1 := c 13 G Ω [Q].
At this point we need the following intermediate result:

Claim. Assume w α = G Ω [Q α ] where Q α (x) = |x| -α with α < N + 1, then w α (x) ≤ c α |x| 2-α for all x ∈ Ω. (2.42)
If this holds true, then u(x) ≤ c 13 c qN |x| 2-qN . By the scaling method of Theorem 2.3, we obtain

|∇u(x)| ≤ c 8 c 13 c qN |x| 1-qN =⇒ |∇u(x)| q ≤ c 14 |x| q(1-qN ) := c 14 Q q(N q-1) (x),
(2.43) and thus

w q(N q-1) (x) = c 14 G Ω [Q q(N q-1) ](x) ≤ c 14 c q(N q-1) |x| 2-q(N q-1)
for all x ∈ Ω.

(2.44) Since q < 1 + 1 N , q(N q -1) -2 < N q -2. Iterating this process, we finally obtain that u is bounded and we end the proof as in Step 2.

Remark. It is noticeable that the equation exhibits a phenomenon which is characteristic of Emden-Folwer type equations ∆u = u p in B 1 \ {0}.

(2.45)

If u is nonnegative then there exists a ≥ 0 such that ∆u = u p + aδ 0 in D (B 1 ).

(2.46)

If 1 < p < N N -2 then a can be positive, but if p ≥ N N -2
, then a = 0. This means that the singularity cannont be seen in the sense of distributions, however there truly exist singular solutions, e.g. if p > N N -2 ,

u s (x) = c N,p |x| -2 p-1 .
(2.47)

A similar phenomenon exists for solutions of

-∆u = u p in B + 1 u = 0 in ∂B + 1 \ {0}.
(2.48)

In such a case the critical value is N +1 N -1 since for p ≥ N +1 N -1 the boundary value is achieved in the sense of distributions in ∂B + 1 .

Proof of Theorem 1.2

As in Theorem 1.1, the proof differs according to whether 0 < q < 2p p+1 or q = 2p p+1 , and we first assume that u > 0. We perform the same change of unknown as in the previous theorem putting u = v b , but now we choose b as follows

(p -1)b + 1 = r ⇐⇒ b = r -1 p -1 , (2.49) 
and we first assume that

1 -b -M qb q-1 2 q 2 = 0 ⇐⇒ = 2(1 -b) M qb q-1 q 2 = 2(p -r) M q(p -1)b q-1 q 2 .
(2.50) Hence (2.34) becomes

-∆v + p -1 r -1 v r - (2 -q)b q-1 2 q 2(1 -b) q 2-q M 2 2-q v (2r-p-1)q+2(p-r) (p-1)(2-q) ≤ 0. (2.51) The condition r ≥ (2r-p-1)q+2(p-r) (p-1)(2-q)
is equivalent to 2p -q(p + 1) ≤ r(2p -q(p + 1)) since 1 < r < p. Assuming first that q < 2p p+1 , we obtain from (2.51)

-∆v + p -1 2(r -1) v r ≤ A. (2.52) 
for some constant A ≥ 0. Since cap ∂Ω 2 r ,r (K) = 0 and v vanishes on ∂Ω \ K, it follows from [START_REF] Marcus | Removable singularities and boundary traces[END_REF] that v ≤ cA 1 r for some c > 0, hence u is also uniformly bounded above in Ω by some constant a. Next we have to show that ∇u ∈ L 2 (Ω). We also denote by Φ 1 the first eigenfunction of -∆ in W 1,2 0 (Ω) normalized by sup Φ 1 = 1 and by λ 1 the corresponding eigenvalue. Since N +1 N -1 < r ≤ 3 we infer from [1, Theorem 5.5.1], that

cap ∂Ω 1 2 ,2 (K) 1 N -2 ≤ B cap ∂Ω 2 r ,r (K) 1 N -1-2 r-1 . Therefore cap ∂Ω 2 r ,r (K) = 0 implies cap ∂Ω 1 2 ,2 (K) = 0 and there exists a decreasing se- quence {ζ n } ⊂ C 2 0 (∂Ω) such that ζ n = 1 in a neighborhood of K, 0 ≤ ζ n ≤ 1 and ζ n W 1,2 (∂Ω) → 0 when n → ∞, furthermore ζ n → 0 quasi everywhere. Let P Ω : C 2 (∂Ω) → C 2 (Ω) be the Poisson operator.
It is an admissible lifting in the sense of [START_REF] Marcus | Removable singularities and boundary traces[END_REF]Section 1] in the sense that

P Ω [η] ∂Ω = η and η ≥ 0 =⇒ P Ω [η] ≥ 0. Put η n = 1 -ζ n .
Then, multiplying equation (1.13) by u(P Ω [η n ]) 2 and integrating, we obtain

Ω |∇u| 2 (P Ω [η n ]) 2 dx + 2 Ω uP Ω [η n ]∇u.∇P Ω [η n ]dx + Ω u p+1 (P Ω [η n ]) 2 dx -M Ω |∇u| q u(P Ω [η n ]) 2 dx = 0, which implies Ω |∇u| 2 (P Ω [η n ]) 2 dx -2 Ω |∇u| 2 (P Ω [η n ]) 2 dx 1 2 Ω |∇P Ω [η n ]| 2 u 2 dx 1 2 + Ω u p+1 (P Ω [η n ]) 2 dx -M Ω |∇u| q u(P Ω [η n ]) 2 dx ≤ 0. It is standard that Ω |∇P Ω [η n ]| 2 dx ≤ c 12 η n 2 W 1 2 ,2 (∂Ω) = A n . Set X n = P Ω [η n ]|∇u| L 2 , then X 2 n -2A n X n -M a|Ω| 2-q 2 X q n ≤ 0.
Hence there exist two positive real numbers a 1 and a 2 depending only on q, |Ω| and a = u L ∞ such that

X n ≤ a 1 A 1 q-1 n + a 2 M 1 2-q .
(2.53)

Now A n → 0 and X n → ∇u 2 L 2 , therefore by Fatou's Lemma |Ω| 1-2 q ∇u 2 L q ≤ ∇u 2 L 2 ≤ a 2 M 1 2-q < ∞.
Let ζ ∈ C 1 0 (Ω) and η n as above. Since η n vanishes in a neighborhood of K and ζ vanishes on ∂Ω,

Ω P Ω [η n ]∇u.∇ζdx + Ω ζ∇u.∇P Ω [η n ]dx + Ω u p ζP Ω [η n ]dx = M Ω |∇u| q ζP Ω [η n ]dx.
Letting n to infty and using the fact that ∇u ∈ L 2 (Ω) and

∇P Ω [η n ] → 0 in L 2 (Ω), we derive Ω ∇u.∇ζdx + Ω u p ζdx = M Ω |∇u| q ζdx.
Hence u is a nonnegative bounded weak solution of

-∆u + |u| p-1 u -M |∇u| q = 0 in Ω u = 0 on ∂Ω. (2.54)
It is therefore C 2 . Again, by the maximum principle we see that u cannot achieve a positive maximum in Ω, this yields a contradiction.

Next we assume q = 2p p+1 . We choose b = r-1 p-1 and (2.38) becomes

-∆v + 1 -b - M pb p-1 p+1 p+1 p p + 1 |∇v| 2 v + 1 b - M b p-1 p+1 (p + 1) p+1 v r ≤ 0. (2.55)
From there the argument is similar to the one of Step 2-Case q = 2p p+1 in the proof of Theorem 1.1: we claim that for some suitable choices the function v satisfies

-∆v + τ v r ≤ 0 in Ω v = 0 in ∂Ω \ K.
We first choose > 0 so that (2.40) holds, hence the coefficient of v, say τ is positive.

Then the expression [START_REF] Marcus | Removable singularities and boundary traces[END_REF] that v = 0. Hence u = 0, which ends the proof.

1 -b - M pb p-1 p+1 p+1 p p + 1 = p(r -1) p -1 m * * r p + 1 p+1 p - M p + 1 p+1 p - M pb p+1 p-1 p + 1 ˜ (2.56) is positive provided ˜ > 0 is small enough. Since cap ∂Ω 2 r ,r (K) = 0 it follows from

Measure boundary data

Let µ be a nonnegative Radon measure on ∂Ω. The results concerning the following two types of equations

-∆v + v p = 0 in Ω v = µ in ∂Ω, (2.57) 
and 

-∆w = M |∇w| q in Ω w = cµ in ∂Ω, ( 2 
(E) = 0 =⇒ µ(E) = 0, (2.59) 
then problem (2.57) admits a necessarily unique weak solution v := v µ , see [START_REF] Marcus | Removable singularities and boundary traces[END_REF], i.e.

v µ ∈ L 1 (Ω)∩L p ρ (Ω) and for any function ζ ∈ X(Ω) := η ∈ C 1 0 (Ω) s.t. ∆η ∈ L ∞ (Ω) , there holds Ω (-v∆ζ + v p ζ) dx = - Ω ∂ζ ∂n dµ. (2.60)
Notice that there is no condition on µ if 1 < p < N +1 N -1 . 2-Assume 1 < q < 2. If there exists C > 0 such that µ satisfies For all Borel set E ⊂ ∂Ω, µ(E) ≤ Ccap ∂Ω 2-q q ,q (E),

(2.61) then problem (2.58) admits at least a positive solution w for c > 0 small enough, see [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term and boundary measure data: the supercritical case[END_REF]Theorem 1.3], in the sense that w ∈ L 1 (Ω), ∇w ∈ L q ρ (Ω) and for any ζ ∈ X(Ω), there holds

Ω (-w∆ζ -M |∇w| q ζ) dx = - Ω ∂ζ ∂n dµ. (2.62) 20 
Notice that if 1 < q < N +1 N there is no capacitary condition on µ. We use also the following result.

Lemma 2.5 Let p > N +1 N -1 and µ ∈ M + (∂Ω). If µ ∈ W - 2 
p ,p (∂Ω), then there exists

C > 0 such that µ(E) ≤ C cap ∂Ω 2 p ,p (E) 1 p
for all Borel set E ⊂ ∂Ω.

(2.63)

Conversely, if µ satisfies µ(E) ≤ Ccap ∂Ω 2 p ,p (E) for all Borel set E ⊂ ∂Ω, (2.64 
)

for some C > 0, then µ ∈ W -2 p ,p (∂Ω). Proof. Assume µ ∈ W -2 p ,p (∂Ω) ∩ M + (∂Ω). If E is a compact subset of ∂Ω and ζ ∈ C 2 (∂Ω) with 0 ≤ ζ ≤ 1, with ζ = 1 on E, then µ(E) ≤ ∂Ω ζdµ = µ, ζ ≤ µ W -2 p ,p ζ W 2 p ,p .
Therefore, by the definition of the capacity,

µ(E) ≤ µ W -2 p ,p cap ∂Ω 2 p ,p (E) 1 p
.

Conversely, if (2.64) holds, then there exists c 16 such that for any 0 < c ≤ c 16 there exists a z cµ to

-∆z = z p in Ω z = cµ in ∂Ω, (2.65) 
(see [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term and boundary measure data: the supercritical case[END_REF]Theorem 1.5]) in the sense that

z cµ ∈ L 1 (Ω) ∩ L p ρ (Ω) and cP Ω [µ] ≤ z cµ . Hence P Ω [µ] ∈ L p ρ (Ω), which implies µ ∈ W - 2 
p ,p (Ω) by [START_REF] Marcus | Removable singularities and boundary traces[END_REF].

Those weak solutions are characterized by their boundary trace. Let Σ = {x ∈ Ω : ρ(x) = > 0} and Σ 0 = ∂Ω. For 0 < ≤ 0 the hypersurfaces Σ δ defines a foliation of the set (2.67)

Ω 0 = {x ∈ Ω : 0 < ρ(x) ≤ 0 }. Let π(x) be the orthogonal projection of x ∈ Ω 0 on ∂Ω. Then |x -π(x)| = ρ(x) and n x = (ρ(x)) -1 (π(x) -x). The mapping x → Π(x) = (ρ(x), π(x)), from Ω 0 onto (0, 0 ] × Σ 0 is a C 2 diffeomorphism
The functions v µ solution of (2.57) and w solution of (2.58) admit for respective boundary trace µ and cµ. Furthermore, for the equations in (2.57) and (2.58), the existence of a boundary trace of a positive solution is equivalent to the fact that v µ ∈ L 1 (Ω) ∩ L p ρ (Ω) and w ∈ L 1 (Ω) with ∇w ∈ L q ρ (Ω) respectively. Proof of Theorem 1.3. If we assume that (1.16) holds, the measure µ is Lipschitz continuous with respect to cap ∂Ω 2 p ,p and cap ∂Ω 2-q q ,q . By [9, Theorem 1.3] there exists c 17 > 0 such that for any 0 < c ≤ c 17 there exists a weak solution w = w cµ to (2.58) and there holds for some positive constant c 18 depending on q and Ω

w cµ ≤ c 18 cP Ω [µ].
(2.68)

By [START_REF] Marcus | Removable singularities and boundary traces[END_REF] there exists a unique solution v cµ to (2.57) with µ replaced by cµ. The functions w cµ and v cµ are respectively supersolution and subsolution of (2.57) with boundary data cµ and there holds,

v cµ ≤ cP Ω [µ] ≤ w cµ (2.69)
Hence there exists a nonnegative function u satisfying (1.1) and such that

0 ≤ v cµ ≤ u ≤ w cµ ≤ c 18 cP Ω [µ].
(2.70)

Moreover v cµ ∈ L p ρ (Ω) and ∇w cµ ∈ L q ρ (Ω). Because v cµ and w cµ have boundary trace cµ in the sense of (2.66) and (2.67), the function u has the same property and we denote it by u cµ . Assuming that c ≤ min{c 16 , c 17 }, there exists also z cµ solution of (2.65) which satisfies z cµ ∈ L p ρ (Ω) and cP Ω [µ] ≤ z cµ by the maximum principle. Therefore w cµ ∈ L p ρ (Ω) and finally

u cµ ∈ L p ρ (Ω). Let φ = G Ω [u p cµ ], then φ ≥ 0 and -∆(u cµ + φ) = |∇u cµ | q .
The function u cµ + φ is a nonnegative superharmonic function in Ω. By Doob's theorem [12, Chapter II], -∆(u cµ + φ) ∈ L 1 ρ (Ω). Hence |∇u cµ | ∈ L q ρ (Ω). This implies that u cµ is a weak solution of (1.15).

Proof of Corollary 1.4. We use [1, Theorem 5.5.1], with the same cases (a), (b), (c) and (d), and we denote by K is any compact subset of ∂Ω and by A a positive constant the value of which may vary from one case to another.

(a) If q > 2p p+1 and p > N +1 N -1 , equivalently 2-q q-1 < 2 p-1 < N -1, then

cap ∂Ω 2-q q ,q (K) ≤ A cap ∂Ω 2 p ,p (K) N -1- 2-q q-1 N -1-2 p-1 . (2.71) Since N -1-2-q q-1 N -1-2 p-1 > 1, thus cap ∂Ω 2-q q ,q (K) ≤ c 21 cap ∂Ω 2 p ,p (K).
(2.72)

If (1.17) holds, then

µ(E) ≤ Ccap ∂Ω 2-q q ,q (K) = C min cap ∂Ω 2-q q ,q (K), c 21 cap ∂Ω 2 p ,p (K) ≤ C max{1, c 21 } min cap ∂Ω 2-q q ,q (K), cap ∂Ω 2 p ,p (K)
and the proof follows by Theorem 1.3.

(b) If q = 2p p-1 and p > N +1 N -1 , then p > q, thus cap ∂Ω 2-q q ,q (K) ≤ c 22 cap ∂Ω 2 p ,p (K).
(2.73)

The proof follows as in (a).

(c) If p = N +1 N -1 and q > 2p p+1 , then for some A > cap ∂Ω 2-q q ,q (∂Ω),

  ln A cap ∂Ω 2-q q ,q (K)   -1 ≤ A cap ∂Ω 2 p ,p (K) 2 N -1 .
(2.74)

Since for any r ≥ 1 (2.75)

(ln r) -1 > 2 N -1 r -2 N -1 , we deduce cap ∂Ω 2-q q ,q (K) ≤ N -1 2 N -1 2 A N +1 2 cap ∂Ω
The proof follows as in (a).

(d) If p = N +1 N -1 and q = 2p p+1 = N +1 N , then as above

cap ∂Ω 2-q q ,q (K) q-1 ≤ A cap ∂Ω 2 p ,p (K) p-1 =⇒ cap ∂Ω 2-q q ,q (K) ≤ c 24 cap ∂Ω 2 p ,p (K). (2.76)
The proof follows.

Proof of Corollary 1.5. We adapt again the formulation of [1, Theorem 5.5.1] to our framework permuting the two capacities and only statement (a) and (c) therein apply.

(a) If N +1 N < q < 2p p+1 there exists a constant A > 0 such that if K ⊂ ∂Ω is a compact set, then

cap ∂Ω 2 p ,p (K) ≤ A cap ∂Ω 2-q q ,q (K) N -1-2 p-1 N -1- 2-q q-1 . (2.77) Since N +1 N < q < 2p p+1 is equivalent to N -1 -2 p-1 > N -1 -2-q q-1 > 0, we deduce cap ∂Ω 2 p ,p (K) ≤ c 25 cap ∂Ω 2-q
q ,q (K).

(2.78)

We end the proof as in the proof of Corollary 1.4-(a).

(c) If N +1 N = q < 2p p+1 , then for some A > cap ∂Ω 2 p ,p (∂Ω),   ln A cap ∂Ω 2 p ,p (K)   -1 ≤ A cap ∂Ω 2-q q ,q (K) 1 N .
(2.79)

Since for r > 1,

(ln r) -1 > 1 N r -1 N , we infer cap ∂Ω 2 p ,p (K) ≤ N N A N +1 cap ∂Ω 2-q
q ,q (K) := c 26 cap ∂Ω 2-q q ,q (K),

(2.80)

and the proof follows.

The proof in the partially sub-critical case is simpler.

Proof of Corollary 1.6. If 1 < p < N +1 N -1 for any µ ∈ M + (∂Ω) problem (2.57) admits a unique solution v µ (see [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]). If 1 < q < N +1 N , then there exists a 0 > 0 such that for any non-empty Borel set E ⊂ ∂Ω, cap ∂Ω 2-q q ,q (E) ≥ a 0 . Therefore

µ(E) ≤ µ M ≤ µ M a 0 cap ∂Ω 2-q q ,q (E).
It follows from [9, Theorem 1.3] that problem (2.58) admits a solution w µ whenever µ M is small enough. By [START_REF] Bidaut-Véron | An elliptic semilinear equation with source term involving boundary measures: the subcritical case[END_REF] problem (2.65) admits a solution z µ with cµ replaced by µ provided µ M is small enough. Furthermore

w µ ≤ P Ω [µ] ≤ z µ . (2.81) Since z µ ∈ L p ρ (Ω), w µ ∈ L p ρ (Ω).
Hence by the same arument as in Theorem 1.3, there exists a solution u µ of (1.1) which satisfies v µ ≤ u µ ≤ w µ . Hence u µ ∈ L p ρ (Ω) and by the previous argument ∇u µ ∈ L q ρ (Ω). This implies again that u µ is a weak solution of (1.15).

If 1 < p < N +1

N -1 and N +1 N ≤ q < 2, then problem (2.57) is uniquely solvable for any µ ∈ M + (∂Ω), while problem (2.65) admits a solution z µ with cµ replaced by µ provided µ M is small enough and since (2.61) holds, problem (2.58) admits a weak solution provided 0 < c ≤ c 0 . Since (2.81) holds with z µ ∈ L p ρ (Ω), the result follows as above. If p ≥ N +1 N -1 , 1 < q < N +1 N and µ ∈ M + (∂Ω) absolutely continuous with respect to cap ∂Ω 2 p ,p , there exists u µ solution of (2.57) and w µ solution of (2.58) provided c µ M is small enough. Since |∇w µ | q ∈ L 1 ρ (Ω) the function w µ belongs to the Marcinkiewicz space M N +1 N -1 ρ (Ω) (see eg. [START_REF] Véron | Elliptic Equations Involving Measures[END_REF]). Since M

N +1 N -1 ρ (Ω) ⊂ L p ρ (Ω) as 1 < p < N +1
N -1 , it implies that w µ and therefore u µ , belongs to L p ρ (Ω). The end of the proof is as before.

Separable solutions

Separable solutions of (1.1) in R N \ {0} are solutions which have the form

u(x) = u(r, σ) = r -κ ω(σ) for (r, σ) ∈ R + × S N -1 .
This forces q to be equal to 2p p+1 , κ to 2 p-1 (recall that this defines α) and ω satisfies

-∆ ω + α(N -2 -α)ω + |ω| p-1 ω -M α 2 ω 2 + |∇ ω| 2 p p+1 = 0 in S N -1 .
(3.1) Constant positive solutions are solutions of

X p-1 -M α 2p p+1 X p-1 p+1 + α(N -2 -α) = 0. (3.2)
This existence of solutions to (3.2) and their stability properties will be detailled in a forthcoming article [START_REF] Bidaut-Véron | Singular solutions of some elliptic equations involving mixed absorption-reaction[END_REF]. The understanding of boundary singularities of solutions of (1.1) is conditioned by the knowledge of separable solutions in R N + vanishing on ∂R N \ {0}. Then ω is a solution of

-∆ ω + α(N -2 -α)ω + |ω| p-1 ω -M α 2 ω 2 + |∇ ω| 2 p p+1 = 0 in S N -1 + ω = 0 in ∂S N -1 + . (3.3)

Existence of singular solutions

We recall the following result proved in [32, Corollary 1. Remark. Mutatis mutandi, the same result holds if R N is replaced by a Riemannian manifold.

Their result is actually more general since the Laplacian can be replaced by a quasilinear p-Laplacian-type operator and B by a perturbation with the natural pgrowth. This theorem has direct applications in the construction of solutions on S N -1

+ , but also for the construction of singular solutions in several configurations.

Proposition 3.2

Let Ω be a bounded smooth domain containing 0, p > 1, 1 ≤ q ≤ 2 and M ∈ R. Assume that equation

-∆u + u p -M |∇u| q = 0, (3.6)
admits a radial positive and decreasing solution v in R N \ {0} satisfying

lim |x|→0 v(x) = ∞. (3.7)
Then there exists a positive function u satisfying (3.6) in Ω \ {0}, vanishing on ∂Ω and such that

(v(x) -max {v(z) : |z| = δ 0 }) + ≤ u(x) ≤ v(x) for all x ∈ Ω \ {0}. (3.8)
where δ 0 = dist (0, ∂Ω). (3.6) in Ω, positive in B δ 0 \ {0} and vanishing in Ω \ B δ 0 . For > 0 set Ω = Ω \ B . Since v m is dominated by the supersolution v, there exists a solution u of (3.6) in Ω such that v m ≤ u ≤ v and u -v m ∈ H 1 0 (Ω ). By standard regularity estimates, u is C 2 , hence it solves

Proof. Put m = max {v(z) : |z| = δ 0 } = v(δ 0 ). The function v m = (v -m) + is a radial subsolution of
-∆u + u p -M |∇u | q = 0 in Ω u = v m on ∂B u = 0 on ∂Ω. (3.9)
Notice that u is unique by the comparison principle. If 0 < < the function u solution of (3.9 ) in Ω with the corresponding boundary data is larger than v m and in particular u ∂B ≥ v m ∂B = u ∂B . Hence u ≥ u in Ω . When ↓ 0, u increase and converges in the C 1,θ loc (Ω \ {0})-topology toward some function u which satisfies (3.6) in Ω \ {0}, is larger that v m and smaller than v, vanishes on ∂Ω and such that (3.9) holds.

The previous result can be adapted to the study of solutions with a boundary singularity in bounded domains which are flat enough near the singular point or in R N + .

For ≤ < n ≤ n there holds w Kn ≤ u ,n ≤ u ,n ≤ w in Γ ,n . Letting n → ∞ and → 0 there exists a subsequence still denoted by {u ,n } which converges to a solution of u of (3.6) in R N + vanishing on ∂R N + \ {0} and satisfying (3.11). Remark. The assumption that w ∂Ω\{0} is bounded is restrictive. For example if w(tσ) = t -a ω(σ) the flatness assumption means that dist (x, R N + ) = O(|x| α+1 ) for all x ∈ ∂Ω near 0 (remember that T ∂Ω (0) = ∂R N + ). This assumption is always satisfied if p ≥ 3 since α ≤ 1, and it can be avoided if there exists a subsolution. + \ {0} (resp. ∂Ω \ {0}) and such that

Z(x) ≤ u(x) ≤ w(x) for all x ∈ R N + (resp. x ∈ Ω). (3.15) Example. If 1 < p < N +1 N -1 it is proved in [15] that if Ω ⊂ R N
+ is a smooth bounded domain such that 0 ∈ ∂Ω, there exists a nonnegative function Z ∞ ∈ C(Ω \ {0}) ∩ C 2 (Ω) satisfying the equation

-∆Z + Z p = 0 in Ω Z = 0 on ∂Ω \ {0}, (3.16) 
and such that t

2 p-1 Z ∞ (tσ) → ψ(σ) uniformly on compact sets K ⊂ S N -1 +
as t → 0 where ψ is the unique a positive solution of

-∆ ψ + α (N -2 -α) ψ + ψ p = 0 in S N -1 + ψ = 0 on ∂S N -1 + .
(3.17)

Furthermore, for any k > 0 there exists a nonnegative function (3.16) and such that t N -1 Z k (tσ) → kφ 1 (σ) where φ 1 has been introduced in Theorem 1.11, uniformly on compact subsets of

Z k ∈ C(Ω \ {0}) ∩ C 2 (Ω) satisfying
S N -1 + . Furthermore Z k ↑ Z ∞ when k → ∞. If the equation (3.6) admits a positive supersolution w in R N + belonging to C(R N + \ {0}
) and such that Z k ≤ w in Ω for some 0 < k ≤ ∞, then there exists a positive function u satisfying (3.6) in Ω, vanishing on ∂Ω \ {0} and such that Z k (x) ≤ u(x) ≤ w(x) for all x ∈ Ω. (3.18) The same result holds if Ω is replaced by R N + .

Existence or non-existence of separable solutions

Since any large enough constant is a supersolution of (3.1), it follows by Theorem 3.1 that if there exists a nonnegative subsolution z ∈ W 1,∞ 0 (S N -1 + ), there exists a solution in between.

Proof of Theorem 1.9

We recall that φ 1 is the first eigenfunction of -∆ in W 1,2 0 (S N -1 + ) with corresponding eigenvalue

λ 1 = N -1. Put H(ω) = -∆ ω + α(N -2 -α)ω + |φ| p-1 ω -M α 2 ω 2 + |∇ ω| 2 p p+1 , then H(φ 1 ) = (N -1 + α(N -2 -α)) φ 1 + φ p 1 -M α 2 φ 2 1 + |∇ φ 1 | 2 p p+1 .
If φ 1 is small enough, there holds

φ p 1 -M α 2 φ 2 1 + |∇ φ 1 | 2 p p+1 < 0, hence φ 1 is a subsolution. However the condition N -1 + α(N -2 -α) ≤ 0 is too stringent.
We can use the fact that, up to a good choice of coordinates,

φ 1 = φ 1 (σ) = cos σ with σ ∈ [0, π 2 ]
. Furthermore the statement "φ 1 is small enough" can be achieved by φ 1 = δ cos σ with δ > 0 small enough. Then

δ -1 H(δ p+1 p-1 cos σ) = (N -1 + α(N -2 -α)) cos σ + δ p+1 cos p σ -M δ(α 2 cos 2 σ + sin 2 σ) p p+1 .
The problem is to find δ > 0 such that for all σ ∈ [0, π 2 ] we have H(δ p+1 p-1 cos σ) ≤ 0.

Put Z = cos σ and δ -1 H(δ

p+1 p-1 cos σ) = δ -1 H(δ p+1 p-1 Z) = K δ (Z), then K δ (Z) = (N -1 + α(N -2 -α)) Z + δ p+1 Z p -M δ((α 2 -1)Z 2 + 1) p p+1 ,
where 0 ≤ Z ≤ 1. We use the fact that

α 2 cos 2 σ + sin 2 σ ≥ min{α 2 , 1}(cos 2 σ + sin 2 σ) := κ 2 > 0, hence δ -1 H(δ p+1 p-1 cos σ) ≤ (N -1 + α(N -2 -α)) cos σ + δ p+1 cos p σ -M δκ 2p p+1 .
Then

K δ (Z) ≤ Kδ (Z) := (N -1 + α(N -2 -α)) Z + δ p+1 Z p -M δκ 2p p+1 , (3.19) and K δ (Z) = N -1 + α(N -2 -α) + pδ p+1 Z p-1 . (3.20) If N -1 + α(N -2 -α) ≥ 0, equivalently p ≥ N +1 N -1 , then K δ ≥ 0 on [0, 1], hence Kδ (Z) ≤ Kδ (1) = N -1 + α(N -2 -α) + δ p+1 -M δκ 2p p+1 .
The function δ → Kδ (1) achieves its minimum for δ = δ 0 := β

2 p+1 M p+1 1 p and Kδ 0 (1) = N -1 + α(N -2 -α) -pκ 2 M p + 1 p+1 p . Therefore, when p ≥ N +1 N -1 , K δ 0 ≤ 0 on [0, 1] if M p+1 p+1 p ≥ M N,p p+1 
p+1 p := N -1 + α(N -2 -α) p min{1, α 2 } = (p + 1) (p(N -1) -(N + 1)) p min{(p -1) 2 , 4} . 
(3.21)

If N -1 + α(N -2 -α) ≤ 0, equivalently p ≤ N +1 N -1 , it is clear from (3.19 ) that Kδ (Z) ≤ 0 for any Z ∈ [0, 1] as soon as δ ≤ κ 1 p+1 M 1 p .
Improvement in the case α > 1, equivalently 1 < p < 3 . We set

F (Z) = (α 2 -1)Z 2 + 1 Z p+1 p . Then F (Z) F (Z) = (p -1)(α 2 -1)Z 2 -(p + 1) p((α 2 -1)Z 2 + 1)Z . Since K δ (Z) ≤ 0 ⇐⇒ (N -1 + α(N -2 -α)) + δ p+1 Z p-1 ≤ M δF p p+1 (Z) (3.22) 
for all Z ∈ (0, 1], it is sufficient to prove

(N -1 + α(N -2 -α)) + δ p+1 ≤ M δ min Z∈(0,1] F p p+1 (Z) (3.23)
The function F is minimal on (0, 1] at

Z = Z 0 = √ α 2 -1 (remember that α = 2 p-1 ) and F (Z 0 ) = (α + 2)(α -1) α+1 α+2 . If Z 0 ≤ 1, equivalently α ≥ 2, inequality (3.23) is satisfied if one find δ such that (N -1 + α(N -2 -α)) + δ p+1 ≤ M δF p p+1 (Z 0 ),
and a sufficient condition is

p M p + 1 p+1 p ≥ p M N,p p + 1 p+1 p := N -1 + α(N -2 -α) F (Z 0 ) (3.24) 
If Z 0 > 1, equivalently 1 < α < 2, the minimum of F on (0, 1] is achieved at Z = 1 with value F (1) = α 2 , hence a sufficient condition is

(N -1 + α(N -2 -α)) + δ p+1 ≤ M δα 2p p+1 ),
and we obtain the desired inequality as soon as

p M p + 1 p+1 p ≥ p M N,p p + 1 p+1 p := N -1 + α(N -2 -α) α 2 . ( 3.25) 
This ends the proof.

Remark. Introducing m * * defined in (1.11), inequality (3.21) takes the form

M ≥ 2(p + 1) min{(p -1) 2 , 4} p p+1 m * * , (3.26) 
in the general case and a more complicated expression in the case α > 1. 

Non-existence

-∆ η + (1 -b) |∇ η| 2 η + α(N -2 -α) b η + 1 b η 1+(p-1)b - M η (b-1)(p-1) p+1 b α 2 η 2 + b 2 |∇ η| 2 p p+1 = 0.
Since for any > 0 we have by Hölder's inequality,

S N -1 + η 1+ (b-1)(p-1) p+1 α 2 η 2 + b 2 |∇ η| 2 p p+1 dS ≤ p+1 p p p + 1 S N -1 + (α 2 η 2 + b 2 |∇ η| 2 ) + 1 (p + 1) p+1 S N -1 + η 2+(p-1)b dS, it follows that 2 -b -M p+1 p pb p + 1 S N -1 + |∇ η| 2 dS + α b N -2 -α -M p+1 p αp p + 1 S N -1 + η 2 dS + 1 b 1 - M (p + 1) p+1 S N -1 + η 2+(p-1)b dS ≤ 0. (3.27) If b ∈ (0, 2), > 0 and M > 0 are linked by the relation 2 -b -M p+1 p pb p + 1 ≥ 0 ⇐⇒ M p+1 p ≤ (2 -b)(p + 1) bp , (3.28) 
inequality (3.27) turns into (2 -b)(N -1) + α(N -2 -α) b - M p+1 p p p + 1 (N -1)b + α 2 b S N -1 + η 2 dS + 1 b 1 - M (p + 1) p+1 S N -1 + η 2+(p-1)b dS ≤ 0. (3.29) Next we choose p+1 = M p + 1 , (3.30) 
and we define the function b → L(b) by

L(b) := (2 -b)(N -1) + α(N -2 -α) b -p M p + 1 p+1 p (N -1)b + α 2 b . (3.31) 
Because N -1 is the first eigenvalue of -∆ in W 1,2 0 (S N -1 ), (3.29) combined with (3.30) yields

L(b) S N -1 + η 2 dS ≤ 0. ( 3.32) 
Furthermore, if inequality (3.28) is strict, and since η is not a first eigenfunction, inequality (3.32) is also strict. Then L(b) ≥ 0 if

p M p + 1 p+1 p ≤ f (b) := b(2 -b)(N -1) + α(N -2 -α) (N -1)b 2 + α 2 . (3.33) Now f (b) = -2(N -1) 2 ((N -1)b 2 + α 2 ) 2 (b + α) b - α N -1 . Notice that α N -1 ≤ 1 ⇐⇒ p ≥ N + 1 N -1 . If 1 < p ≤ N +1 N -1
, then f ≥ 0 and in such a case the maximum of f over (0, 1] is achieved at b = 1 and for such a value L(b) ≤ 0.

If p > N +1

N -1 , then f is increasing on [0, α N -1 ) and decreasing on ( α N -1 , 1], hence the maximum is achieved at b = α N -1 , which gives

f α N -1 = N -1 -α α = (N -1)p -(N + 1) 2 . (3.34) If > 1, u ,b is a supersolution of (1.1) in R N + if and only if α ≤ b ≤ β.
These conditions are compatible if and only if 1

< q ≤ 2p p+1 . Then we take b ∈ (a, ∞) ∩ [α, β], then u ,b (r, σ) = b-a r -a | ln r| ãθ(σ)(1 + o(1)) as r → 0.
By (2.1) all u(x) tends to 0 when |x| → ∞. Hence, for any > 0 the super solution u ,b + which is larger than u for |x| small enough and large enough is larger than another solution ũ in R N + . Letting ↓ 1 and → 0 yields u ≥ ũ. In the same way ũ ≥ u.

If < 1, u ,b is a supersolution of (1.1) in 1 G if and only if β ≤ b ≤ α,
and these conditions are compatible if and only if 2p p+1 ≤ q < 2. If α > β we choose b ∈ (0, a) ∩ [β, α] and we conclude as in the first case.

Remark. In the case a = β a more precise expansion of the singular solution u at x = 0 yields uniqueness as it is proved in [START_REF] Bidaut-Véron | Singular solutions of some elliptic equations involving mixed absorption-reaction[END_REF] in the case of an internal singularity. Since the proof of the next result is based upon a easy adaptation of the ideas in [START_REF] Bidaut-Véron | Singular solutions of some elliptic equations involving mixed absorption-reaction[END_REF]Theorem 4.4], we omit it. + and ã is a real smaller than a. Then there exists at most one nonnegative solution of (1.21)

satisfying u(r, σ) = r -a θ(σ) + r -ã θ(σ)(1 + o(1)) as r → 0. (4.39) 
When problem (1.21) is replaced by (1.8) the scaling method becomes much more delicate to apply. However we give below an easy extension when ∂Ω is flat near x = 0.

Theorem 4.3 Assume N ≥ 2, p > 1, 1 < q < 2, M > 0 and Ω is a bounded smooth domain such that 0 ∈ ∂Ω and there exists δ > 0 such that ∂Ω ∩ B δ = T ∂Ω (0) ∩ B δ . Let a such that (i) 0 ≤ a < β if q ≤ 2p p+1 (ii) β < a if q > 2p p+1 .
(4.40)

Let θ ∈ C 1 (S N -1 +
) be a nonnegative function, positive in S N -1

+

, vanishing on ∂S N -1 + , and ã be a real number. If Ω is starshaped with respect to 0, then there exists at most one nonnegative solution of (1. Letting ↓ 1 yields u ≥ ũ.

In case (ii), for < 1, Ω ⊂ Ω and with b ∈ (0, a) ∩ [β, α], u ,b is a supersolution in Ω larger that ũ on ∂Ω \ {0} and near x = 0 it is larger than ũ in Ω. We conclude as in case (i).

Construction of fundamental solutions

Let Ω be either R N + or a bounded domain with 0 ∈ ∂Ω. A function u satisfying (1.8) is a fundamental solution if it has a singularity of potential type, that is

lim x→0 |x| N u(x) ρ(x) = c N k, (4.42) 
for some k > 0. The function u can also be looked for as a solution of

-∆u + u p -M |∇u| q = 0 in Ω u = kδ 0 in ∂Ω, (4.43) 
in the sense that u ∈ L p ρ (Ω ∩ B r ), ∇u ∈ L q ρ,loc (Ω ∩ B r , ) for any r > 0, and for any

ζ ∈ C 1 c (Ω) ∩ W 2,∞ (Ω) there holds Ω (-u∆ζ + u p ζ -M |∇u| q ζ) dx = -k ∂ζ ∂n (0). (4.44)
We first consider the problem in R N + . Proof of Theorem 1.7. The scheme of the proof is surprising since we first show that, in the case q = 2p p+1 , there exists M 1 > 0 such that for any k > 0 and any 0 < M < M 1 there exists a solution. Using this result we prove that if 1 < q < 2p p+1 , then for any M > 0 and k > 0 there exists a solution. Then we return to the case q = 2p p+1 and using the result in the previous case, we prove that when q = 2p p+1 we can get rid of the restriction on M > 0 and k > 0 for the existence of solutions. I-The case q = 2p p+1 and M upper bounded. For > 0 the transformation T defined by invariant. We can therefore write

T [u(x)] = 2 p-1 u( x), ( 4 
T [u k ] = u k 2 p-1 +1-N ,
in the sense that if u k satisfies (4.42) then T [u k ] satisfies the same limit with k replaced by k 2 p-1 +1-N . However this identity to hold needs some uniqueness for the solutions under consideration satisfying (4.42). This is achieved if u k is the minimal solution satisfying (4.42) in which case T [u k ] is the minimal solution satisfying (4.42) with k replaced by k 2 p-1 +1-N . Therefore if there exists a solution to (1.8) in R N + , vanishing on ∂R N + \ {0} satisfying (4.47) for some k > 0, then there exists such a solution for any k > 0.

Step 1-Construction of a subsolution. For k > 0 we denote by v k the solution of 

-∆v + v p = 0 in R N + v = kδ 0 on ∂R N + \ {0}. ( 4 
(x) = k, (4.47) 
for some c N > 0, where

P N (x) = c N x N |x| N is the Poisson kernel in R N + .
Step 2-Construction of a supersolution. It is known that

|∇P N (x)| 2 = |x| -2N c 2 (x), (4.48) 
where c(.) is smooth and verifies 0 < c1 ≤ c(x) ≤ c2 for some c1 , c2 > 0.

We construct w k in R N + of the form

w k = kP N + w, (4.49) 
where w satisfies -∆w + w p = aγ 2 |x|

-2N p p+1 in R N + w = 0 on ∂R N + , (4.50) 
for some a > 0 to be chosen later on. Then

L 2p p+1 ,M w k = -∆w + (kP N + w) p -M |k∇P N + ∇w| 2 p p+1 = (kP N + w) p -w p + aγ 2 |x| -2N p p+1 -M |k∇P N + ∇w| 2 p p+1 ≥ pkP N w p-1 + aγ 2 |x| -2N p p+1 -2M k 2p p+1 γ 2p p+1 2 |x| -2N p p+1 + |∇w| 2p p+1
. Now it is easy to check using Osserman's type construction as in [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF]Lemma 2.1] and scaling techniques that w(x) ≤ γ 3 min a .

Therefore, if we put

τ = p 2 -1 2p(N + 1 -p(N -1))
,

then τ > 0 since N + 1 > p(N -1) and |x| 2N p p+1 L 2p p+1 ,M w k ≥ γ 2 a -2M k 2p p+1 γ p-1 p+1 2 -2M γ 5 a 2p p+1 |x| 2p(N +1-p(N -1)) (p+1) 2 ≥ γ 2 a -2M k 2p p+1 γ p-1 p+1 2 -2M γ 5 a in B + a τ , (4.51) 
and similarly,

|x| 2N p p+1 L 2p p+1 ,M w k ≥ γ 2 a -2M k 2p p+1 γ p-1 p+1 2 -2M γ 5 a in (B + a τ ) c . (4.52) 
Replacing τ by its value, we obtain a very simple expression from (4.51) and (4.52), valid both in B + a τ and (B + a τ ) c , namely

|x| 2N p p+1 L 2p p+1 ,M w k ≥ γ 2 a -2M k 2p p+1 γ p-1 p+1 2 -2M γ 5 a in R N + . (4.53) When M < M 1 := γ 2 2γ 5 , (4.54) 
then for fixed k, if we take

a > 2M 1 γ 2p p+1 2 k 2p p+1 γ 2 -2M γ 5 ,
we infer that the right-hand side of (4.53) is nonnegative, hence w k is a supersolution.

Step 3-Existence. For 0 < k ≤ k 0 w k is a supersolution which dominates the subsolution v k . Hence, by [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF] there exists a solution u k to (1.8) in R N + , vanishing on ∂R N

+ \ {0} and such that

v k ≤ u k ≤ w k . Since lim x→0 v k (x) P N (x) = lim x→0 w k (x) P N (x) = k,
it follows that u k inherits the same asymptotic behaviour. Since k < k 0 can be replaced by any k > 0, the existence of a solution follows.

II-The case 1 < q < 2p p+1 . Assume M < M 1 , k > 0 and ũk is the minimal solution of (1.8) in R N + with q = 2p p+1 , vanishing on ∂R N + \ {0} and such that (4.47). Since |∇φ| 2p 2p ≥ |∇φ| q -1, there holds 

-∆ũ k + ũp k + M -M |∇ũ k | q ≥ 0. Hence ũ * k = ũk + M 1 p is a
= u k to (1.8), we set u(x) = -2 p-1 U ( x ). Then L q,M u = 0 is equivalent to L q,M U := -∆U + U p -M |∇U | q = 0 with M = M 2p-q(p+1) p-1
, and (4.47) is equivalent to

lim x→0 U (x) P N (x) = 2 p-1 +1-N k.
Since 2p -q(p + 1) > 0 it is enough to choose > 0 such that M 2p-q(p+1) p-1

< M 1 , and we end the proof using the result when M < M 1 .

III-

The case q = 2p p+1 revisited. Let p < p < N +1 N -1 . Then 2p p+1 < 2p p+1 . This implies that for any M > 0 and k > 0 there exists a positive solution ũk to

-∆ũ k + ũp k -M |∇ũ k | 2p p+1 = 0 in R N + , vanishing on ∂R N + \ {0} and such that lim x→0 ũk (x) P N (x) = k.
Since p > p we have ũp k > ũp k -1 and therefore

-∆ũ k + ũp k -M |∇ũ k | 2p p+1 ≥ 1 > 0 in R N + . (4.56)
The function ṽk solution of

-∆v + v p = 0 in R N + v = kδ 0 on ∂R N + \ {0}, (4.57) 
is a subsolution of (4.56), hence the exists a solution u k of such that ṽk < u k < ũk of (1.8) in R N + , vanishing on ∂R N + \ {0} and such that (4.42) holds. IV-The case 2p p+1 < q < 1+N N . We follow the ideas of Case I. We look for a supersolution w k of the form (4.49) where w k satisfies

-∆w + w p = aγ 2 |x| -N q in R N + w = 0 on ∂R N + , (4.58) 
for some a > 0. Then

L q,M w k = -∆w + (kP N + w) p -M |k∇P N + ∇w| 2 q 2 = (kP N + w) p -w p + aγ 2 |x| -N q -M |k∇P N + ∇w| 2 q 2 ≥ pkP N w p-1 + aγ 2 |x| -N q -2M k q γ q 2 |x| -N q + |∇w| q .
As in Case I, by scaling techniques,

w(x) ≤ γ 3 min a 1 p -N q p , a|x| 2-N q and |∇w(x)| ≤ γ 4 min a 1 p |x| -N q p -1 , a|x| 1-N q .
Hence |∇w(x)| q ≤ γ 5 min a q p |x| -N q 2 p -q , a q |x| q(1-N q) .

We

set τ = - 1 2p -N q = - p -1 2p -N q(p -1)
.

Then, by the definition of τ ,

|x| N q L q,M w k ≥ γ 2 a -2M k q γ q-1 2 -2M γ 5 a q |x| q(N +1-N q) ≥ γ 2 a -2M k q γ q-1 2 -2M γ 5 a 1+N -p(N -1) 2p q -N (p-1) in B + a τ , (4.59) 
and 

|x| 2N p p+1 L 2p p+1 ,M w k ≥ γ 2 a -2M k q γ q-1 2 -2M γ 5 a 1+N -p(N -1) 2p q -N (p-1) in (B + a τ ) c . ( 4 
w k ≥ γ 2 a -2M k q γ q-1 2 -2M γ 5 a 1+N -p(N -1) 2p q -N (p-1) in R N + . ( 4 

.61)

Using the scaling transformation T defined in (4.45), the problem of finding u k solution of (4.43) is equivalent to looking for a solution of 

-∆u + u p -M 2p-q(p+1) p-1 |∇u| q = 0 in R N + u = k p+1 p-1 -N δ 0 in ∂R N + . ( 4 
|x| 2N p p+1 L 2p p+1 ,M w k, ≥ γ 2 a -2M k q γ q-1 2 -2M γ 5 a 1+N -p(N -1) 2p q -N (p-1) in R N + , (4.63) 
where

w k, = w + k R instead of (4.49). Notice that M k q = M 2p p-1 -N q k q . We choose > 0 such that M k q γ q-1 2 = a 4 , hence |x| 2N p p+1 L 2p p+1 ,M k, ≥ aγ 2 2 1 -γ 5 γ -q 2 k -q a 1+N -p(N -1) 2p q -N (p-1) in R N + . (4.64) 
It is now sufficient to choose a > 0 such that the right-hand side of (4.64) is nonnegative and thus w k, is a supersolution. Since ṽk, is a subsolution smaller that w k, , we end the proof as in Case I.

V-Uniqueness or existence of a minimal solution. If 1 < q ≤ 2p p+1 , uniqueness follows from Theorem 4.1 applied with a = N -1 < β = 2-q q-1 . If 2p p+1 < q < N +1 N and if u k,1 and u k,2 are solutions, they are larger than v k and the function u k,1,2 = inf{u k,1 , u k,2 } is a supersolution larger than v k . Hence there exists a solution ũk such that

v k ≤ ũk ≤ u k,1,2 .
Let E k be the set of nonnegative solutions of (1.8) in R N + , vanishing on ∂R N + \ {0} and such that (4.42) and put

u k = inf{υ : υ ∈ E k }.
Then there exists a decreasing sequence {υ j } such that υ j converges to u k on a countable dense subset of R N + . By standard elliptic equation regularity theory, υ j converges to u k on any compact subset of R N + \ {0}. Hence u k is a solution of (1.8) in R N + , it vanishes on ∂R N + \ {0} and (4.47) since u k ≥ v k . Hence u k is the minimal solution.

Next of we consider the same problem in a bounded domain Ω.

Proof of Theorem 1.8. We give first proof when Ω ⊂ R N + . We adapt the proof of Theorem 1.7. The solution v k of 

-∆v + v p = 0 in Ω v = kδ 0 on ∂Ω, ( 4 
= α = 2 p-1 < 2-q q-1 = β.
As a consequence of Theorem 1.9-(ii) we have + is a bounded smooth domain such that 0 ∈ ∂Ω and T ∂Ω (0) = ∂R N + , and (p, q) satisfies (4.67)-(i). Then for any M ≥ 0 there exists a positive solution u of (1.1) in Ω vanishing on ∂Ω \ {0} such that

lim x→0 u(x) P Ω (x) = ∞, (4.74) 
where P Ω is the Poisson kernel in Ω. Furthermore

(i) If 1 < q < 2p p+1 , then lim r→0 r α u(r, .) = ψ locally uniformly in S N -1 + , (4.75) 
where ψ is the unique positive solution of Proof. As in the proof of Theorem 4.4, the sequence {u k } of the solution of (1.8) which satisfy (4.42) is increasing. Since it is bounded from above by the restriction to Ω of the solutions of the same equation in R N + , vanishing on ∂R N + \ {0} and satisfying (4.68), it admits a limit u ∞ which is a solution of 1.8 which vanishes on ∂Ω \ {0} and satisfies (4.74). In order to have an estimate of the blow-up rate, we recall that the solution v k of (4.65) is a subsolution of (1.1) and u k ≥ v k Furthermore {v k } converges to {v ∞ } which is a positive solution of (1.1) in Ω, vanishing on ∂Ω \ {0} and such that lim Clearly this equation admits no C 1 solution but for the constant ones. As limit of solutions with vanishing viscosity, the solutions that we obtain are viscosity solutions outside the origin. We will look for solutions having a strong singularity by the method of sub and supersolutions. Note that (1.3) admits an explicit radial singular solution, namely U (x) = ω 0 |x| -γ := γ γ M 1 p-q |x| -γ . (4.86)

-∆ ψ + α(N -2 -α)ψ + ψ p = 0 in S N -1 + ψ = 0 in ∂S N -1 + . (ii) If q = 2p p+1 , then ψ ≤ lim inf
Proof of Theorem 1.11. For n > 0 set U n (r) = nr -γ . As γ(p -1) + 2 = -q(p + 1) + γ + 2 = 2p -q(p + 1) p -q , we have n -1 r -2-γ L q,M U n = -γ(γ + 2 -N ) + n q-1 (n p-q -γ q M )r 2-(p-1)γ .

Since γ + 2 -N > 0 because q > 2p p+1 and p < N +1 N -1 , for any n > ω 0 there exists r n > 0 such that n q-1 (n p-q -γ q M )r 2-(p-1)γ n = γ(γ + 2 -N ).

It implies that U n is a super solution of (1.1) in B rn \ {0}. Furthermore where m > 0. Then r pγ L q,M W m = -mr q(p+1)-2p p-q

γ 2 -(N -2)γ + 1 -N φ 1 + m q m p-q φ p 1 -M γ 2 φ 2 1 + |∇ φ 1 | 2 q 2 , (4.89) 
and this expression is negative for m > 0 small enough. Set P (X) = X 2 -(N -2)X + 1 -N = (X + 1)(X + 1 -N ).

Then P (γ) = p (N q -(N -1)p) (p -q) 2 .

We first give the proof when N q ≥ (N -1)p. In such case P (γ) ≥ 0. Hence there exists m 0 > 0 such that for any 0 < m ≤ m 0 , W m is a subsolution in R N + , smaller than U n and it is bounded on ∂B + rn \ {0}. When m ≤ m 0 , the function W m defined in (4.88) is a subsolution of (1.1) in R N + . Since W m is bounded on ∂B + rn \ {0} there exists a nonnegative solution u n of (1.1) in B + rn which vanishes on B + rn \ {0} and there holds (W m (x) -mr -γ n ) + ≤ u n (x) ≤ U n (x) for all x ∈ B + rn . (4.90)

for separable radial solutions of (1.1) in R N \ {0} (with q = 2p p+1 ) , then they are under the form U (x) = A|x| -α (4.102)

and A is a positive root of the polynomial P (X) = X p-1 -M α A complete study of the radial solutions of (1.1) is provided in [START_REF] Bidaut-Véron | Measure Data Problems for a Class of Elliptic Equations with Mixed Absorption-Reaction[END_REF], however it is straightforward to check that if 1 < p < N N -2 , there exists a unique positive root, hence a unique positive separable solution, while if p > N N -2 , there exists a unique positive root (resp. two positive roots) if

M = (p + 1)
p(N -2) -N 2p Problem 2. It is proved in [START_REF] Bidaut-Véron | Measure Data Problems for a Class of Elliptic Equations with Mixed Absorption-Reaction[END_REF] that if max{ N N -1 , 2p p+1 } < q < min{2, p} and M > 0, there exist infinitely many local radial solutions of of (1.1) in R N \{0} which satisfies (4.106)

These solutions present the property that there blow-up is smaller than the one of the explicit radial separable solution. It would be interesting to construct such solutions of (1.1) in R N + (or more likely B + R ), vanishing on ∂R N \ {0}. Problem 3. Is it possible to define a boundary trace for any positive solution of (1.1) in R N + , noting the fact such a result holds separately for positive solutions of (1.2) and (1.4) ? A related problem would be to define an initial trace for any positive solution of the parabolic equation ∂ t u -∆u + u p -M |∇u| q = 0, (4.107) in (0, T ) × R N . Initial trace of semilinear parabolic equations (M = 0 in (4.107)) are studied in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], [START_REF] Gkikas | Complete Classification of the Positive Solutions of Heat Equation with Super Critical Absorption[END_REF]. 

2 r 1 =

 21 ,r (K) = 0, any solution u of-∆u + |u| p-1 u -M |∇u| q = 0 in Ω u = 0 on ∂Ω \ K, (1.13) is identically 0. Note that m * * N +1 N -m * * . The capacitary framework allows to consider the Dirichlet problem for (1.1)

Ω

  -u∆ζ + (|u| p-1 u -M |∇u| q )ζ dx = -∂Ω ∂ζ ∂n dµ for all ζ ∈ X(Ω). (1.15) 

2 p

 2 ,p (E) for all Borel set E ⊂ ∂Ω,(1.16) 

  and the restriction Π of Π to Σ is a C 2 diffeomorphism from Σ onto Σ 0 . Let dS be the surface measure on Σ , then a continuous function u defined in Ω has boundary trace the Radon measure µ on ∂Ω if lim →0 Σ uZdS = Σ Zdµ for all Z ∈ C(Ω). (2.66) Equivalently, if ζ ∈ C(∂Ω) and ζ = ζ • Π -1 ∈ C(Σ ), then lim →0 Σ uζ dS = Σ ζdµ for all ζ ∈ C(∂Ω).

2 p 2 p

 22 ,p (K) := c 23 cap ∂Ω ,p (K).

4 . 5 ] 5 ) 3 . 1

 45531 is a variant of Boccardo-Murat-Puel's result[START_REF] Boccardo | Résultats d'existence pour certains problèmes elliptiques quasilinéaires[END_REF] Theorem 2.1] dealing with the quasilinear equation in a domain G ⊂ R N .Q(u) := -∆u + B(., u, ∇u) = 0 in D (G),(3.4)whereB ∈ C(G × R × R N ) satisfies, for some continuous increasing function Γ from R + to R + , |B(x, r, ξ)| ≤ Γ(|r|)(1 + |ξ| 2 ) for all (x, r, ξ) ∈ G × R × R N .(3.Theorem Let G be a bounded domain in R N . If there exist a supersolution φ and a subsolution ψ of the equation Qv = 0 belonging to W 1,∞ (G) and such that ψ ≤ φ, then for any χ ∈ W 1,∞ (G) satisfying ψ ≤ χ ≤ φ there exists a function u ∈ W 1,2 (G) solution of Qu = 0 such that ψ ≤ u ≤ φ and u -χ ∈ W 1,2 0 (G).

Proposition 3 . 4

 34 Let p > 1, 1 ≤ q ≤ 2 and M ∈ R. Assume that the equation (3.6) admits a positive supersolution w in R N + belonging to C(R N + \ {0}) satisfying (3.10). Assume also (i) either there exists a positive subsolution Z ∈ C(R N + \{0}) vanishing on ∂R N + \{0}, smaller than w and satisfying (3.10), (ii) or Ω ⊂ R N + is a bounded smooth domain such that 0 ∈ ∂Ω and there exists a positive subsolution Z ∈ C(Ω \ {0}), vanishing on ∂Ω \ {0} such that Z ≤ w Ω and satisfying (3.10). Then there exists a positive function u satisfying (3.6) in R N + (resp. Ω), vanishing on ∂R N

Theorem 3 . 5

 35 Let p > N +1 N -1 and M ≤ m * * , defined by (1.11). Then equation (3.1) admits no positive solution. Proof. If ω is a positive solution of (3.1) the function η defined by ω = η b for some b > 0 satisfies

Theorem 4 . 2 1 +) 1 +

 4211 Assume N ≥ 2, p > 1, 1 < q ≤ 2p p+1 , M > 0 and a ∈ [0, β]. Assume θ and θ are C 1 (S N -functions positive in S N -and vanishing on ∂S N -1

  21) satisfying u(r, σ) = r -a | ln r| ãθ(σ)(1 + o(1)) as r → 0. (4.41) Proof. We use the same change of scale as in Theorem 4.1. In case (i) with > 1 and b ∈ (a, ∞) ∩ [α, β] , u ,b is a supersolution in Ω = 1 Ω ⊂ Ω and ∂Ω ∩ B δ/ = T ∂Ω (0) ∩ B δ/ . If ũ is another solution, ũ ∂Ω = h and h → 0 uniformly as ↓ 1 since u ∈ C 1 (Ω ∩ B c ) for any > 0. The function u ,b + max ∂Ω h is a supersolution of 1.1 in Ω larger than ũ on ∂Ω \ {0} and near x = 0, hence it is larger than ũ in Ω .

  .45) leaves the operator L 2p p+1 ,M

  .62) If we replace M by M := M 2p-q(p+1) p-1 and k by k := k p+1 p-1 -N , the inequality (4.53) turns into

  .65) Hence (4.70) follows by uniqueness of the function ψ. Uniqueness of positive solution of (1.21) satisfying (4.68) follows from Theorem 4.1 applied with a

Theorem 4 . 5

 45 Assume (4.67)-(ii) holds, then for any M > 0 there exists a positive separable solution u of (1.1) in R N + vanishing on ∂R N + \ {0}When R N + is replaced by a bounded domain there holds. Theorem 4.6 Assume Ω ⊂ R N

r→0r

  α u(r, .) ≤ lim sup r→0 r α u(r, .) ≤ ω locally uniformly in S N -1 + . (4.76)

r→0r

  α v ∞ (r, σ) = ψ(σ) locally uniformly in S N -1 + .(4.77)Combined with (4.69) and (4.70) it implies (4.75) and (4.76) since the solution u k in Ω is bounded from above by the solution inR N + . lim inf r→0 r α u ∞ (r, σ) ≥ ψ(σ) locally uniformly in S N -1 + . (4.78) Theorem 4.7 Assume Ω ⊂ R N + is a bounded smooth domain such that 0 ∈ ∂Ω and T ∂Ω (0) = ∂R N + , p = N +1 N -1 and q = 2p p+1 = N +1 N . If dist (x, R N + ) ≤ c 27 |x| N for all x ∈ ∂Ω ∩ B δ ,(4.79)for some constants δ, c 27 > 0, then there exists a positive solution u of (1.1) in Ω, vanishing on ∂Ω \ {0} such thatlim r→0 r α u(r, σ) = ω(σ) locally uniformly in S N -1 + . (4.80) Proof. The function u ω (r, .) = r 1-N ω satisfies (1.1) in R N + and vanishes on ∂R N + \{0}. Since ∇ω is bounded, it satisfies u(x) ≤ c 19 for all x ∈ ∂Ω \ {0}, for some constant c 19 > 0. Then the result follows from Proposition 3.3. solutions u k in R N + by Theorem 1.7, or in Ω by Theorem 1.8. Since the mapping k → u k is increasing and u k is bounded from above the function u ∞ = lim k→∞ u k is a solution of (1.1) in R N + (resp. Ω) vanishing on R N + \ {0} (resp. Ω \ {0}) which satisfies (4.68) (resp. (4.74)). However the blow-up rate of u ∞ is not easy to obtain from scaling methods since the transformation T transform (1.1) into (4.62) where M is replaced by M 2p-q(p+1) p-1which is not bounded when → 0. When q > 2p p+1 , the natural exponent is γ defined by (1.34) The transformation S defined for > 0 byS [u](x) = γ u( x), ∆u + |u| p-1 u -M |∇u| q = 0. (4.83) When → 0, the limit equation is an eikonal equation (up to change of unknown), |u| p-1 u -M |∇u| q = 0. (4.84) Separable solutions of (1.3) in R N + are under the form u η (r, .) = r -γ η and η satisfies |η| p-1 η -M (γ 2 η 2 + |∇ η| 2 ) q 2 = 0 in S N -1 + . (4.85)

2 ( 1 +

 21 o(1)) when n → ∞. (4.87) For a subsolution we set W m (r, σ) = mr -γ φ 1 (σ), (4.88)

:

  = m * , (4.104) (resp. M > m * ). Uniqueness of solution plays a fundamental role in the description and classification of all the positive solutions with an isolated singularity at 0.

  u(r) = ξ M r -β (1 + o(1)) as r → 0

Problem 4 .

 4 Are the positive solutions of 1.8 satisfying (1.24) or (4.75) unique without the flatness and the starshapedness assumptions of Theorem 4.2. More generaly, are the weak solutions of the Dirichlet problem with measure boundary data (1.14) unique ?
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  .46) Such a solution exists thanks to[START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF] if R N + is replaced by a bounded domain Ω. If case of a half-space the problem is first solved in B + n and by letting n → ∞, we obtain the solution in R N + . Clearly v k is a subsolution of problem (1.8), and it satisfies

	lim x→0	u(x) P N

  Since |x| N -1 u k (x) is uniformly bounded and vanishes on ∂R N+ \ {0}, it is bounded in the C 1 loc (R N + )-topology. Hence (4.47) holds. This proves the result when M < M 1 . Next let M > 0 arbitrary and k > 0. In order to find a solution u :

			supersolution (1.8) in R N + and it dominates v k defined
	in (4.46). By [32, Theorem 1-4-6] there exists a solution u k of (1.8), vanishing on
	∂R N + \ {0} and satisfying (4.47) under the following weaker form	
	lim t→0	u k (tx) P N (tx)	= k uniformly on compact subsets of R N + .	(4.55)

Assume also

+ is a bounded smooth domain such that 0 ∈ ∂Ω starshapped with respect to 0 and such that w ∂Ω\{0} is bounded.

Then there exists a positive function u satisfying (3.6) in R N + in case (i), or Ω in case (ii) , vanishing on ∂R N + \ {0} in case (i), or ∂Ω \ {0} in case (ii), and such that w(x) -sup w(z) : z ∈ ∂R N + \ {0} + ≤ u(x) ≤ w(x) for all x ∈ R N + , (3.11) where K = sup lim sup |z|→∞ w(z), sup w(z) : z ∈ ∂R N + \ {0} in case (i) or (w(x) -sup {w(z) : z ∈ ∂Ω \ {0}}) + ≤ u(x) ≤ w(x) for all x ∈ Ω. (3.12) in case (ii).

Proof. The proof is a variant of the preceding one, only the geometry of the domains is changed.

In case (ii) set m = sup {w(z) : z ∈ ∂Ω \ {0}}. Then the function z → w m := (w(z) -m) + is a subsolution of (3.6) in Ω. It vanishes on ∂Ω \ {0} and is dominated by w. For < δ 0 , let Ω denote Ω ∩ B c . We consider the problem of finding u

Again since u -w m ∈ H 1 0 (Ω ) and since w m is smaller than w Ω , the solution u exists and it satisfies

As in the proof of Proposition 3.2 the sequence {u } is relatively compact in the C 1,θ loc (Ω \ {0})-topology, which ends the proof. In case (i), for n > 0 set K n = sup {w(z) : z ∈ ∂B + n \ {0}} where, we recall it,

n which vanishes on ∂B + n \ {0} and is smaller than w. For 0 < < n we denote by u ,n the unique function satisfying + vanishing on ∂R N + \ {0}. Let Ω ⊂ R N + be any smooth domain such that 0 ∈ ∂Ω and ∂Ω is flat near 0. Then u ω ≤ K on ∂Ω for some K > 0. Put v = (u ω -K) + , then it is a nonnegative subsolution of (3.1). For any > 0 small enough there exists a solution u of

(3.36)

Then v ≤ u ≤ u ω . Furthermore, for 0 < < , u ≤ u in Ω . Hence {u } converges, when → 0 to a solution u 0 of (1.9), which satisfies v ≤ u 0 ≤ u ω and therefore vanishes on ∂Ω \ {0}, which is a contradiction. [START_REF] Bidaut-Véron | Boundary singularities of positive solutions of quasilinear Hamilton-Jacobi equations[END_REF] Solutions with an isolated boundary singularity

Uniqueness of singular solutions

In this section we use scaling transormations to prove uniqueness of singular solutions.

(4.37)

+ , and ã be a real number. Then there exists at most one nonnegative solution of (1.21)

Proof. The proof is an adaptation to the configuration where the singularity lies on the boundary of [START_REF] Bidaut-Véron | Singular solutions of some elliptic equations involving mixed absorption-reaction[END_REF]Theorem 1.15

is a subsolution for (1.8) in Ω and satisfies (1.24 ). The solution u k of (1.8) in R N + vanishing on ∂R N + \ {0} and satisfying (4.42) is larger than v k in Ω. Hence the result follows by Proposition 3.4.

When Ω is not included in R N + , estimates (4.48 ) is valid with the same type of bounds on c. We also consider separately the cases q = 2p p+1 and M upper bounded, q < 2p p+1 and M > 0 arbitrary and q = 2p p+1 and M > 0 arbitrary and finally 2p p+1 < q < N +1 N . As supersolution we consider the function w k := kP Ω + w where w satisfies -∆w + w p = aγ 2 |x|

for some a > 0. The estimates on w endow the form

where γ 3 and γ 4 depend on Ω. Hence (4.53) holds in Ω instead of R N + , and we have existence for M < M 1 , where M 1 is defined by (4.54). Then we prove existence for any M > 0 and k > 0 when q < 2p p+1 then for any M > 0 when q = 2p p+1 and finally when 2p p+1 < q < N +1 N as in Theorem 1.7.

Solutions with a strong singularity

N -1 and either 1 < q < 2p p+1 and M > 0 or q = 2p p+1 and M > m * * defined in (1.11), the singularity is removable by Theorem 1.1. Thus the ranges of exponents that we consider are the following,

If (4.67)-(i) holds, q < N +1 N , and in this range the limit of the fundamental solutions u k when k → ∞ is a solution with a strong singularity with an explicit blow-up rate. In the case of a bounded domain our construction requires a geometric flatness condition of ∂Ω near 0. We consider first the case Ω = R N + .

Theorem 4.4 Assume (4.67)-(i) holds, then for any M ≥ 0 there exists a positive solution u of (1.1) in R N + vanishing on ∂R N + \ {0} such that

where ψ is the unique positive solution of (3.17).

(ii

where ω is the minimal positive solution of (1.28).

Proof. If k > 0, we denote by u = u k,M the solution of

(4.71)

The mapping k → u k is increasing. We set

It follows from Theorem 2.1 and Theorem 2.3 that the sequences {u k,M } and {∇u k,M } converge locally uniformly in R N + , when k → ∞, to a function u ∞,M which satisfies (1.1) in R N + . Furthermore

for all > 0. (4.72)

In the case q = 2p p+1 the function u ∞,M is self-similar, hence

where ω is a nonnegative solution of (1.28). Inasmuch u k,M ≥ u k,0 = v k (already defined by (4.46)), it follows that

Since u k,M is dominated by any self-similar solution of (1.1), it implies that ω is the minimal positive solution of (1.28) that we denote by ω hereafter. Up to a subsequence,

Because of uniqueness, the whole sequence converges, which implies (4.70).

In the case q < 2p p+1 , using the a priori estimates from Theorem 2.1 and Theorem 2.3, we obtain that

The fact that B + rn is just a Lipschitz domain is easily bypassed by smoothing it in a neighborhood of ∂B rn ∩ R N + . Furthermore, by (2.1) and (2.18),

and for any r 0 > 0, there exists c 8 > 0 depending on r 0 such that

By standard local regularity theory, there exists a subsequence {u n j } which converges in the C 1 (K)-topology for any compact set K ⊂ R N + \ {0} to a positive solution u of (1.1) in R N + which vanishes on ∂R N + \ {0} and satisfies (1.35). Next we assume N q < (N -1)p. Observe that

Thus, from (4.89) we obtain

and

Therefore L q,M W m ≤ 0 on B + r * where

r * and it is a subsolution of (1.1) in B + r * which vanishes on ∂B + r * \ {0}. If we extend it by 0 in R N + , the new function is a a subsolution of (1.1) which belongs to W 1,∞ loc (R N + \ {0}). We end the proof using Proposition 3.4 as in the previous case.

If R N

+ is replaced by a bounded domain we have the following result. Theorem 4.8 Let M > 0 and 2p p+1 < q < p.

for some constant c 23 > 0. Then there exists a positive solution u of (1.1) in Ω vanishing on ∂Ω \ {0} satisfying, for some m > 0,

uniformly on any compact set K ⊂ S N -1 + .

Proof. We recall that φ 1 is the first eigenfunction of -∆ in W 1,2 0 (S N -1 ). Let R > 0 and B := B R (a) ⊂ Ω be an open ball tangent to ∂Ω at 0. Up to rescaling and since the result does not depend on the value of M we can assume that R = 1. We set w m (x) = m|x| -θ P B (x) where θ = γ + 1 -N and P B is the Poisson kernel in B expressed by

where σ N is the volume of the unit sphere in R N . Then

(4.96) Since

which implies in particular

N p, equivalently θ ≥ 0, we have

Since (1 -N )(p -q) = (p -q)θ -q, we obtain finally that,

Choosing m small enough we deduce that w m is a subsolution in B. If we extend it by 0 in Ω \ B, the new function denoted by w is a nonnegative subsolution of (1.1) in Ω which vanishes on ∂Ω \ {0} and satisfies (4.95). The proof follows from Proposition 3.4.

If q < N -1 N p, then θ < 0. Since ∇P B (x), x |x| ≤ 0, (4.97) is replaced by