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Abstract
We introduce a new budgeted framework for on-
line influence maximization, considering the total
cost of an advertising campaign instead of the
common cardinality constraint on a chosen influ-
encer set. Our approach models better the real-
world setting where the cost of influencers varies
and advertizers want to find the best value for their
overall social advertising budget. We propose an
algorithm assuming an independent cascade diffu-
sion model and edge-level semi-bandit feedback,
and provide both theoretical and experimental re-
sults. Our analysis is also valid for the cardinality-
constraint setting and improves the state of the art
regret bound in this case.

1. Introduction
Viral marketing through online social networks now rep-
resents a significant part of many digital advertising bud-
gets. In this form of marketing, companies incentivize cho-
sen influencers in social networks (e.g., Facebook, Twitter,
YouTube) to feature a product in hopes that their followers
will adopt the product and repost the recommendation to
their own network of followers. The effectiveness of the
chosen set of influencers can be measured by the expected
number of users that adopt the product due to their initial
recommendation, called the spread. Influence maximization
(IM, Kempe et al., 2003) is the problem of choosing the
optimal set of influencers to maximize the spread under a
cardinality constraint on the chosen set.

In order to define the spread, we need to specify a diffusion
process such as independent cascade (IC) or linear threshold
(LT) (Kempe et al., 2003). The parameters of these models
are usually unknown. Different methods exist to estimate
the parameters of the diffusion model from historical data
(see section 1.1) however historical data is often difficult
to obtain. Another possibility is to consider online influ-
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ence maximization (OIM) (Vaswani et al., 2015; Wen et al.,
2017) where an agent actively learns about the network by
interacting with it repeatedly, trying to find the best seed
influencers. The agent thus faces the dilemma of exploration
versus exploitation, allowing us to see it as multi-armed ban-
dits problem (Auer et al., 2002). More precisely, the agent
faces IM over T rounds. Each round, it selects m seeds
(based on feedback from prior rounds) and diffusion occurs;
then it gains a reward equal to the spread and receives some
feedback on the diffusion.

IM and OIM optimize with the constraint of a fixed number
of seeds. This reflects a fixed seed cost model, for exam-
ple, where influencers are incentivized by being given an
identical free product. In reality, however, many influencers
demand different levels of compensation. Those with a high
out-degree (e.g., number of followers) are usually more ex-
pensive. Due to these cost variations, marketers usually
wish to optimize their seed sets S under a budget c(S) ≤ b
rather than a cardinality constraint |S| ≤ m. Optimizing a
seed set under a budget has been studied in the offline case
by Nguyen and Zheng (2013). In the online case, Wang
et al. (2020) considered the relaxed constraint E[c(S)] ≤ b,
where the expectation is over the possible randomness of
S.1 We believe however that the constraint of a fixed, equal
budget c(S) ≤ b at each round does not sufficiently model
the willingness to choose a cost-efficient seed set. Indeed,
we see that the choice of b is crucial: a b too large translates
into a waste of budget (some seeds that are too expensive
will be chosen) and a b too small translates into a waste of
time (a whole round is used to influence only a few users).
To circumvent this issue, instead of a budget per round, in
our framework, we allow the agent to choose seed sets of
any cost at each round, under an overall budget constraint
(equal to B = bT for instance). In summary, we incor-
porate the OIM framework into a budgeted bandit setting.
Our setting is more flexible for the agent, and better meets
real-world needs.

1.1. Related work on IM

IM can be formally defined as follows. A social network
is modeled as a directed graph G = (V,E), with nodes V

1This relaxation is to avoid a computationally costly partial
enumeration (Krause and Guestrin, 2005; Khuller et al., 1999)
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representing users and edges E representing connections.
An underlying diffusion model D governs how information
spreads in G. More precisely, D is a probability distribution
on subgraphsG′ ofG, and given some seed set S, the spread
σ(S) is defined as the expected number of S-reachable2

nodes in G′ ∼ D. IM aims to find S that is a solution to

max
|S|=m

σ(S). (1)

Although IM is NP-hard under standard diffusion models
— i.e., IC and LT — σ is a monotone submodular3 function
(Fujishige, 2005), and given a value oracle access to σ, the
standard GREEDY algorithm solves (1) within a 1 − 1/e
approximation factor (Nemhauser et al., 1978). There have
been multiple lines of work for IM, including the develop-
ment of heuristics, approximation algorithms, as well as
alternative diffusion models (Leskovec et al., 2007; Goyal
et al., 2011; Tang et al., 2014; 2015). Additionally, there
are also results on learning D from data in the case it is
not known (Saito et al., 2008; Goyal et al., 2010; Gomez-
Rodriguez et al., 2012; Netrapalli and Sanghavi, 2012).

1.2. Related work on OIM

Prior work in OIM has mainly considered either node level
semi-bandit feedback (Vaswani et al., 2015), where the
agent observes all the S-reachable nodes inG′, or edge level
semi-bandit feedback (Wen et al., 2017), where the agent ob-
serves the whole S-reachable subgraph (i.e., the subgraph of
G′ induced by S-reachable nodes). Other, weaker, feedback
settings have also been studied including: pairwise influence
feedback, where all nodes that would be influenced by a
seed set are observed but not the edges connecting them,
i.e., ({i}-reachable nodes)i∈S is observed (Vaswani et al.,
2017); local feedback, where the agent observes a set of
out-neighbors of S (Carpentier and Valko, 2016) and imme-
diate neighbor observation where the agent only observes
the out-degree of S (Lugosi et al., 2019).

1.3. Our contributions

In this paper, we define the budgeted OIM paradigm and
propose a performance metric for an online policy on this
problem using the notion of approximation regret (Chen
et al., 2013). To the best of our knowledge, the both of
contributions are new. We then focus our study on the IC
model with edge level semi-bandit feedback. We design a
CUCB-style algorithm and prove logarithmic regret bounds.
We also propose some modifications of this algorithm with
improving the regret rates. These gains apply to the non-
budgeted setting, giving an improvement over the state-
of-the-art analysis of the standard CUCB-approach (Wang
and Chen, 2017). Our proof incorporates an approximation

2nodes that are reachable from some node in S.
3f is submodular if f(A∪{i})−f(A) is non-increaing with A.

guarantee of GREEDY for ratio of submodular and modular
functions, which may also be of independent interest.

2. Problem definition
In this section, we formulate the problem of budgeted OIM
and give a regret definition for evaluating policies in that
setting. We also justify our choice for this notion of regret.
We typeset vectors in bold and indicate components with
indices, e.g., for some set I , a = (ai)i∈I ∈ RI is a vector
on I . Let ei be the ith canonical unit vector of RI . The
incidence vector of any subset A ⊂ I is eA ,

∑
i∈A ei.

We consider a fixed directed network G = (V,E), known
to the agent, with V , {1, . . . , |V |}. We denote by ij ∈ E
the directed edge from node i to j in G. We assume that
G doesn’t have self-loops, i.e., for all ij ∈ E, i 6= j. For
a node i ∈ V , a subset S ⊂ V , and a vector w ∈ {0, 1}E ,
the predicate S w

 i holds if, in the graph defined by Gw ,
(V, {ij ∈ E,wij = 1}), there is a forward path from a node
in S to the node i. If it holds, we say that i is influenced
by S under w. We define pi(S;w) , I

{
S

w
 i

}
and the

spread as σ(S;w) ,
∣∣∣{i ∈ V, S w

 i
}∣∣∣. Our diffusion

process is defined by the random vector W ∈ {0, 1}E , and
our cost is defined by the random4 vector C ∈ [0, 1]V ∪{0}

where the added component C0 represents any fixed costs5.
Notice, random costs are neither assumed to be mutually
independent nor independent from W. We will see that
components of W might however be mutually independent
(e.g., for the IC model).

2.1. Budgeted online influence maximization

The agent interacts with the diffusion process across several
rounds, using a learning policy. At each round t ≥ 1, the
agent first selects a seed set St ⊂ V , based on its past ob-
servations. Then, the random vectors for both the diffusion
process Wt ∼ PW and the costs Ct ∼ PC are sampled
independently from previous rounds. Then, the agent ob-
serves some feedback from both the diffusion process and
the costs.

We provide in (2) the expected cumulative rewards FB de-
fined for some total budget B > 0. The goal for the agent is
to follow a learning policy π maximizing FB . In (2), recall
that St is the seed set selected by π at round t.

4Although costs are usually deterministic, we assume random-
ness for more generality (influencer campaigns may have uncertain
surcharges for example).

5We provide a toy example where C0 models a concrete quan-
tity: Assume you want to fill your restaurant. You may pay some
seeds and ask them to advertise/influence people. C0 represents
the cost of the food, the staff, the rent, the taxes, ...
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FB(π) , E

[
τB−1∑
t=1

σ(St;Wt)

]
. (2)

τB is the random round at which the remaining budget
becomes negative: if Bt , B −

∑
t′≤t

(
eT

St′
Ct′ + C0,t′

)
,

then BτB−1 ≥ 0 and BτB < 0. Notice, quantities Bt and
τB are usual in budgeted multi-armed bandits (Xia et al.,
2016; Ding et al., 2013).

2.2. Performance metric

We restrict ourselves to efficient policies, i.e., we consider
a complexity constraint on the policy the agent can follow:
For a round t, the space and time complexity for computing
St has to be polynomial in |V |, and polylogarithmic in t. To
evaluate the performance of a learning policy π, we use the
notion of approximation regret (Kakade et al., 2009; Streeter
and Golovin, 2009; Chen et al., 2016). The agent wants to
follow a learning policy π which minimizes

RB,ε(π) , (1− 1/e− ε)F ?B − FB(π),

where F ?B is the best possible value of FB over all policies
(thus leveraging on the knowledge of PW and PC), and
where ε > 0 is some parameter the agent can control to
determine the tradeoff between computation and accuracy.
Remark 1. This OIM with a total budgetB is different from
OIM in previous work, such as Wang and Chen (2017), even
when we set all costs to be equal. In our setting, there is
only one total budget for all rounds, and the policy is free
to choose seed sets of different cost in each round, whereas
in the previous work, each round had a fixed budget for the
number/cost of seeds selected. Our setting thus avoid the
use of a budget per round, which is in practice more difficult
to establish than a global budget B. Nevertheless, as we
will see in section 6, both types of constraints (global and
per round) can be considered simultaneously when the true
costs are known.

2.3. Justification for the approximation regret

In the non-budgeted OIM problem with a cardinality con-
straint given by m ∈ [|V |], let us recall that the approxima-
tion regret

RT,ε(π),
∑
t≤T

max
S⊂V,
|S|=m

E[(1−1/e−ε)σ(S;W)−σ(St;W)]

is standard (Wen et al., 2017; Wang and Chen, 2017). In
this notion of regret, the factor (1− 1/e− ε) (Feige, 1998;
Chen et al., 2010) reflects the difficulty of approximating
the following NP-Hard (Kempe et al., 2003) problem in the
case the distribution PW is described by IC or LT, and is
known to the agent:

max
S⊂V, |S|=m

E[σ(S;W)]. (3)

For our budgeted setting, at first sight, it is not straightfor-
ward to know which approximation factor to choose. Indeed,
since the random horizon may be different in FB(π) and
in F ?B , the expected regret RB,ε(π) is not expressed as the
expectation of a sum of approximation gaps, so we can’t
directly reduce the regret level approximability to the gap
level approximability. We thus consider a quantity provably
close to RB,ε(π) and easier to handle.
Proposition 1. Define

λ? , max
S⊂V

E[σ(S;W)]

E
[
eT

S∪{0}C
] ·

For all S ⊂ V, define the gap corresponding to S as

∆(S) , (1− 1/e− ε)λ?E
[
eT

S∪{0}C
]
− E[σ(S;W)].

Then, for any policy π selecting St at round t,∣∣∣∣∣RB,ε(π)− E

[
τB−1∑
t=1

∆(St)

]∣∣∣∣∣ ≤ 2|V |+ 2λ?(1 + |V |).

From Proposition 1, whose proof can be found in Ap-
pendix A, RB,ε(π) and E

[∑τB−1
t=1 ∆(St)

]
are equivalent

in term of regret upper bound rate. Therefore, the factor
(1− 1/e− ε) should reflect the approximability of

max
S⊂V

E[σ(S;W)]/E
[
eT

S∪{0}C
]

= max
S⊂V

f(S)/c(S). (4)

Considering the specific problem where the cost function is
of the form c(S) = c1|S|+ c0, for some (c0, c1) ∈ [0, 1]2,
we can reduce the approximability of (4) to the approxima-
bility of the following problem considered in Wang et al.
(2020):

max
S⊂V

E[f(S)] s.t. E[|S|] ≤ m, (5)

for some given integer m, where the expectations are with
respect to a randomization in the approximation algorithm.
Wang et al. (2020) proved that this problem is NP-hard
by reducing to the set cover problem. We show here that
an approximation ratio α better that 1 − 1/e yields an ap-
proximation for set cover within (1 − δ) log(|V |), δ > 0,
which is impossible unless NP ⊂ TIME

(
nO(log log(|V |)))

(Feige, 1998). Consider the graph where the collection of
out-neighborhoods is exactly the collection of sets in the set
cover instance. First, trying out all possible values of m, we
concentrate on the case in which the optimal m for set cover
is tried out. As in Feige (1998), for k ∈ N∗, we repeatedly
apply the algorithm that α-approximate (5). It outputs a set
Sk (that can be associated with a set of neighborhoods) and
after each application the nodes already covered by previous
applications are removed from the graph, giving a sequence
of objective functions (fk) with f1 = f . We thus obtain

E[fk(Sk)|S1, . . . , Sk−1] ≥ α

(
|V | −

k−1∑
k′=1

fk′(Sk′)

)
.
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Noticing that E[f(S1 ∪ · · · ∪ Sk)] =
∑k
k′=1 E[fk′(Sk′)],

we get

E[f(S1 ∪ · · · ∪ Sk)] ≥
(
1− (1− α)k

)
|V |.

After ` = blog(1/|V |)/ log(1− α)c < (1 − δ) log(|V |)
iterations, we obtain that S = S1 ∪ · · · ∪ S` is a cover, i.e.,
f(S) = |V |. The result follows noticing that in expectation
(and so with positive probability), we have |S| ≤ `m.

3. Algorithm for IC with edge level
semi-bandit feedback

3.1. Setting

For w ∈ [0, 1]V , we recall that we can define an IC model
by taking PW = ⊗ij∈EBernoulli(wij). We can extend
the two previous functions pi and σ to w taking values in
[0, 1]V as follows: Let W ∼ ⊗ij∈EBernoulli(wij). We
define the probability that i is influenced by S under W as
pi(S;w) , P

[
S

W
 i

]
, and we let the spread be σ(S;w) ,

E
[∣∣∣{i ∈ V, S W

 i
}∣∣∣]. Another expression for the spread

is σ(S;w) =
∑
i∈V pi(S;w). We fix a weight vector on

E, w? ,
(
w?ij
)
ij∈E ∈ [0, 1]E , a cost vector on V ∪ {0},

c? , (c?i )i∈V ∪{0} ∈ [0, 1]V ∪{0}, with c?0 > 0. These
quantities are initially unknown to the agent. We assume
from now that

PW , ⊗ij∈EBernoulli
(
w?ij
)
,

and that
E[C] = c?.

We also define S? ∈ arg maxS⊂V σ(S;w?)/eT

S∪{0}c
?.

We assume that the feedback received by the agent
at round t is

{
Wij,t, ij ∈ E, St

Wt i
}

. The agent
also receives semi-bandit feedback from the costs, i.e.,
{Ci,t, i ∈ V, i ∈ St ∪ {0}} is observed.

3.2. Algorithm design
In this subsection, we present BOIM-CUCB, CUCB for
Budgeted OIM problem as Algorithm 1. As we saw in
Proposition 1, the policy that, at each round, (1 − 1/e −
ε)−approximately maximize

S 7→ σ(S;w?)

eT

Sc
? + c?0

(6)

has a bounded regret. Thus, BOIM-CUCB shall be based on
this objective. Not only there are some estimation concerns
due to the unknown parameters w?, c?, but in addition to
that, we also need to evaluate/optimize our estimates of (6).

We begin by introducing some notations. We define the
empirical means for t ≥ 1 as: For all i ∈ V ∪ {0},

ci,t−1 ,

∑
t′∈[t−1] I{i ∈ St′ ∪ {0}}Ci,t′

N	i,t−1

,

Algorithm 1 BOIM-CUCB

Input: ε > 0, B0 = B > 0.
for each round t ≥ 1 do

If true costs are known, then ct ← c?.
Compute St given by Algorithm 2 with input S 7→
σ(S;wt), ct.
Select seed set St, and pay eT

St∪{0}Ct (i.e., remove
this cost from Bt−1 to get the new budget Bt).
if Bt ≥ 0, then

Get the reward σ(St;Wt), get the feedback, and
update corresponding quantities accordingly.

else
The budget is exhausted: leave the for loop.

end if
end for

and for all ij ∈ E,

wij,t−1 ,

∑
t′∈[t−1] I

{
St′

Wt′ i

}
Wij,t′

N⊕i,t−1

,

where N	i,t−1 ,
∑t−1
t′=1 I{i ∈ St′}, N⊕i,t−1 ,∑t−1

t′=1 I
{
St′

Wt′ i

}
. Using concentration inequalities, we

get confidence intervals for the above estimates. We are
then able to use an upper-confidence-bound (UCB) strategy
(Auer et al., 2002). More precisely, in the case costs are
unknown, we first build the lower confidence bound (LCB)
on c?i as follows

ci,t , 0 ∨

(
ci,t−1 −

√
1.5 log(t)

N	i,t−1

)
.

We can also define UCBs for w?ij :

wij,t , 1 ∧

(
wij,t−1 +

√
1.5 log(t)

N⊕i,t−1

)
·

We use wij,t = 1 (and ci,t = 0) when the correspond-
ing counter is equal to 0. Our BOIM-CUCB approach
chooses at each round t the seed set St given by Algo-
rithm 2 which, as we shall see, approximately maximize
S 7→ σ(S;wt)/

(
eT

S∪{0}ct

)
. Indeed, with high probability,

this set function is an upper bound on the true ratio (6) (using
that σ is non decreasing w.r.t. w). Notice that this approach
is followed by Wang and Chen (2017) for the non budgeted
setting, i.e., they choose St, |St| ≤ m that approximately
maximize S 7→ σ(S;wt). To complete the description of
our algorithm, we need to describe Algorithm 2. This is the
purpose of the following.

3.3. Greedy for ratio maximization

In BOIM-CUCB, one has to approximately maximize the
ratio S 7→ σ(S;wt)/e

T

S∪{0}ct, that is a ratio of submod-
ular over modular function. A GREEDY technique can be
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Algorithm 2 GREEDY for ratio, Lazy implementation
Input: σ that is an increasing submodular function,

c ∈ [0, 1]V ∪{0}.
S0 ← ∅.
ρ← [(∞, i)]i∈V .
for k ∈ [|V |] do
checked← Sk−1.
(∗) Remove the first element ρ[0] = (∼, i) from ρ.
if i /∈ checked then

Insert ((σ({i} ∪ Sk−1)− σ(Sk−1))/ci, i) in ρ,
such that ρ[:][0] is sorted in decreasing order.
Add i to checked and go back to (∗).

else
Sk ← Sk−1 ∪ {i}.

end if
end for
k′ ← arg maxk∈{0,...,|V |} σ(Sk)/eT

Sk∪{0}c.
Output: Sk′ .

used (see Algorithm 2). Indeed, instead of maximizing
the marginal contribution at each time step, as the standard
GREEDY algorithm do, the approach is to maximize the so
called bang-per-buck, i.e., the marginal contribution divided
by the marginal cost. This builds a sequence of increasing
subsets, and the final output is the one that maximizes the
ratio. We prove in Appendix D the following Proposition 2,
giving an approximation factor of 1− 1/e for Algorithm 2.

Proposition 2. Algorithm 2 with input σ, c is guaranteed
to obtain a solution S such that:(

1− e−1
) σ(S?)

eT

S?∪{0}c
≤ σ(S)

eT

S∪{0}c
·

Notice, a similar result as Proposition 2 is stated in Theo-
rem 3.2 of Bai et al. (2016). However, their proof doesn’t
hold in our case, since their inequality (16) would be true
only for a normalized cost (i.e. c0 = 0). Actually, c0 = 0
implies that S? is a singleton, from subadditivity of σ.

For more efficiency, we use a greedy algorithm with lazy
evaluations (Minoux, 1978; Leskovec et al., 2007), lever-
aging on the submodularity of σ. More precisely, in Algo-
rithm 2, instead of taking the arg max in the step

Sk ← Sk−1 ∪

{
arg max
i∈V \Sk−1

σ({i} ∪ Sk−1)− σ(Sk−1)

ci

}
,

we maintain an upper bound ρ (initially∞) on hhe marginal
gain, sorted in decreasing order. In each iteration k, we
evaluates the element on top of the list, say i, and updates
its upper bound with the marginal gain at Sk−1. If after
the update the upper bound is greater than the others, sub-
modularity guarantees that i is the element with the largest
marginal gain.

Algorithm 2 (and the approximation factor) can’t be used di-
rectly in the OIM context, since computing the exact spread
σ is #P hard (Chen et al., 2010). However, with Monte
Carlo (MC) simulations, it can efficiently reach an arbitrar-
ily close ratio of α = 1− 1/e− ε, with a high probability
1− 1/

(
t log2(t)

)
(Kempe et al., 2003).

3.4. An alternative to Lazy Greedy: Ratio
maximization from sketches

In the previous approach, MC can still be computation-
ally costly, since the marginal contribution have to be re-
evaluated each time, using directed reachability computation
in each MC instance. There exist efficient alternatives to
α−approximately maximize the spread with cardinality con-
straint, such as TIM from Tang et al. (2014) and SKIM from
Cohen et al. (2014). Adapting TIM to our ratio maximization
context is not straightforward, since it require to know the
seed set size in advance, which is not the case in Algorithm 2.
SKIM is more promising since it uses the standard GREEDY
in a sketch space. We provide an adaptation of SKIM for
approximately maximize the ratio (see Appendix G). It uses
the bottom-k min-hash sketches of Cohen et al. (2014), with
a threshold for the length of the sketches that depends on
both k =

⌊
ε−2 log(1/δ)

⌋
and the cost, where δ is an up-

per bound on the probability that the relative error is larger
than ε. Exactly as Cohen et al. (2014) proved the approx-
imation ratio for SKIM, this approach reaches a factor of
1− 1/e− ε, with high probability. More precisely, at round
t ≥ 2, we can actually choose to have the approximation
with δ = 1/

(
t log2(t)

)
, only adding a O(log(t)) factor in

the computational complexity of Algorithm 2 (Cohen et al.,
2014), thus remaining efficient.6

3.5. Regret bound for Algorithm 1

We provide a gap dependent upper bound on the regret of
BOIM-CUCB in Theorem 1. For this, we define, for i ∈ V ,
the gap

∆i,min , min
S⊂V, pi(S;w?)>0, ∆(S)>0

∆(S).

We also define, with dk being the out-degree of node k,

pi,max , max
S⊂V, pi(S;w?)>0

∑
k∈V

dkpk(S;w?).

Theorem 1. If π is the policy described in Algorithm 1,
then

RB,ε(π)= O

(
logB

(∑
i∈V
|V |λ

?+dipi,max|V |
∆i,min

))
.

6Wang and Chen (2017) uses the notion of approximation regret
with a certain fixed probability. Here, we rather fix this probability
to 1 and allow for a O(log(t)) factor in the running time.
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In addition, if true costs are known, then

RB,ε(π)= O

(
logB

(∑
i∈V

dipi,max|V |2

∆i,min

))
.

A proof of Theorem 1 can be found in Appendix B. No-
tice that the analysis can be easily used for the non bud-
geted setting. In this case, it reduces to the state-of-the-
art analysis of Wang and Chen (2017), except that we
slightly simplify and improve the analysis to replace the fac-
tor maxS⊂V

∑
k∈V dkI{pk(S;w?) > 0} by a potentially

much lower quantity pi,max. In the case this last quantity is
still large, we can further improve it by considering slight
modifications to the original Algorithm 1. This is the pur-
pose of the next section.

4. More refined optimistic spreads
We observe that the factor pi,max in Theorem 1 can be
as large as |E| in the worst case. In other word, if ∆ =
mini ∆i,min, the rate can be as large as

O

(
logB

(
λ?|V |2+|E|2|V |2

∆

))
·

We argue here that we can replace |E|2|V |2 by
|E||V |3 log2(|V |)). Indeed, leveraging on the mutual in-
dependence of random variables Wij , we can hope to get a
tighter confidence region for w?, and thus a provably tighter
regret upper bound (Magureanu et al., 2014; Combes et al.,
2015; Degenne and Perchet, 2016). We consider the fol-
lowing confidence region from Degenne and Perchet (2016)
(see also Perrault et al. (2019a)) and adapted to our setting.
Fact 1 (Confidence ellipsoid for weights). For all t ≥ 2,
with probability at least 1− 1/

(
t log2(t)

)
,∑

ij∈E
N⊕i,t−1

(
w?ij − wij,t−1

)2 ≤ δ(t),
where δ(t) , 2 log(t) + 2(|E|+ 2) log log(t) + 1.

For OIM (both budgeted and non budgeted), there is a large
potential gain in the analysis using the confidence region
given by Fact 1 compared to simply using an Hoeffding
based one, like in BOIM-CUCB. More precisely, for classical
combinatorial semi bandits, Degenne and Perchet (2016)
reduced the gap dependent regret upper bound by a fac-
tor `/ log2 (`), where in our case ` can be as large as |E|.
However, there is also a drawback in practice with such
confidence region: computing the optimistic spread might
be inefficient, even if an oracle for evaluating the spread is
available. Indeed, for a fixed S ⊂ V , the problem of maxi-
mizing w 7→ σ(S;w) over w belonging to some ellipsoid
might be hard, since the objective is not necessarily concave.
We can overcome this issue using the following Fact 2 (Wen
et al., 2017; Wang and Chen, 2017).

Fact 2 (Smoothness property of the spread). for all S ⊂ V,
and all w,w′ ∈ [0, 1]E ,
∀k ∈ V, |pk(S;w)−pk(S;w′)|≤

∑
ij∈E

pi(S;w)
∣∣wij−w′ij∣∣.

In particular,

|σ(S;w)− σ(S;w′)| ≤ |V |
∑
ij∈E

pi(S;w)
∣∣wij − w′ij∣∣.

For S ⊂ V and w ∈ RE , we define the confidence “bonus”
as follows:

Bonus(S;w) , |V |

√√√√δ(t)
∑

i∈V,N⊕i,t−1>0

di
pi(S;w)

2

N⊕i,t−1
·

Notice, we don’t sum on vertices with a zero counter. We
compensate this by using the convention wij,t−1 = 1 when
N⊕i,t−1 = 0. We can successively use Fact 2, Cauchy-
Schwartz inequality, and Fact 1 to get, with probability at
least 1− 1/

(
t log2(t)

)
,

σ(S;w?) ≤ σ(S;wt−1) + Bonus(S;wt−1). (7)

In the same way, with probability at least 1− 1/
(
t log2(t)

)
,

we also have (8).

σ(S;w?) ≤ σ(S;wt−1) + Bonus(S;w?). (8)

Contrary to (7), this “optimistic spread” can’t be used di-
rectly by the agent since w? is not known.

Although the optimistic spread defined in (7) is now much
easier to compute, there is still a major drawback that re-
mains: As a function of S ⊂ V , Bonus(S;wt−1) is not
necessarily submodular, so the optimistic spread is itself no
longer submodular. This is an issue because submodularity
is a crucial property for reaching the approximation ratio
1− 1/e− ε. We propose here several submodular upper
bound to Bonus, defined for S ⊂ V and w ∈ RE :

• Bonus1 is actually modular, and simply uses the sub-
additivity (w.r.t. S) of Bonus:

Bonus1(S;w), |V |
∑
j∈S

√√√√δ(t) ∑
i,N⊕i,t−1>0

di
pi({j};w)

2

N⊕i,t−1
·

• Bonus2 uses the subadditivity of the square root:

Bonus2(S;w) , |V |
∑

i,N⊕i,t−1>0

pi(S;w)

√
δ(t)di
N⊕i,t−1

·

• Bonus3 uses pi(S;w)
2 ≤ pi(S;w), and is submodu-

lar as the composition between a non decreasing con-
cave function (the square root) and a monotone sub-
modular function:

Bonus3(S;w) , |V |

√√√√δ(t)
∑

i,N⊕i,t−1>0

di
pi(S;w)

N⊕i,t−1
·
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• Bonus4 uses Jensen’s inequality, and is submodular
as the expectation of the square root of a submodular
function.

Bonus4(S;w) , E

|V |√√√√ ∑
i∈V,N⊕i,t−1>0,S

W
 i

δ(t)di
N⊕i,t−1

,
where W ∼ ⊗ij∈EBernoulli(wij).

We can write the following approximation guarantees for
the two first bonus:

Bonus(S;w) ≤ Bonus1(S;w)≤ |S|Bonus(S;w), (9)

Bonus(S;w) ≤ Bonus2(S;w) ≤
√
|V |Bonus(S;w).

Notice, another approach to get a submodular bonus is to
approximate pi(S;wt−1) by the square root of a modular
function (Goemans et al., 2009). However, not only this
bonus would be much more computationally costly to build
than ours, but also, we would get only a

√
|V | log|V | ap-

proximation factor, which is worst than the one with our
Bonus2. Since increasing the bonus by a factor α ≥ 1 in-
creases the gap dependent regret upper bound by a factor
α2, we only loose a factor |V | for Bonus2, compared to the
use of Bonus, which is still better than the CUCB approach.
Bonus1 can also be interesting to use when we have some
upper bound guarantee on the cardinality of seed sets used
(see subsection 5.1). An approximation factor for Bonus3 or
Bonus4 doesn’t seem interesting, because it would involve
the inverse of triggering probabilities. We can, however,
further upper bound Bonus3(S;w?) as follows:

Bonus3(S;w?) = |V |

√√√√δ(t)
∑

i,N⊕i,t−1>0

di
pi(S;w?)

N⊕i,t−1

≤ |V |

√√√√√∑
j∈S

∑
i∈V,

N⊕i,t−1>0

di
δ(t)pi({j};w?)

N⊕i,t−1

≤ |V |

√√√√δ(t)
∑
j∈S
|E|
(

8

N	j,t−1
∧ 1

)
,

where the last inequality only holds under some high proba-
bility event, given by the following Proposition 3, involving
counters on the costs and counters on the weights.

Proposition 3. Consider the event defined by Pt ,
{∀i ∈ V,N⊕i,t−1 ≥ δ(t)}. Then, for all i, j ∈ V ,

P
[
Pt and

δ(t)pi({j};w?)

N⊕i,t−1
>

8δ(t)

N	j,t−1

]
≤ 1/t2.

We thus define for S ⊂ V ,

Bonus5(S) , |V |

√√√√δ(t)
∑
j∈S
|E|
(

8

N	j,t−1
∧ 1

)
·

This bonus is much more convenient since it does not de-
pend anymore on w?, and can thus be computed by the
agent. Indeed, although the first four bonuses are likely to
be tighter than this last submodular Bonus5, their depen-
dence in w forces us to use them for w = wt−1. Even
if this doesn’t pose any problem in practice, this is more
difficult to handle in theory since it would involve optimistic
estimates on pi( · ;wt−1) itself (see the next section for
further details). Actually, we will see that the analysis with
Bonus5 is slightly better than the one we would get with
Bonus2, since we loose a factor |V | log2(|V |)/ log2(|E|)
compared to the use of Bonus. In addition, it allows a much
more interesting constant term in the regret upper bound
thanks to the suppression of the dependence in w?.

Although we can improve the analysis based on Fact 1 and 2,
the inequality in this last fact may be be less rough in prac-
tice (we confirm this in section 7). In that case, we suffer
from this roughness, since we actually use Fact 2 to de-
sign our bonus. In contrast, BOIM-CUCB only uses it in
the analysis, and can therefore adapt to a better smoothness
inequality. Thus, we consider BOIM-CUCB5, where we first
compute St using the BOIM-CUCB approach, and accept it
only if

σ(St;wt) ≤ σ(St;wt−1) + Bonus5(St), (10)

otherwise, we chose St maximizing σ(S;wt−1) +
Bonus5(S). For technical reason (due to Proposition 3),
we replace St by St ∪ {j} if it exists a j ∈ V , such that

N⊕j,t−1 < δ(t). (11)

We thus both enjoy the theoretical advantages of Bonus5

and the practical advantages of BOIM-CUCB. We give the
following regret bounds for this approach.
Theorem 2. If π is the policy following BOIM-CUCB5, then

RB,ε(π)=O

(
logB

(∑
i∈V
|V |λ

?+|V ||E| log2|V |
∆i,min

+λ?|V |2
))
.

A proof of Theorem 2 can be found in Appendix E. Such
analysis also holds in the non-budgeted setting, and maxi-
mizing the spread only instead of the ratio, we can build a
policy π satisfying the following (with the standard defini-
tion of the non-budgeted gaps):

RT,ε(π) = O

(
log T

∑
i∈V

|V |2|E| log2 |V |
∆i,min

)
.

The regret rate is thus better than the one from Wang and
Chen (2017), gaining a factor |E|/

(
|V | log2(|V |)

)
.
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5. Improvements using Bonus1 and Bonus4
In this section, we show that the use of Bonus1 and Bonus4

leads to a better regret leading term, at the cost of a large sec-
ond order term. In the following, we propose BOIM-CUCB1

(resp. BOIM-CUCB4), that are the same approach as BOIM-
CUCB5 with Bonus1( · ;wt−1) (resp. Bonus4( · ;wt−1))
instead of Bonus5, and where condition (11) is replaced by

∃j ∈ V,N⊕j,t−1 ≤ |E|δ(t).

5.1. Bonus1 for low cardinality seed sets

In many real world scenarios, maximal cardinality of seed
set is small compared to |V |. Indeed, in the non-budgeted
setting, it is limited by m, and it is usually assumed that m
is much smaller than |V |. In the budgeted setting, we will
see in section 6 how to limit the cost of the chosen seeds,
and this is likely to also induce a limit on the cardinality
of seeds. Using Bonus1 is more appropriate in this situa-
tion, according to the approximation factor (9). We state in
Theorem 3 the regret bound for BOIM-CUCB1.

Theorem 3. If π is the policy BOIM-CUCB1, and if all seeds
selected have a cardinality bounded by m, then we have

RB,ε(π) = O

(
logB

(∑
i∈V

m
λ? +m|V |2di log2(|E|)

∆i,min

+λ?|V |2|E|

))
.

A proof can be found in Appendix F. As previously, we
can state the following non-budgeted version, with seed set
cardinality constrained by m:

RT,ε(π)=O

(
log T

(∑
i∈V

m2|V |2di log2(|E|)
∆i,min

+|E||V |2
))
.

Notice, for both settings, there is an improvement in the
main term (the gap dependent one), in the case m ≤

√
|V |.

However, there is also a higher gap independent term that
appears.

5.2. Bonus4: the same performance as Bonus?

We show here that the regret with Bonus4 is of the same
order as what we would have had with Bonus (which is not
submodular). However, Bonus4 does not have the calcula-
tion guarantees of the other bonuses. We state in Theorem 4
the regret bound for the policy BOIM-CUCB4. Notice that
we obtain a bound whose leading term improves by a factor
|E|/ log2|E| that of BOIM-CUCB.

Theorem 4. If π is the policy BOIM-CUCB4, then we have

RB,ε(π) = O

(
logB

(∑
i∈V

|V |λ? + |V |2di log2(|E|)
∆i,min

+λ?|V |2|E|

))
.

The proof is given in in Appendix J. As previously, we can
state the following non-budgeted version. Notice that the
cardinality constrain does not appear in the bound.

RT,ε(π)=O

(
log T

(∑
i∈V

|V |2di log2(|E|)
∆i,min

+|E||V |2
))
.

In spite of the superiority in terms of regret of the use of
Bonus4, we must point out that, in the worst case, the calcu-
lation of this bonus may require a number of sample (and
thus a time complexity) polynomial in t, which does not
meet the criterion of efficiency that we set ourselves at the
beginning of the paper.

6. Knapsack constraint for known costs
In their setting, Wang et al. (2020) considered the relaxed
constraint

E
[
eS∪{0}c

?
]
≤ b, (12)

instead of ratio maximization, where the expectation is over
the possible randomness of S. When true costs are known to
the agent, we can actually combine the two settings: a seed
set S can be chosen only if it satisfies (12). In this section,
we describe modifications this new setting implies. First of
all, the regret definition is impacted, and F ?B is now maximal
for policies respecting the constraint (12) within each round.
Naturally, the definitions of λ? and S? are also modified
accordingly. Otherwise, apart from Algorithm 2, there is
conceptually no change in the approaches that have been
described in this paper. We now described the modification
needed to make Algorithm 2 works in this setting. The same
sequence of set Sk is considered, but instead of choosing
the set that maximizes the ratio over all k ∈ {0, . . . , |V |},
we restrict the maximization to k ∈ {0, . . . , j}, where j is
the first index such that eT

Sj∪{0}c
? > b. If this maximizer is

not Sj , then it satisfies the constraint and is output. Else, we
output Sj with probability (b− eT

Sj−1∪{0}c
?)/c?j and Sj−1

with probability 1− (b− eT

Sj−1∪{0}c
?)/c?j . This way, the

expected cost of the output is b. We prove in Appendix K
the following Proposition 4, giving an approximation factor
of 1− 1/e for the above modification of Algorithm 2.
Proposition 4. The solution S obtained by the modified
Algorithm 2 is such that:(

1− e−1
) E[σ(S?)]

E
[
eT

S?∪{0}c
?
] ≤ E[σ(S)]

E
[
eT

S∪{0}c
?
] ,

where the expectation is over the possible randomness of
S, S?.
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7. Experiments

Figure 1. Regret curves with respect to the budget B (expectation
computed by averaging over 10 independent simulations).

In this section, we present an experiment for Budgeted
OIM. In Figure 1, we plot E

[∑τB−1
t=1 ∆(St)

]
with respect

to the budget B used, running over up to T = 10000
rounds. This quantity is a good approximations to the true
regret according to Proposition 1. Plotting the true regret
would require to compute F ?B , which is NP-Hard to do.
We consider a subgraph of Facebook network (Leskovec
and Krevl, 2014), with |V | = 333 and |E| = 5038,
as in Wen et al. (2017). We take w? ∼ U(0, 0.1)

⊗E

and take deterministic, known costs with c?0 = 1, and
c?i = di/maxj∈V dj . BOIM-CUCB+ is the same approach
as BOIM-CUCB5 with Bonus( · ;wt−1) instead of Bonus5,
ignoring that Bonus( · ;wt−1) is not submodular (it is only
sub-additive).

We observed that in BOIM-CUCB1, BOIM-CUCB4, BOIM-
CUCB5, Condition 10 (with the correct bonus instead of
Bonus5) always holds, meaning that those algorithms coin-
cide with BOIM-CUCB in practice, and that the gain only
appears through the analysis. We thus plot a single curve
for these 4 algorithms in Figure 1. On the other hand, we
observe only a slight gain of BOIM-CUCB+ compared to
BOIM-CUCB.

Our experiments confirm that Fact 2 is less rough in practice,
as we already anticipated. Indeed, our submodular bonuses
are not tight enough to compete with BOIM-CUCB, although
we gain in the analysis. The slight gain that we have for
BOIM-CUCB+ suggests that the issue is not only about the
tightness of a submodular upper bound, but rather about the
tightness of Fact 2. This is supported by the following ob-
servation we made: for the Facebook subnetwork, for 1000

random draws of a seed set and vector pairs in [0, 0.1]E , the
ratio of the RHS and the LHS in Fact 2 is each time greater
than 0.4|V |.

In Appendix I, we conducted further experiments on a
synthetic graph comparing BOIM-CUCB to BOIM-CUCB-
REGULARIZED, which greedily maximizes the regularized
spread S 7→ σ(S;wt) − λeSct, where λ is a parameter
to set. We observed that for an appropriate choice of λ, a
performance similar to BOIM-CUCB can be obtained.

8. Discussion and Future work
We introduced a new Budgeted OIM problem, taking both
the costs of influencers and fixed costs into account in the
seed selection, instead of the usual cardinality constraint.
This better represents the current challenges in viral market-
ing, since top influencers tend to be more and more costly.
Our fixed cost can also be seen as the time that a round takes:
A null fixed cost would mean that reloading the network to
get a new independent instance is free and instantaneous.7

Obviously, this is not realistic. We also provided an algo-
rithm for Budgeted OIM under the IC model and the edge
level semi-bandit feedback setting.

Interesting future directions of research would be to explore
other kinds of feedback or diffusion models for Budgeted
OIM. For practical scalability, it would also be good to
investigate the incorporation of the linear generalization
framework (Wen et al., 2017) into Budgeted OIM. Notice,
this extension is not straightforward if we want to keep our
tighter confidence region. More precisely, we believe that a
linear semi-bandit approach that is aware of independence
between edge observations should be developed (the linear
generalization approach of Wen et al. (2017) treats each
edge observation as arbitrary correlated).

In addition to this, exploring how the use of Fact 2 in the Al-
gorithm might be avoided while still using confidence region
given by Fact 1 would surely improve the algorithms. One
possible way would be to use a Thompson Sampling (TS)
approach (Wang and Chen, 2018; Perrault et al., 2020a),
where the prior takes into account the mutual independence
of weights. However, Wang and Chen (2018) proved in
their Theorem 2 that TS gives linear approximation regret
for some special approximation algorithms. Thus, we would
have to use some specific property of the GREEDY approxi-
mation algorithm we use.

7In this case, using |S| rounds choosing each time a single
different influencer i ∈ S is better than choosing the whole S in a
single round.
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mizing the spread of influence through a social network.
In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 137–146. ACM.

Khuller, S., Moss, A., and Naor, J. S. (1999). The budgeted
maximum coverage problem. Information processing
letters, 70(1):39–45.

Krause, A. and Guestrin, C. (2005). A Note on the Bud-
geted Maximization of Submodular Functions. Technical
Report June, CMU.



Budgeted Online Influence Maximization

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Falout-
sos, C., VanBriesen, J., and Glance, N. (2007). Cost-
effective outbreak detection in networks. In Proceedings
of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’07, pages
420–429, New York, NY, USA. ACM.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data.

Lugosi, G., Neu, G., and Olkhovskaya, J. (2019). Online
influence maximization with local observations. In Pro-
ceedings of the 30th International Conference on Algo-
rithmic Learning Theory, volume 98 of Proceedings of
Machine Learning Research, pages 557–580, Chicago,
Illinois. PMLR.

Magureanu, S., Combes, R., and Proutiere, A. (2014). Lips-
chitz bandits: Regret lower bound and optimal algorithms.
In Proceedings of The 27th Conference on Learning The-
ory, volume 35 of Proceedings of Machine Learning
Research, pages 975–999, Barcelona, Spain. PMLR.

Minoux, M. (1978). Accelerated greedy algorithms for max-
imizing submodular set functions. Optimization Tech-
niques, pages 234–243.

Mitzenmacher, M. and Upfal, E. (2017). Probability and
computing: randomization and probabilistic techniques
in algorithms and data analysis. Cambridge university
press.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978).
An analysis of approximations for maximizing sub-
modular set functions-I. Mathematical Programming,
14(1):265–294.

Netrapalli, P. and Sanghavi, S. (2012). Learning the graph
of epidemic cascades. SIGMETRICS Perform. Eval. Rev.,
40(1):211–222.

Nguyen, H. and Zheng, R. (2013). On budgeted influence
maximization in social networks. IEEE Journal on Se-
lected Areas in Communications, 31(6):1084–1094.

Perrault, P., Boursier, E., Perchet, V., and Valko, M. (2020a).
Statistical efficiency of thompson sampling for combina-
torial semi-bandits. arXiv preprint arXiv:2006.06613.

Perrault, P., Perchet, V., and Valko, M. (2019a). Exploiting
structure of uncertainty for efficient matroid semi-bandits.
In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5123–5132, Long Beach,
California, USA. PMLR.

Perrault, P., Perchet, V., and Valko, M. (2019b). Finding
the bandit in a graph: Sequential search-and-stop. In
Proceedings of Machine Learning Research, volume 89
of Proceedings of Machine Learning Research, pages
1668–1677. PMLR.

Perrault, P., Perchet, V., and Valko, M. (2020b). Covariance-
adapting algorithm for semi-bandits with application to
sparse outcomes. Proceedings of Machine Learning Re-
search, 125:1–33.

Saito, K., Nakano, R., and Kimura, M. (2008). Prediction
of information diffusion probabilities for independent
cascade model. In Knowledge-Based Intelligent Infor-
mation and Engineering Systems, pages 67–75, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Streeter, M. and Golovin, D. (2009). An online algorithm for
maximizing submodular functions. In Advances in Neural
Information Processing Systems, pages 1577–1584.

Tang, Y., Shi, Y., and Xiao, X. (2015). Influence maximiza-
tion in near-linear time: A martingale approach. In Pro-
ceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’15, pages
1539–1554, New York, NY, USA. ACM.

Tang, Y., Xiao, X., and Shi, Y. (2014). Influence maxi-
mization: Near-optimal time complexity meets practical
efficiency. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages
75–86. ACM.

Vaswani, S., Kveton, B., Wen, Z., Ghavamzadeh, M.,
Lakshmanan, L. V., and Schmidt, M. (2017). Model-
independent online learning for influence maximization.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3530–3539. JMLR.
org.

Vaswani, S., Lakshmanan, L. V. S., and Mark Schmidt
(2015). Influence maximization with bandits. In NIPS
workshop on Networks in the Social and Information
Sciences 2015.

Wang, Q. and Chen, W. (2017). Improving regret bounds
for combinatorial semi-bandits with probabilistically trig-
gered arms and its applications. In Neural Information
Processing Systems.

Wang, S. and Chen, W. (2018). Thompson Sampling for
Combinatorial Semi-Bandits.

Wang, S., Yang, S., Xu, Z., and Truong, V.-A. (2020). Fast
thompson sampling algorithm with cumulative oversam-
pling: Application to budgeted influence maximization.
arXiv preprint arXiv:2004.11963.

http://snap.stanford.edu/data
http://snap.stanford.edu/data


Budgeted Online Influence Maximization

Wen, Z., Kveton, B., Valko, M., and Vaswani, S. (2017). On-
line influence maximization under independent cascade
model with semi-bandit feedback. In Neural Information
Processing Systems.

Xia, Y., Qin, T., Ma, W., Yu, N., and Liu, T.-Y. (2016). Bud-
geted multi-armed bandits with multiple plays. In Pro-
ceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, pages 2210–2216. AAAI
Press.



Budgeted Online Influence Maximization

A. Proof of Proposition 1
Proof. Let α = 1− 1/e− ε. In the proof, we shall consider several policies π one after the other. In each case, we will
denote by St the seed selected by π at round t, and τB the random round where π has exhausted its budget. We denote
(Ht)t≥1 the filtration corresponding to (Wt,Ct)t≥1. Recall that St and Bt−1 are both measurable with respect toHt−1.

Consider first the policy π that selects St = S? ∈ arg maxS⊂V E[σ(S;W)]E
[
eT

S∪{0}C
]−1

at each round t ≥ 1. We can
write

F ?B + |V | ≥ F ?B + E[σ(S?;W)]

≥ FB(π) + E[σ(S?;W)] definition of F ?B

=
∑
t≥1

E[σ(S?;Wt)I{Bt−1 ≥ 0}]

=
∑
t≥1

E[E[σ(S?;W)]I{Bt−1 ≥ 0}] conditioning onHt−1

= λ?
∑
t≥1

E
[
E
[
eT

S?∪{0}C
]
I{Bt−1 ≥ 0}

]
= λ?

∑
t≥1

E[(C0,t + eT

S?Ct)I{Bt−1 ≥ 0}] conditioning onHt−1

≥ λ?B definition of τB .

We can use the inequality

F ?B + |V | ≥ λ?B (13)

with any policy π in the following ways:

• First, we can bound the cost part in the cumulative gap:

αλ?E

[
τB−1∑
t=1

E
[
eT

St∪{0}C
]]
≤ αλ?

∑
t≥1

E
[
E
[
eT

St∪{0}C
]
I{Bt−1 ≥ 0}

]
Bt ≥ 0⇒ Bt−1 ≥ 0

= αλ?
∑
t≥1

E
[(
eT

StCt + C0,t

)
I{Bt−1 ≥ 0}

]
conditioning onHt−1

≤ αλ?B + αλ?(1 + |V |) definition of τB ,
≤ αF ?B + α|V |+ αλ?(1 + |V |) inequality (13).

• Next, we can bound the reward part:

E

[
τB−1∑
t=1

E[σ(St;W)]

]
≥ E

[
τB∑
t=1

E[σ(St;W)]

]
− |V |

=
∑
t≥1

E[E[σ(St;W)]I{Bt−1 ≥ 0}]− |V |

=
∑
t≥1

E[σ(St;Wt)I{Bt−1 ≥ 0}]− |V | conditioning onHt−1

≥
∑
t≥1

E[σ(St;Wt)I{Bt ≥ 0}]− |V | Bt ≥ 0⇒ Bt−1 ≥ 0

= FB(π)− |V |.

Adding these two inequalities, we get the following upper bound on the cumulative gap:

E

[
τB−1∑
t=1

∆(St)

]
= αλ?E

[
τB−1∑
t=1

E
[
eT

St∪{0}C
]]
− E

[
τB−1∑
t=1

E[σ(St;W)]

]
≤ RB,ε(π) + (α+ 1)|V |+ αλ?(1 + |V |).
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In the same way, we can derive a lower bound on E
[∑τB−1

t=1 ∆(St)
]
, considering first the policy π such that FB(π) = F ?B :

F ?B =
∑
t≥1

E[σ(St;Wt)I{Bt ≥ 0}]

≤
∑
t≥1

E[σ(St;Wt)I{Bt−1 ≥ 0}] Bt ≥ 0⇒ Bt−1 ≥ 0

=
∑
t≥1

E[E[σ(St;W)]I{Bt−1 ≥ 0}] conditioning onHt−1

≤
∑
t≥1

E
[
λ?E

[
eT

St∪{0}C
]
I{Bt−1 ≥ 0}

]
definition of λ?

= λ?E

[
τB∑
t=1

(
C0,t + eT

StCt

)]
conditioning onHt−1

≤ λ?(B + 1 + |V |) definition of τB .

i.e.,

F ?B − λ?(1 + |V |) ≤ λ?B. (14)

Considering any policy π:

αλ?E

[
τB−1∑
t=1

E
[
eT

St∪{0}C
]]
≥ αλ?

∑
t≥1

E
[
E
[
eT

St∪{0}C
]
I{Bt−1 ≥ 1 + |V |}

]
Bt−1 ≥ 1 + |V | ⇒ Bt ≥ 0

= αλ?
∑
t≥1

E
[(
eT

StCt + C0,t

)
I{Bt−1 ≥ 1 + |V |}

]
conditioning onHt−1

≥ αλ?B − αλ?(1 + |V |) definition of τB .
≥ αF ?B − 2αλ?(1 + |V |) inequality (14),

and

E

[
τB−1∑
t=1

E[σ(St;W)]

]
≤ E

[
τB∑
t=1

E[σ(St;W)]

]
=
∑
t≥1

E[E[σ(St;W)]I{Bt−1 ≥ 0}]

=
∑
t≥1

E[σ(St;Wt)I{Bt−1 ≥ 0}] conditioning onHt−1

≤
∑
t≥1

E[σ(St;Wt)I{Bt ≥ 0}] + |V |

= FB(π) + |V |.

Again adding these two inequalities, we get the desired lower bound:

E

[
τB−1∑
t=1

∆(St)

]
= αλ?E

[
τB−1∑
t=1

E
[
eT

St∪{0}C
]]
− E

[
τB−1∑
t=1

E[σ(St;W)]

]
≥ RB,ε(π)− 2αλ?(1 + |V |)− |V |.
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B. Proof of Theorem 1
Proof. Let α = 1− 1/e− ε, and t ≥ 1. From Proposition 1, we have to upper bound

E

[
τB−1∑
t=1

∆(St)

]
.

Fix t ≥ 1. We consider the following events:

Wt ,

{
∀ij ∈ E, 0 ≤ w?ij − wij,t ≤ 2

√
1.5 log(t)

N⊕ij,t−1

}
,

Ct ,

{
∀i ∈ V ∪ {0}, 0 ≤ c?i − ci,t ≤ 2

√
1.5 log(t)

N	i,t−1

}
.

We also consider the event At under which the α−approximation in Algorithm 1 holds. We already saw that

P[¬At] ≤
1

t log2(t)
·

From Hoeffding inequality, Ct doesn’t hold with probability bounded by 2(|V |+ 1)/t2, and Wt doesn’t hold with probability
bounded by 2|E|/t2. Thus, under the event that either Ct, Wt or At doesn’t hold, then the regret is bounded by a constant
(since we have a convergent series).

We thus now assume that Ct, Wt and At hold. In particular, using Ct and Wt, we can write

λ? =
σ(S?;w?)

eT

S?∪{0}c
?
≤ σ(S?;wt)

eT

S?∪{0}ct
·

We can use this relation to write

∆(St) = λ?α
(
eT

Stc
? + c?0

)
− σ(St;w

?)

= λ?α

((
eT

Stc
? + c?0

)
− σ(St;wt)

αλ?

)
+ (σ(St;wt)− σ(St;w

?))

≤ λ?α
((

eT

Stc
? + c?0

)
− σ(St;wt)

ασ(S?;wt)
(eT

S?ct + c0,t)

)
+ (σ(St;wt)− σ(St;w

?))

≤ λ?α
((
eT

Stc
? + c?0

)
−
(
eT

Stct + c0,t
))

+ (σ(St;wt)− σ(St;w
?)),

where the last inequality is from At. Notice here that in the case the costs are known, the first term in this bound disappears,
and we can then safely take λ? =0, explaining why in the final bound the term in front of λ? disappears. We now use Fact 2,
and then Ct, Wt to further get the bound

∆(St) ≤ λ?α
∑
i∈St

(
1 ∧ 2

√
1.5 log(t)

N	i,t−1

)
︸ ︷︷ ︸

(15)

+ |V |
∑
ij∈E

pi(St;w
?)

(
1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1

)
︸ ︷︷ ︸

(16)

·

Then, necessarily either ∆(St) ≤ 2 · (15) or ∆(St) ≤ 2 · (16) is true. The first event can be handle exactly as in standard
combinatorial semi bandit settings, using the following upper bound on the expectation of the random horizon (Perrault
et al., 2019b):

E[τB − 1] ≤ (2B/c?0 + 1)
2
.

This allows us to get a term of order

λ? log(B/c?0)
∑
i∈V

|V |
∆i,min

,
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in the regret upper bound.

For the second event, the analysis of (Wang and Chen, 2017) uses triggering probability group to deal with pi(St;w?).
We propose here another method, simpler, that allows us to transform the factor |E|, present in the bound of (Wang and
Chen, 2017), into maxS⊂V

∑
i∈V dipi(S;w?), a potentially much smaller quantity. More precisely, we first use a reverse

amortisation:

∆(St) ≤ −∆(St) + 4 · (16) = 4|V |
∑
ij∈E

pi(St;w
?)

(
1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1
− ∆(St)

4|V |
∑
k∈V dkpk(St;w?)

)

≤ 4|V |
∑
ij∈E

pi(St;w
?)I

{
N⊕ij,t−1 ≤ 1.5 log(t)

(
8|V |

∑
k∈V dkpk(St;w

?)

∆(St)

)2
}(

1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1

)
.

Since we have

E

[
τB−1∑
t=1

∆(St)

]
≤ E

[
τB∑
t=1

E[∆(St)|Ht−1]

]
,

and that

E

[
pi(St;w

?)I

{
N⊕ij,t−1 ≤ 1.5 log(t)

(
8|V |

∑
k∈V dkpk(St;w

?)

∆(St)

)2
}(

1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1

)∣∣∣∣∣Ht−1

]
equals

E

[
I
{
St

w?

 i
}
I

{
N⊕ij,t−1 ≤ 1.5 log(t)

(
8|V |

∑
k∈V dkpk(St;w

?)

∆(St)

)2
}(

1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1

)∣∣∣∣∣Ht−1

]
,

it is sufficient to bound the quantity

τB∑
t=1

4|V |
∑

ij∈E, pi(St;w?)>0

I
{
St

w?

 i
}
I

{
N⊕ij,t−1 ≤ 1.5 log(t)

(
8|V |

∑
k∈V dkpk(St;w

?)

∆(St)

)2
}(

1 ∧ 2

√
1.5 log(t)

N⊕ij,t−1

)
·

Therefore, counters N⊕ij,t−1 are ensured to increase thanks to the event
{
St

w?

 i
}

. We can now handle this exactly as in
standard combinatorial semi bandit setting, to get a bound of order

log(B/c?0)
∑
i∈V

di
|V |2 maxS⊂V, pi(S;w?)>0

∑
k∈V dkpk(S;w?)

∆i,min
.

Problem-independent bound The problem-independent bound of O
(
|V |
√
B logB

∑
i∈V dipi,max

)
is an immediate

consequence of our problem-dependent bound, decomposing, classically, the regret in two terms by filtering by whether or
not ∆(St) ≤ δ, and then taking the worst regime for δ.

C. Proof of Proposition 3
Proof. First, notice that we trivially have

P
[
Pt and pi({j};w?) ≤ 8δ(t)

N	j,t−1
and

δ(t)pi({j};w?)

N⊕i,t−1
>

8δ(t)

N	j,t−1

]
= 0.

Thus, let’s prove that

P
[
Pt and pi({j};w?) >

8δ(t)

N	j,t−1
and

δ(t)pi({j};w?)

N⊕i,t−1
>

8δ(t)

N	j,t−1

]
≤ 1/t2.
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We define another counter for (i, j) ∈ V 2 as follows:

Ni,j,t−1 ,
t−1∑
t′=1

I
{
j ∈ St′ , {j}

Wt′ i

}
.

Note that we have Ni,j,t−1 ≤ (N⊕i,t−1 ∧N	j,t−1). We can thus remove Pt and replace N⊕i,t−1 by Ni,j,t−1, since this can
only increases the probability. By an union bound we have,

P
[
pi({j};w?) >

8δ(t)

N	j,t−1
and

pi({j};w?)

Ni,j,t−1
>

8

N	j,t−1

]
≤

∑
t′>

8δ(t)
pi({j};w?)

P
[
N	j,t−1 = t′,

t′pi({j};w?)

8
> Ni,j,t−1

]
.

Since the random variables I
{
{j}Wt′′ i

}
are bernouillies of mean pi({j};w?), we can apply the Fact 3 to get

P
[
N	j,t−1 = t′,

t′pi({j};w?)

8
> Ni,j,t−1

]
≤ exp

(
−(7/8)

2
8δ(t)/2

)
< 1/t3.

By taking t′ over {0, . . . , t− 1}, the proposition holds.

Fact 3 (Multiplicative Chernoff Bound (Mitzenmacher and Upfal, 2017)). Let X1, . . . , Xt be Bernoulli random variables,
of parameter µ, then for Y = X1 + · · ·+Xt, we have with δ ∈ (0, 1),

P[Y ≤ (1− δ)tµ] ≤ e−δ
2tµ/2.

D. Proof of Proposition 2
Proof. In the proof, we use the notation σ(i|S) , σ({i} ∪ S)− σ(S). For any k ∈ [|V |],

σ(S?)− σ(Sk−1) ≤
∑

i∈S?\Sk−1

σ(i|Sk−1) Submodularity, monotonicity of σ

≤ σ(ik|Sk−1)

cik

∑
i∈S?\Sk−1

ci Algorithm 2

≤ σ(ik|Sk−1)

cik

∑
i∈S?

ci.

i.e., for all k ∈ [|V |] such that σ(S?)− σ(Sk−1) ≥ 0,

cik
eT

S?c
≤ σ(ik|Sk−1)

σ(S?)− σ(Sk−1)
· (17)

There must be an index ` ∈ {0, 1, . . . , |V | − 1} such that eT

S`
c ≤ eT

S?c ≤ eT

S`+1
c. Let β ∈ [0, 1] be such that

eT

S?c = (1− β)eT

S`
c + βeT

S`+1
c. (18)

If σ(S?)− (1− β)σ(S`)− βσ(S`+1) ≤ 0, then we have

(
1− e−1

)σ(S?)

eT

S?c
≤ σ(S?)

eT

S?c
≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT

S`
c + βeT

S`+1
c
·

Else,

σ(S?)− (1− β)σ(S`)− βσ(S`+1) > 0 and σ(S?)− σ(Sk) > 0 for all k ∈ [`], (19)
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so we can write the following,

σ(S?)− (1− β)σ(S`)− βσ(S`+1)

σ(S?)
≤ σ(S?)− (1− β)σ(S`)− βσ(S`+1)

σ(S?|∅)

=
σ(S?)− σ(S`)− βσ(i`+1|S`)

σ(S?)− σ(S`)

∏
k∈[`]

σ(S?)− σ(Sk)

σ(S?)− σ(Sk−1)

=

(
1− βσ(i`+1|S`)

σ(S?)− σ(S`)

) ∏
k∈[`]

(
1− σ(ik|Sk−1)

σ(S?)− σ(Sk−1)

)

≤
(

1−
βci`+1

eT

S?c

) ∏
k∈[`]

(
1− cik

eT

S?c

)
(17) and (19)

≤ exp

(
−
βci`+1

+
∑
k∈[`] c(ik)

eT

S?c

)
1− x ≤ e−x

= exp

(
−

(1− β)eT

S`
c + βeT

S`+1
c

eT

S?c

)
= e−1. (18)

Rearranging the inequality, we obtain the following:(
1− e−1

)
σ(S?) ≤ (1− β)σ(S`) + βσ(S`+1). (20)

i.e., (
1− e−1

) σ(S?)

eT

S?∪{0}c
≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT

S`∪{0}c + βeT

S`+1∪{0}c
·

The output S of Algorithm 2 maximizes the ratio of σ(Sk)/eT

Sk∪{0}c over k. Thus,

max
k≤`+1

σ(Sk)

eT

Sk∪{0}c
≤ σ(S)

eT

S∪{0}c
·

We end the proof remarking that

max
k∈{`,`+1}

σ(Sk)

eT

Sk∪{0}c
≥ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT

S`∪{0}c + βeT

S`+1∪{0}c
·

E. Proof of Theorem 2
Proof. Let α = 1− 1/e− ε, and t ≥ 1. From Proposition 1, we have to upper bound

E

[
τB−1∑
t=1

∆(St)

]
.

In the proof, in addition to Pt , {∀i ∈ V,N⊕i,t−1 ≥ δ(t)}, we consider the following events:

Wt ,

∑
ij∈E

N⊕i,t−1

(
w?ij − wij,t−1

)2 ≤ 2δ(t)

,
Ct ,

{
∀i ∈ V ∪ {0}, 0 ≤ c?i − ci,t ≤ 1 ∧ 2

√
1.5 log(t)

N	i,t−1

}
.

Bt ,

{
∀i, j ∈ V, δ(t)pi({j};w

?)

N⊕i,t−1
≤ 8δ(t)

N	j,t−1

}
.
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As previously, we have the following upper bound on the expectation of the random horizon:

E[τB − 1] ≤ (2B/c?0 + 1)
2
.

For each node i ∈ V, if N⊕i,t−1 ≥ δ(τB − 1), then i will not be intentionally added to the seed set in BOIM-CUCB5. Then,
each node is intentionally added for at most δ(τB − 1) + 1 times. Thus, we can write

E

[
τB−1∑
t=1

∆(St)I{¬Pt}

]
≤ E[(δ(τB − 1) + 1)|V |λ?(|V |+ 1)] ≤

(
δ
(

(2B/c?0 + 1)
2
)

+ 1
)
|V |λ?(|V |+ 1).

We can therefore assume that Pt holds. In this case, we have by Proposition 3 that Bt doesn’t hold with probability
bounded by |V |2/t2. On the other hand, from Fact 1, Wt doesn’t hold with probability bounded by 1/

(
t log2(t)

)
, and

from Hoeffding inequality, Ct doesn’t hold with probability bounded by 2(|V |+ 1)/t2. We can consider the event At under
which the α−approximation in BOIM-CUCB5 holds. We already saw that

P[¬At] ≤
1

t log2(t)
·

The regret in the case one of the events ¬At,¬Bt,¬Wt,¬Ct holds is thus bounded by a constant depending on |V | and λ?.
It thus remains to upper bound

E

[
τB−1∑
t=1

∆(St)I{At,Bt,Wt,Ct}

]
.

For this, notice that from At, St which is the seed set chosen by our policy at round t, is an α-approximate maximizer of
A 7→ f(A)/(eT

Act + c0,t), where f is one of the optimistic spreads considered in BOIM-CUCB5. We thus have

f(St)

eT

St
ct + c0,t

≥ α f(S?)

eT

S?ct + c0,t
,

where S? ∈ arg maxS⊂V
σ(S;w?)

eT
Sc
?+c?0
· Since under Wt, f(S?) ≥ σ(S?;w?), we can derive the following upper bound on the

gap:

∆(St) = λ?α
(
eT

Stc
? + c?0

)
− σ(St;w

?)

= λ?α

((
eT

Stc
? + c?0

)
− f(St)

αλ?

)
+ (f(St)− σ(St;w

?))

≤ λ?α
((

eT

Stc
? + c?0

)
− f(St)

αf(S?)
(eT

S?ct + c0,t)

)
+ (f(St)− σ(St;w

?)) Wt,Ct

≤ λ?α
((
eT

Stc
? + c?0

)
−
(
eT

Stct + c0,t
))

+ (f(St)− σ(St;w
?)). At

From this point, we can use the condition satisfied by f in BOIM-CUCB5:

f(St) ≤ σ(St;wt−1) + Bonus5(St).

Using Fact 2 with Fact 1, we can further have with Cauchy-Schwartz inequality

σ(St;wt−1)− σ(St;w
?) ≤ Bonus5(St).

This allows us to get, using Ct,

∆(St) ≤ λ?α
∑

i∈St∪{0}

1 ∧ 2

√
1.5 log(t)

N	i,t−1
+ 2Bonus5(St).

Since we have N	0,t−1 = t, we can remove {0} in St ∪ {0}, by looking at the regret under the event{
2λ?α

√
1.5 log(t)/t ≤ ∆(St)/2

}
, giving

∆(St) ≤ 2λ?α
∑
i∈St

1 ∧ 2

√
1.5 log(t)

N	i,t−1
+ 4Bonus5(St). (21)
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The regret upper bound in the case this event doesn’t hold is bounded by a constant depending on the inverse of the squared
minimum gap and λ?. The first part in (21) can be handle exactly as in standard combinatorial budgeted semi bandit settings,
to get a term of order

λ? log(B/c?0)
∑
i∈V

|V |
∆i,min

,

in the regret upper bound. We can use the analysis of Degenne and Perchet (2016) to deal with the second part, to get a term
of order

δ(B/c?0)|V |2|E|
∑
i∈V

log2(|V |)
∆i,min

,

in the regret upper bound. We thus get the desired result.

F. Proof of Theorem 3
Proof. Let α = 1− 1/e− ε, and t ≥ 1. The beginning of the proof is the same as in Theorem 2, except we no longer
consider the event Bt, and we consider a new event:

Rt , {∀i ∈ V,N⊕i,t−1 ≥ |E|δ(t)}.

As for Theorem 2:

• The regret in the case Rt doesn’t hold can be bounded by a term of order

λ?|V |2|E| log(B).

• When all the events hold, the same analysis gives

∆(St) ≤ 2λ?α
∑
i∈St

1 ∧ 2

√
1.5 log(t)

N	i,t−1
+ 4Bonus1(St;wt−1),

and the first term can be handled in the same way.

The second term can be analyzed in the following way: After bounding it by 4mBonus(St;wt−1), see that using Fact 2 on
the quantity pi(S;wt−1) present in this bonus, we get

pi(St;wt−1) ≤ pi(St;w?) +
1

|V |
Bonus(St;w?).

By subadditivity, and from Rt, we have

4mBonus(St;wt−1) ≤ 4mBonus(St;w?) + 4m|V |

√√√√δ(t)
∑
i∈V

di
Bonus(St;w?)

2

|V |2N⊕i,t−1

≤ 4mBonus(St;w?) + 4m|V |

√√√√∑
i∈V

di
Bonus(St;w?)

2

|V |2|E|
= 8mBonus(St;w?).

We can now use the analysis of Degenne and Perchet (2016), together with the one from Wang and Chen (2017) to deal with
probabilistically triggered arms, to get in the regret upper bound a term of order

δ(B/c?0)m2|V |2
∑
i∈V

di
log2(|E|)

∆i,min
·
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G. SKIM for influence maximization with cost
In this section, we provide an adaptation of SKIM (Cohen et al., 2014) to our ratio maximization setting. Let (w, BONUS) =
(wt, 0) or (wt−1,Bonus5) (depending if we want to maximize the CUCB ratio or the Bonus5 based ratio), SKIM for IC with
weights w can be used (Cohen et al., 2014), but instead of taking k− 1 as the threshold for the length of the sketch of node i
(i.e. i is chosen as soon as |sketch[i]| > k − 1), we rather consider

kci −
BONUS({i} ∪ S)− BONUS(S)

|V |
sketch[i][−1],

where sketch[i][−1] is the last added rank in sketch[i] (0 if the sketch is empty), and S is the current seed set built so far.
This way, we can estimate the (non-optimistic) marginal gain spread of the chosen node i as

k|V |ci − (BONUS({i} ∪ S)− BONUS(S))sketch[i][−1]

sketch[i][−1]
·

We get the optimistic version by adding BONUS({i} ∪ S)− BONUS(S), i.e., it is k|V |ci
sketch[i][−1] · Finally, we get the ratio

marginal gain by dived by ci, giving k|V |
sketch[i][−1] . We do maximize the ratio marginal gain by doing this all procedure,

because the ranks are examined in ascending order. Notice we have to normalize costs at the beginning of the loop for
finding i, such that each of the threshold are greater than k − 1, to ensure that the length of the chosen sketch is at least k
and that our estimation hold with high probability.

It should be noted that the main difficulty is to go through the ranks in the right order while taking into account the cost. An
alternative would have been to draw classical ranks and change them at each update of the sketch of u according to the cost
of u. This procedure works for estimating the spread, but we can’t guarantee that the ranks are in the descending order of
the marginal ratio, so all the marginal ratios must be estimated before selecting the maximizer.

Adapting Lemma 4.2 from Cohen et al. (2014), we obtain that the expected total number of rank insertions at a particular
node is O

(
k log

(
|V |k cmax

cmin

))
, thus giving a global complexity of O

(
|E|k log

(
|V |k cmax

cmin

))
. We note the dependence

in cmin, which although not desired, is only logarithmic. When all the costs are equal, we recover the standard SKIM
complexity.

H. Evaluating bonuses with sketches
In this section, we give details on the bonuses evaluation. Notice that the optimistic spread

σ(S;wt−1) + Bonus2(S;wt−1) =
∑
i∈V

pi(S;wt−1)

(
1 + |V |

√
δ(t)di
N⊕i,t−1

)
(22)

is actually a weighted spread, with weights 1 + |V |
√

δ(t)di
N⊕i,t−1

· Thus, ranks used in the sketching have to be drawn from a
distribution that depends on these weights (Cohen, 2016). This can be done using the exponential or uniform distribution
(Cohen, 1997; Cohen and Kaplan, 2007). Bonus3(A) is a square root of a weighted spread, and the same as above holds.
For Bonus1(A), in addition to the above weighted consideration, with weights δ(t)di/N⊕i,t−1, we have to take care of
the squared probability pi({j};wt−1)

2. To do so, the graph is replicated in each instance of the sketching, i.e., instead of
considering combined reachability sets with a single graph per instance, we consider two independent graphs per instance,
and look at node-instance pairs satisfying the reachability on both graphs. Notice, we leverage here on the fact that we only
evaluate on sets that are singletons A = {j}. Indeed, in this case, for a node i ∈ V , the probability that A reaches i on one
instance, squared, is equal to the probability that some node in A reaches i on both instances.

I. Further experiments
In this section, we present other experiments that we conducted on a complete 10 node graph, with known costs c?0 = 1,
and for all i ∈ V , c?i is randomly drawn in (0, 1). We also chose w? ∼ U(0, 0.1)

⊗E , as in Section 7. We compare the
BOIM-CUCB algorithm to BOIM-CUCB-REGULARIZED, another algorithm that might challenge BOIM-CUCB in our setting.
BOIM-CUCB-REGULARIZED is exactly as BOIM-CUCB except that the objective that is optimized is S 7→ σ(S;wt)−λeSct,
for λ being an input parameter to the algorithm. We can see that as for BOIM-CUCB, this algorithm have the willingness to
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Figure 2. Regret curves on five different problem instances, with respect to the budget B (expectation computed by averaging over 10
independent simulations).

maximize the function σ while minimizing the cost function. The fundamental difference is on the importance given to one
or the other function, controled by λ. We use a greedy maximization in BOIM-CUCB-REGULARIZED. A greedy optimization
of the objective S 7→ σ(S;wt)− λeSct is a heuristic which, although not supported in theory, performs well in practice.

We run experiments over up to T = 10000 rounds, on five different draws for w? and c?, and 3 different values λ = 2, 3, 4.
Results are shown in Figure 2. We observe that BOIM-CUCB is in general better than BOIM-CUCB-REGULARIZED. If the
variable λ is properly chosen, performances similar to BOIM-CUCB can be obtained. This is not surprising since BOIM-CUCB
aims (but only approximatively) to select S?t ∈ arg maxS⊂V σ(S;wt)/eS∪{0}. If λ = σ(S?t ;wt)/eS?t ∪{0}ct, then we also
have that BOIM-CUCB-REGULARIZED aims at choosing S?t , since one can notice that S?t ∈ arg maxS⊂V σ(S;wt)−λeSct.

J. Proof of Theorem 4
J.1. Preliminaries

If we let pS S′(w) , P
[{
i ∈ V, S W

 i
}

= S′
]
, then another expression is

Bonus4(S;w) =
∑
S′⊃S

pS S′(w) |V |
√
δ(t)

∑
i∈S′

di
N⊕i,t−1︸ ︷︷ ︸

g(S′)

=
∑
k≥0

(
g(S′k+1)− g(S′k)

) ∑
S′ /∈{S′0,...,S′k}

pS S′(w).

where g(S) = g(S′1) ≤ g(S′2) ≤ . . . and S′0 = ∅.

Since this bonus shall be used with wt−1, we need a smoothness inequality to link pS S′(wt−1) to pS S′(w?). We prove
here the following such inequality.

Proposition 5. For all S ⊂ V , all w,w′ ∈ [0, 1]E and all collection of subsets of vertices S, we have∣∣∣∣∣∑
S′∈S

(pS S′(w)−pS S′(w′))

∣∣∣∣∣≤∑
ij∈E

pi(S;w)
∣∣w′ij−wij∣∣.

Proof. We assume w.l.o.g. that w′ ≥ w. We consider the random graph GW = (V, {ij ∈ E,Wij = 1}), where W ∼
⊗ij∈EBernoulli(wij). We build GW′ from GW by adding edges ij independently with probability

w′ij−wij
1−wij for each ij

that is not an edge in GW. Now, see that

∑
S′∈S

pS S′(w) = P
[
S

W
 S′

]
−
∑
S′ /∈S

pS S′(w),
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where S W
 S′ means S W

 i for all i ∈ S′. Thus,

0 ≤ pS S′(w′)− pS S′(w) = P
[
S

W′

 S′
]
− P

[
S

W
 S′

]
−

(∑
S′ /∈S

pS S′(w
′)−

∑
S′ /∈S

pS S′(w)

)

≤ P
[
S

W′

 S′
]
− P

[
S

W
 S′

]
= P

[
S

W′

 S′ but not S W
 S′

]
≤ P

[
There is an edge ij s.t. S W

 i, Wij = 0, and W ′ij = 1
]
.

The last inequality is by noticing that if S W′

 S′ but not S W
 S′, then there must be a edge ij accessible from S in GW′

such that Wij = 0 and W ′ij = 1. Taking the first such edge ij (watching the contagion spread from S step by step), we
see that ij must be accessible from S in GW as well (since otherwise there’s a previous accessible edge k` that verifies
Wk` = 0 and W ′k` = 1).

We have that S W
 i is independent from Wij ,W

′
ij . Since P

[
Wij = 0, and W ′ij = 1

]
= (1 − wij)

w′ij−wij
1−wij = w′ij − wij ,

we have
P
[
There is an edge ij s.t. S W

 i, Wij = 0, and W ′ij = 1
]
≤
∑
ij∈E

pi(S;w)
(
w′ij − wij

)
.

J.2. Main proof of Theorem 4

Proof. We apply a similar analysis as above. When all the events hold, the same analysis gives

∆(St) ≤ 2λ?α
∑
i∈St

1 ∧ 2

√
1.5 log(t)

N	i,t−1
+ 4Bonus4(St;wt−1),

and the first term can be handled in the same way. The second term can be analyzed in the following way: Using Proposition 5
with S = {S′ ⊂ V, S′ /∈ {S′0, . . . , S′k}}, we get

4Bonus4(St;wt−1) ≤ 4Bonus4(St;w
?) +

∑
k≥0

(
g(S′k+1)− g(S′k)

) 1

|V |
Bonus4(St;w

?)

=

(
4 +

√
δ(t)

∑
i∈V

di
N⊕i,t−1

)
Bonus4(St;w

?)

≤ 5Bonus4(St;w
?),

where the last inequality uses the event

Rt , {∀i ∈ V,N⊕i,t−1 ≥ |E|δ(t)}.

Relying on Theorem 5, we can deal with this last term and obtain a term of order

δB/c?0
∑
i∈V

|V |2di log2(|E|)
∆i,min

.

K. Proof of Proposition 4

Proof. There are two possibilities for S?: either E
[
eT

S?∪{0}c
?
]
< b, or E

[
eT

S?∪{0}c
?
]

= b. In the first case, we know that

S? is not random. Indeed, if it is not the case, then E[σ(S?)]

E
[
eT
S?∪{0}c

?
] is a convex combination of some σ(S)

eT
S∪{0}c

? for S in the
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support of the distribution of S?. Necessarily, the maximizer (over S in the support) of the ratio is such that eT

S∪{0}c
? > b,

since otherwise this maximizer contradicts the definition of S?. Therefore, increasing the coefficient of this maximizer in
the convex combination increases E

[
eT

S?∪{0}c
?
]
, which can thus be set to b. Since this also increases E[σ(S?)]

E
[
eT
S?∪{0}c

?
] , we get

a contradiction since we improved the solution S? while still satisfying the constraint.

• Consider the first case. We have as for the proof of Proposition 2, that

(
1− e−1

) σ(S?)

eT

S?∪{0}c
?
≤ (1− β)σ(S`) + βσ(S`+1)

(1− β)eT

S`∪{0}c
? + βeT

S`+1∪{0}c
?

,

where ` ∈ {0, 1, . . . , |V | − 1} is such that eT

S`
c ≤ eT

S?c ≤ eT

S`+1
c, and eT

S?∪{0}c
? = (1− β)eT

S`∪{0}c
? +

βeT

S`+1∪{0}c
?. In the case S` has a greater ratio than S`+1, it is chosen by our algorithm and has the desired

approximation. In the case S`+1 has the better ratio, it is chosen if its cost is lower than b. If its cost is greater
than b, then ` + 1 = j and the algorithm chooses S` with some probability 1 − β′ and S`+1 with probability
β′. The goal is to show that the coefficient β′ we use for S`+1 is greater than β. This must be the case since
(1− β′)eT

S`∪{0}c
? + β′eT

S`+1∪{0}c
? = b > eT

S?∪{0}c
? = (1− β)eT

S`∪{0}c
? + βeT

S`+1∪{0}c
?.

• For the second case, we let S be the output of the Algorithm 1 considered by Wang et al. (2020). We thus have from
their Theorem 1 that

(
1− e−1

)
E[σ(S?)] ≤ E[σ(S)]. Since E

[
eT

S∪{0}c
?
]

= E
[
eT

S?∪{0}c
?
]

= b, we have

(
1− e−1

) E[σ(S?)]

E
[
eT

S?∪{0}c
?
] ≤ E[σ(S)]

E
[
eT

S∪{0}c
?
] ·

If the expected cost of the output S′ of our algorithm is b, then both algorithms coincides and we have the desired result.
Else, we have that S′ maximizes the ratio over {S0, . . . , Sj}, which contains the support of S (that is {Sj−1, Sj}), so
the ratio evaluated at S′ is greater than E[σ(S)]

E
[
eT
S∪{0}c

?
] , giving again the desired result.

L. Generalities on combinatorial multi-armed bandits
In this section, i represent an “arm”, i.e., an edge in our OIM context. At is the random set of edges that are triggered at
round t. Here, the horizon T can be random. Finally, bi(St) is simply some non-negative function (for our Bonus4, this is
|V | times the square root of the out-degree) and mi is the maximum number of edges that can be reached when i is activated.
The following theorem is based on Perrault et al. (2020b), Theorem 4.

Theorem 5 (Regret bound for `2-bonus, with expectation outside the norm). For all i ∈ [n], let (αi, βi,T ) ∈ [1/2, 1)×R+.
For t ≥ 1, consider the event

At ,

∆t ≤ E

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

∣∣∣∣∣∣Ft
,

Then, if {t ≤ T} ∈ Ft, we have

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi) max

S∈S, pi(S)>0
bi(S)

1
αi E[βi,T ]ηi,

where

ηi =


32 log2(4

√
mi)∆

−1
i,min if αi = 1/2

2
2
αi

((
1− 2

1
αi
−2
)

(1− αi)∆
1−αi
αi

i,min

)−1

if 1/2 < αi < 1.
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Proof. Let t ≥ 1. With a first reverse amortisation, we start by restricting the set of possibles for At by only taking those
whose error is at least twice as large as ∆t: assuming that At holds, we have

∆t ≤ E

2

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

−∆t

∣∣∣∣∣∣Ft


≤ E

 I

∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

2bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

≥ ∆t


∥∥∥∥∥∥

∑
i∈At,Ni,t−1>0

2bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

∣∣∣∣∣∣Ft


We now define

Λ(At) ,

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

2bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

,

and have for any j ∈ At that

Λ(At) ≥
2bj(St)β

αj
j,T

N
αj
j,t

. (23)

Then, we can write:

Λ(At) = −Λ(At) +

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

4bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

= −

∥∥∥∥∥∑
i∈At

Λ(At)ei
‖eAt‖2

∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

4bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

(
4bi(St)β

αi
i,T

Nαi
i,t−1

− Λ(At)

‖eAt‖2

)+

ei

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

(
4bi(St)β

αi
i,T

Nαi
i,t−1

− Λ(At)

‖eAt‖2

)+

I

{
Λ(At) ≥

2bi(St)β
αi
i,T

Nαi
i,t−1

}
ei

∥∥∥∥∥∥
2

Using (23)

≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

I

{
2Λ(At) ≥

4bi(St)β
αi
i,T

Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
4bi(St)β

αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

.

We now consider the following partition of the set of indices:

I

{
i ∈ At, Ni,t−1 > 0, 2Λ(At) ≥

4bi(St)β
αi
i,T

Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
⊂
dlog2(‖eAt‖2)e⋃

k=0

Jk,t,

where for all integer 1 ≤ k ≤ dlog2(‖eAt‖2)e,

Jk,t ,

{
i ∈ At, Ni,t−1 > 0, 21−kΛ(At) ≥

4bi(St)β
αi
i,T

Nαi
i,t−1

≥ 2−kΛ(At)

}
.
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We bound Λ(At)
2 as

Λ(At)
2 ≤

∥∥∥∥∥∥
∑

i∈At,Ni,t−1>0

I

{
2Λ(At) ≥

4bi(St)β
αi
i,T

Nαi
i,t−1

≥ Λ(At)

‖eAt‖2

}
4bi(St)β

αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

2

=

dlog2(‖eAt‖2)e∑
k=0

∥∥∥∥∥∥
∑
i∈Jk,t

4bi(St)β
αi
i,Tei

Nαi
i,t−1

∥∥∥∥∥∥
2

2

≤
dlog2(‖eAt‖2)e∑

k=0

22−2kΛ(At)
2
∥∥eJk,t∥∥2

2
.

So there exists one integer kt such that |Jkt,t| =
∥∥eJkt,t∥∥2

2
≥ 22kt−2(1 + dlog2(‖eAt‖2)e)−1.

T∑
t=1

I{At}∆t ≤
T∑
t=1

E[ I{Λ(At) ≥ ∆t}Λ(At)|Ft]

≤
T∑
t=1

E

dlog2(‖eAt‖2)e∑
k=0

I{kt = k, Λ(At) ≥ ∆t}Λ(At)

∣∣∣∣∣∣∣Ft


≤
T∑
t=1

E

dlog2(‖eAt‖2)e∑
k=0

I{kt=k, Λ(At)≥∆t}
∑
i∈[n] I{i ∈ Jk,t}

22k−2(1+dlog2(‖eAt‖2)e)−1 Λ(At)

∣∣∣∣∣∣∣Ft


≤
T∑
t=1

n∑
i=1

E

d
log2(‖eAt‖2)e∑

k=0

I
{
i∈At, 0 < Nαi

i,t−1≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At)≥∆t

}
22k−2(1 + dlog2(‖eAt‖2)e)−1 Λ(At)

∣∣∣∣∣∣∣∣Ft
.

Taking the expectation of the above, and using {t ≤ T} ∈ Ft, we have the bound

E

[
T∑
t=1

I{At}∆t

]
≤

n∑
i=1

E

 T∑
t=1

dlog2(‖eAt‖2)e∑
k=0

I
{
i∈At, 0 < Nαi

i,t−1≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At)≥∆t

}
22k−2(1 + dlog2(‖eAt‖2)e)−1 Λ(At)



≤
n∑
i=1

dlog2(
√
mi)e∑

k=0

E

1+
⌈
log2

(√
mi

)⌉
22k−2

T∑
t=1

I

{
i∈At, 0 < Nαi

i,t−1≤
2k+2bi(St)β

αi
i,T

Λ(At)
, Λ(At)≥∆t

}
Λ(At)︸ ︷︷ ︸

(24)i,k

.

Applying Proposition 6 gives

(24)i,k ≤
maxS∈S, pi(S)>0 bi(S)

1
αi βi,T 2

k+2
αi

1− αi
∆

1−1/αi
i,min ,

So using
⌈
log2

(√
mi

)⌉
+ 1 ≤ log2

(
4
√
mi

)
, we get

E

[
T∑
t=1

I{At}∆t

]
≤
∑
i∈[n]

4 log2(4
√
mi) max

S∈S, pi(S)>0
bi(S)

1
αi E[βi,T ]ηi,
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where

ηi =


32 log2(4

√
mi)∆

−1
i,min if αi = 1/2

2
2
αi

((
1− 2

1
αi
−2
)

(1− αi)∆
1−αi
αi

i,min

)−1

if 1/2 < αi < 1.

Proposition 6. Let i ∈ [n] and fi : R+ → R+ be a non increasing function, integrable on an interval [δi,min, δi,max] ⊂ R?+.
Then for any sequence of real numbers (δt) ∈ ([δi,min, δi,max] ∪ {0})T ,

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ fi(δi,min)δi,min +

∫ δi,max

δi,min

fi(x)dx.

In particular,

• If fi(x) = βi,Tx
−1/αi , αi ∈ (0, 1) and βi,T ≥ 0, then

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ δ1−1/αi
i,min

βi,T
1− αi

− δ1−1/αi
i,max

αiβi,T
1− αi

≤ δ1−1/αi
i,min

βi,T
1− αi

.

• If fi(x) = βi,Tx
−1, βi,T ≥ 0, then

T∑
t=1

I{i ∈ At, 1 ≤ Ni,t−1 ≤ fi(δt)}δt ≤ βi,T
(

1 + log

(
δi,max

δi,min

))
.

Proof. Consider δi,max = δi,1 ≥ δi,2 ≥ · · · ≥ δi,Ki = δi,min being all possible values for δt when δt 6= 0. We define a
dummy gap δi,0 =∞ and let fi(δi,0) = 0. In (25), we look at times t where δt 6= 0 and first break the range (0, fi(δt)] of
the counter Ni,t−1 into sub intervals:

(0, fi(δt)] = (fi(δi,0), fi(δi,1)] ∪ · · · ∪ (fi(δi,kt−1), fi(δi,kt)],

where kt is the index such that δi,kt = δt. This index kt exists by assumption that the subdivision contains all possible
values for δt when δt 6= 0. Notice that in (25), we do not explicitly use kt, but instead sum over all k ∈ [Ki] and filter
against the event {δi,k ≥ δt}, which is equivalent to summing over k ∈ [kt].

T∑
t=1

I{i ∈ At, Ni,t−1 ≤ fi(δt)}δt

=

T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k), δi,k ≥ δt}δt. (25)

Over each event that Ni,t−1 belongs to the interval (fi(δi,k−1), fi(δi,k)], we upper bound the gap δt by δi,k.

(25) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k), δi,k ≥ δt}δi,k. (26)
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Then, we further upper bound the summation by adding events that Ni,t−1 belongs to the remaining intervals
(fi(δi,k−1), fi(δi,k)] for kt < k ≤ Ki, associating them to a suffered gap δi,k. This is equivalent to removing the
filtering against the event {δi,k ≥ δt}.

(26) ≤
T∑
t=1

Ki∑
k=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k)}δi,k. (27)

Now, we invert the summation over t and the one over k.

(27) =

Ki∑
k=1

T∑
t=1

I{i ∈ At, fi(δi,k−1) < Ni,t−1 ≤ fi(δi,k)}δi,k. (28)

For each k ∈ [Ki], the number of times t ∈ [T ] that the counter Ni,t−1 belongs to (fi(δi,k−1), fi(δi,k)] can be upper
bounded by the number of integers in this interval. This is due to the event {i ∈ At}, imposing that Ni,t−1 is incremented,
so Ni,t−1 cannot be worth the same integer for two different times t satisfying i ∈ At. We use the fact that for all x, y ∈ R,
x ≤ y, the number of integers in the interval (x, y] is exactly byc − bxc.

(28) ≤
Ki∑
k=1

(bfi(δi,k)c − bfi(δi,k−1)c)δi,k. (29)

We then simply expand the summation, and some terms are cancelled (remember that fi(δi,0) = 0).

(29) = bfi(δi,Ki)cδi,Ki +

Ki−1∑
k=1

bfi(δi,k)c(δi,k − δi,k+1) (30)

We use bxc ≤ x for all x ∈ R. Finally, we recognize a right Riemann sum, and use the fact that fi is non increasing to upper
bound each fi(δi,k)(δi,k − δi,k+1) by

∫ δi,k
δi,k+1

fi(x)dx, for all k ∈ [Ki − 1].

(30) ≤ fi(δi,Ki)δi,Ki +

Ki−1∑
k=1

fi(δi,k)(δi,k − δi,k+1) (31)

≤ fi(δi,Ki)δi,Ki +

∫ δi,1

δi,Ki

fi(x)dx. (32)


