Adaptive Channel Estimation based on Deep Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Adaptive Channel Estimation based on Deep Learning

Résumé

Channel state information is very critical in various applications such as physical layer security, indoor localization, and channel equalization. In this paper, we propose an adaptive channel estimation based on deep learning that assumes the signal-to-noise power ratio (SNR) knowledge at the receiver, and we show that the proposed scheme highly outperforms linear minimum mean square error based channel estimation in terms of normalized minimum square error, with similar order of online computational complexity. The proposed channel estimation scheme is also evaluated for an imperfect estimation of the SNR and showed to be robust for a high SNR estimation error.
Fichier principal
Vignette du fichier
20200709_Adaptive_Channel_Estimation_based_on_Deep_Learning_Final_Paper.pdf (375.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02895538 , version 1 (09-07-2020)

Identifiants

  • HAL Id : hal-02895538 , version 1

Citer

Abdul Karim Gizzini, Marwa Chafii, Ahmad Nimr, Gerhard Fettweis. Adaptive Channel Estimation based on Deep Learning. The 2020 IEEE 92nd Vehicular Technology Conference: VTC2020-Fall, Oct 2020, Victoria, Canada. ⟨hal-02895538⟩
256 Consultations
394 Téléchargements

Partager

More