Budgeted online influence maximization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Budgeted online influence maximization

Jennifer Healey
  • Fonction : Auteur
Zheng Wen
  • Fonction : Auteur
Michal Valko

Résumé

We introduce a new budgeted framework for on-line influence maximization, considering the total cost of an advertising campaign instead of the common cardinality constraint on a chosen influ-encer set. Our approach models better the real-world setting where the cost of influencers varies and advertizers want to find the best value for their overall social advertising budget. We propose an algorithm assuming an independent cascade diffusion model and edge-level semi-bandit feedback, and provide both theoretical and experimental results. Our analysis is also valid for the cardinality-constraint setting and improves the state of the art regret bound in this case.
Fichier principal
Vignette du fichier
icml2020_boim__Version_2293_.pdf (642.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02904278 , version 1 (21-07-2020)

Identifiants

  • HAL Id : hal-02904278 , version 1

Citer

Pierre Perrault, Jennifer Healey, Zheng Wen, Michal Valko. Budgeted online influence maximization. International Conference on Machine Learning, 2020, Vienna, Austria. ⟨hal-02904278⟩
141 Consultations
151 Téléchargements

Partager

More