Local transparent boundary conditions for wave propagation in fractal trees (ii): error and complexity analysis - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2022

Local transparent boundary conditions for wave propagation in fractal trees (ii): error and complexity analysis

Résumé

This work is dedicated to a refined error analysis of the high-order transparent boundary conditions introduced in the companion work [8] for the weighted wave equation on a fractal tree. The construction of such boundary conditions relies on truncating the meromorphic series that represents the symbol of the Dirichlet-to-Neumann operator. The error induced by the truncation depends on the behaviour of the eigenvalues and the eigenfunctions of the weighted Laplacian on a self-similar metric tree. In this work we quantify this error by computing asymptotics of the eigenvalues and bounds for Neumann traces of the eigenfunctions. We prove the sharpness of the obtained bounds for a class of self-similar trees.
Fichier principal
Vignette du fichier
main_report.pdf (530.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02909750 , version 1 (31-07-2020)
hal-02909750 , version 2 (03-08-2020)

Identifiants

Citer

Patrick Joly, Maryna Kachanovska. Local transparent boundary conditions for wave propagation in fractal trees (ii): error and complexity analysis. SIAM Journal on Numerical Analysis, 2022, 60 (2), ⟨10.1137/20M1357524⟩. ⟨hal-02909750v2⟩
164 Consultations
138 Téléchargements

Altmetric

Partager

More