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Abstract—Channel state information is very critical in various
applications such as physical layer security, indoor localization,
and channel equalization. In this paper, we propose an adaptive
channel estimation based on deep learning that assumes the
signal-to-noise power ratio (SNR) knowledge at the receiver,
and we show that the proposed scheme highly outperforms
linear minimum mean square error based channel estimation
in terms of normalized minimum square error, with similar
order of online computational complexity. The proposed channel
estimation scheme is also evaluated for an imperfect estimation
of the SNR and showed to be robust for a high SNR estimation
error.

Index Terms—Adaptive channel estimation; Deep learning;
Machine learning; LMMSE

I. INTRODUCTION

In wireless communications, the signal propagates between
the transmitter and the receiver in a multi-path noisy envi-
ronment. In such scenarios, link adaptation schemes such as
adaptive modulation and coding [1], and transmit power con-
trol are truly essential to maximize the throughput performance
for wireless communications, especially when the channel and
signal-to-noise ratio (SNR) changes with time.

On the other hand, accurate estimation of the channel state
information (CSI) is very relevant in several applications such
as multiple-input multiple-output (MIMO) based 5G applica-
tions [2], and CSI-based localization schemes [3], [4], where
CSI is used instead of the received signal strength indication
(RSSI) for localization purposes, since RSSI in multi-path
noisy transmissions cannot capture the information of each
single path. CSI is also used in analyzing and designing
physical layer security schemes [5], [6], due to its critical role
in determining eavesdropping knowledge. Therefore, it is very
important to accurately estimate the CSI, in order to improve
the overall performance of wireless communication systems
in such applications.

Recently, deep learning (DL) has gained great success in
the fields of computer vision, natural language processing,
among others, and has been considered for application in
wireless communications. The potential applications of DL in
physical layers are discussed in [7]. One promising application
is channel estimation. In this context, the authors in [8]
propose a DL based channel estimation scheme that uses con-
ventional estimation methods as an initial coarse estimation,
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and then a fine estimation is achieved by means of deep
neural networks (DNN). In [9], the authors present a DL-based
channel estimation receiver called ComNet, that replaces the
existing orthogonal frequency division multiplexing (OFDM)
receiver in wireless communications. The proposed scheme
consists of two blocks: (i) channel estimation, where the
least squares (LS) channel estimate is enhanced by a fully
connected neural network; (ii) signal detection, where bi-
directional long short-term memory neural network is used
to detect bits from the received signal. ComNet receiver
achieves a performance approaching the linear minimum mean
squared error (LMMSE) with less computational complexity.
The authors in [10] propose a DL-based channel estimation
scheme, by using DNN. The proposed scheme requires several
inputs to the DNN, and suffers from considerable complexity.
In [11], the authors investigate several adaptive filters used
to estimate the CSI coefficients of different MIMO-OFDM
indoor and outdoor channel models. The investigated adaptive
filters are based on least mean squares algorithm, which does
not require the exact signal statistics knowledge, and gives an
acceptable performance.

In this paper, we propose an adaptive channel estimation
scheme using DNN. Several DNNs trained offline for different
SNR values are stored in the memory of the receiver and used
depending on the estimated SNR value. The proposed scheme
outperforms both accurate and adaptive LMMSE channel es-
timation in terms of normalized mean-squared error (NMSE).
This later is also pre-calculated for different SNR values, and
achieves the same order of complexity as the proposed DNN-
based scheme.

The rest of this paper is organized as follows. The system
model as well as LMMSE channel estimation schemes are
presented in Section II. Proposed adaptive DL-based channel
estimation scheme is defined and explained in Section III.
Experimental results followed by complexity analysis for accu-
rate and imperfect SNR estimation are provided in Section IV.
Finally, Section V concludes the paper.

II. LMMSE CHANNEL ESTIMATION

This section sheds lights on the system model considered
in our study, besides the mathematical representation of both
accurate and adaptive LMMSE channel estimation schemes.
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Fig. 1. OFDM Frame Structure.

A. System Description

We consider an OFDM transmitter that employs K subcarri-
ers, and a cyclic prefix (CP) of length Kcp used to combat the
inter symbol interference between two successive transmitted
OFDM symbols. Each transmitted frame as shown in Fig. 1
consists of a preamble at the beginning, which is used for
channel estimation at the receiver, followed by I OFDM
symbols that contain the transmitted data. The input-output
relation between the transmitted and the received OFDM frame
at the receiver can be expressed as follows:

R[k, i] = H̃[k, i].S[k, i] +N [k, i], (1)

where S[k, i], H̃[k, i], R[k, i], and N [k, i] denote the trans-
mitted preamble symbol, the frequency domain channel gain,
the received preamble symbol, and the noise symbol of the
k-th sub-carrier of the i-th OFDM symbol, respectively. In
general, OFDM transmitter uses Kon active sub-carriers out of
K sub-carriers in each OFDM symbol. The other subcarriers
are used as guard subcarriers. Assuming the channel is static
during the transmission of the frame, the p-th preamble signal
can be expressed as:

r̃p = Sp.h̃p + ñp ∈ C|Kon|×1, (2)

where r̃p = R[Kon, p], Sp = diag {S[Kon, p]}, and h̃p =
H̃[Kon, p] is the frequency domain response of the channel at
the preamble that needs to be estimated at the receiver.

B. Accurate LMMSE

In general, the LMMSE channel estimation is given by:

ˆ̃
hp,LMMSE = WH

LMMSE.r̃p, (3)

where WH
LMMSE denotes the LMMSE channel estimation ma-

trix, which is expressed as:

WH
LMMSE = Rhp

(
Rhp + S−1

p RñpS
−H
p

)−1

S−1
p . (4)

Here, Rhp = E
[
h̃ph̃

H
p

]
∈ C|Kon|×|Kon|, is the channel

autocorrelation matrix. Assuming uncorrelated noise, Rñp
=

E
[
ñpñ

H
p

]
= N0KI|Kon|. Knowing that, the transmitted

preamble fulfils SH
p Sp = EpI , where Ep denotes the pream-

ble effective power, WH
LMMSE can be expressed as:

WH
LMMSE = Rhp

(
Rhp +

1

γ
I

)−1

s−1
p , γ =

Ep

KN0
. (5)

In our study, we refer to WH
LMMSE as the accurate LMMSE. In

conventional approaches, WH
LMMSE is computed online using

the estimation of Rhp and the SNR value γ.

C. Adaptive LMMSE

In adaptive LMMSE, WH
LMMSE is computed offline from the

statistical knowledge of the channel, i.e. Rhp , and for several
SNR values defined by γu. The mapping η → WH

LMMSE[u],
with:

WH
LMMSE[u] = Rhp

(
Rhp +

1

γu
I

)−1

S−1
p , (6)

is used at the receiver to decide which matrix to be used for
channel estimation. When η = ηu, the selected matrix provides
accurate LMMSE estimation. Therefore, the estimated channel
is given by:

ˆ̃
hp,u = WH

LMMSE[u]r̃p. (7)

Adaptive LMMSE is computationally less complex than accu-
rate LMMSE, as it does not need to calculate WH

LMMSE each
time the SNR changes.

III. ADAPTIVE CHANNEL ESTIMATION BASED ON DEEP
LEARNING

In this section, the DNN main principles are first presented.
After that, the concept and architecture of the proposed
adaptive DL-based channel estimation scheme are illustrated.

A. DNN Main Principles

DNNs are computational models consisting of many simple
processing units called neurons, that work in parallel and
are arranged in interconnected layers. Simple neural networks
consist of an input layer and an output layer, when more layers
are stacked, the networks are called deep [12]. A DNN learns
to perform particular tasks through training, during which the
strength of connections between units is learned. Subsequently,
the trained DNN is used to perform the same task on novel
inputs [13].

Let L be the number of hidden layers within the DNN, with
Jl neurons for each layer l, where 1 ≤ l ≤ L. Wl ∈ RJl−1×Jl ,
and bl ∈ RJl×1 are used to denote the weight and the bias
matrices of the l-th hidden layer respectively. The DNN J0
inputs are organized in a real-valued vector x(1) ∈ RJ0×1,
fed to the DNN input layer. Similarly, the DNN JL+1 outputs
are stacked in vector y ∈ RJL+1×1. The weight matrices for
the input and output layers are denoted as W1 ∈ RJ0×J1 and
WL+1 ∈ RJL×JL+1 respectively. Each neurons (l, j) performs
a linear transformation represented by the activation function
f(l,j) on the neuron’s input x(l) ∈ RJl−1×1 using its weight
ω(l,j) ∈ RJl−1×1, and bias b(l,j) respectively, where 1 ≤ j ≤
Jl. The neuron’s output y(l,j) is

y(l,j) = f(l,j)

(
b(l,j) + ωT

(l,j)x(l)

)
. (8)

The overall output the DNN l-th hidden layer is represented
by the vector form

y(l) = f(l)

(
b(l) +W(l).x(l)

)
, x(l+1) = y(l), (9)

where y(l) ∈ RJl×1 is the output of the l-th layer, f(l) is
a vector that results from the stacking of the Jl activation
functions.
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Fig. 2. DNN Architecture.

In general, DNN works in two phases: (i) training phase,
where the DNN is given inputs-outputs data pairs, and it will
try to learn the mapping relation between them; (ii) testing
phase, where the DNN is fed by new unseen input data, and
it will try to predict the relative output of this data. The DNN
learning ability is mainly related to how DNN weights are
adjusted during the training phase. Weight adjustment process
can be done by applying two consecutive operations. First,
the DNN applies what is known by forward propagation,
by which the output y(l) from each hidden layer moves as
an input to the next hidden layer, and the same process is
repeated until the DNN final output is obtained (9). Through
forward propagation [14], the DNN approximates the DNN
neurons weights in a way that DNN inputs and outputs map
each others. The difference between the true output y(T)

and the predicted DNN output y(P) can be represented by
a cost function JW ,B

(
y(P)
(l,j), y

(T)
(l,j)

)
needed to be minimized.

Backward propagation [15] is one of the methods used to
minimize the cost function in DNN, through applying some
optimizers.

These optimizers will minimize JW ,B

(
y(P)
(l,j), y

(T)
(l,j)

)
by it-

eratively updating W and B values during the DNN train-
ing phase. There are several optimizers that could be em-
ployed like stochastic gradient descent [13], root mean square
prop [16], and adaptive moment estimation (ADAM) [17].

Updating W and B values is performed by calculating the
derivative of JW ,B with respect to each neuron weight ω(l,j),
and then each neuron’s weight is updated according to the
following updating rule

ωnew
(l,j) = ω(l,j) − ρ.

∂JW ,B

∂ω(l,j)
, (10)

where ρ represents the learning rate of the DNN, which
controls how quickly the DNN model is adapted to the prob-
lem. Smaller learning rates require more training, given the
smaller changes made to the weights in each update, whereas
larger learning rates result in rapid changes and require fewer
training.

B. Proposed DL-based Adaptive Channel Estimation Scheme

The proposed DNN channel estimation scheme depends
mainly on LS channel estimates of h̃p from the received
preamble, where DNN is employed as an additional module

TABLE I
PROPOSED DNN PARAMETERS.

Parameter Values
Hidden layers 1

Number of neurons 52

Activation function ReLU

Number of epochs 500

Batch size 32

Training Samples 8000

Testing Samples 2000

Optimizer ADAM

Loss function MSE

Learning rate 0.001

Training SNR 30 dB

besides the conventional LS channel estimation scheme. Com-
bining both conventional channel estimation schemes with
DNN will significantly improve the overall performance with
a considerable decrease in the computational complexity as
we will discuss in section IV.

Considering that Sp is invertible, the LS channel gain
estimation at the k-th sub-carrier of h̃p can be expressed as

ˆ̃
hp,LS[k] =

rp[k]

Sp[k]
. (11)

First of all, ˆ̃hp,LS is converted from complex to real-valued
domain by arranging the real and imaginary values of ˆ̃

hp,LS

in one vector ˆ̃
h
(R)
p,LS ∈ R2Kon×1. After that, these inputs are

normalized to have a zero mean and unit variance, since
differences in the scales across input variables may increase
the difficulty of the training in the problem being modeled.
Finally, the normalized LS estimated channel is fed as an input
to the DNN as shown in Fig 2.

The proposed DNN is trained using the parameters illus-
trated in Table I, and aims to learn the error of the LS channel
estimation in order to correct ˆ̃

h
(R)
p,LS by minimizing a cost

function JW ,B

(
h̃
(R)
p ,

ˆ̃
h
(R)
p,DNN

)
, where ˆ̃

h
(R)
p,DNN is the output of

the DNN when the input is the LS estimated channel ˆ̃
h
(R)
p,LS,

and h̃
(R)
p ∈ R2Kon×1 represents the real and imaginary values

of the ideal channel.
At the end of the training, the corrected LS channel estimate

ˆ̃
h
(R)
p,DNN is processed again to get back |Kon| complex valued

records. The complex valued DNN output is denoted by
ˆ̃
hp,DNN such that h̃p,DNN ∈ CKon×1. It is worth mentioning that
at the end of the training phase, we only save the weights of
the epoch having the highest training and validation accuracy,
instead of averaging the weights over all the epochs. Moreover,
the DNN training is performed using SNR = 30dB to achieve
the best performance as illustrated in [18], due to the fact
that when the training is performed for a high SNR value, the
DNN is able to better learn the channel statistics, and due to
its good generalization DNN ability, it can still perform well
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TABLE II
CHANNEL MODEL.

Discrete delay (ns) 0 1 2 100 101 102 200 201 300 301 400 401

Average path gain (dB) 0 0 0 -9.3 -9.3 -9.3 -20.3 -20.3 -21.3 -21.3 -28.8 -28.8
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Fig. 3. NMSE Performance for Perfect SNR Estimation.
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Fig. 4. NMSE Performance for Imperfect SNR Estimation.

in low SNR regions, where the noise is dominant. It is worth
mentioning that the training is performed offline which does
not increase the online computational complexity. Moreover,
intensive experiments are performed using the grid search
algorithm [19] in order to select the best suitable DNN hyper
parameters in terms of both performance and complexity.

The proposed adaptive DNN channel estimation scheme
assumes that the SNR estimation is available at the receiver.
Based on this assumption, several DNNs are trained offline,
each for different SNR value. According to the estimated SNR
value, DNN selection will be performed to process the received
signals. Moreover, using the SNR estimation error term

εSNR =| SNRaccurate − SNRestimated |, (12)

the proposed DNN works in two different scenarios: (i) Perfect
SNR knowledge, where εSNR = 0. This means that the SNR
used in the training is equal to the exact received SNR; (ii)
Imperfect SNR knowledge, where εSNR > 0. In this case, the
estimated SNR deviates from the accurate SNR value. Thus,
in order to take into consideration the estimation errors of the
SNR value, the DNN will be trained on different SNR values
within the interval [SNR− εSNR,SNR + εSNR ] .

IV. SIMULATION RESULTS

In this section, NMSE is used to evaluate the performance
of the proposed adaptive DL-based channel estimation scheme
versus accurate and adaptive LMMSE channel estimation
schemes in two different scenarios as defined in the previous
section. After that, a computational complexity between the
studied channel estimation schemes is carried on. The channel

delay and power profile of the channel used in our simulations
are defined in Table II. The total number of sub-carriers for
an OFDM symbol is equal to K = 64 where only |Kon| = 52
sub-carriers are activated.

A. NMSE for Perfect SNR knowledge

In the first scenario, we assume a perfect SNR knowledge at
the receiver. We have trained seven neural networks each on a
training dataset generated using a fixed SNR value from the set
{0, 5, . . . , 30}dB. It is clearly shown from Fig. 3 that adaptive
DNN highly outperforms both accurate and adaptive LMMSE,
which reveals that the adaptive DNN channel estimation
scheme was able to overcome the presence of the noise.

B. NMSE for Imperfect SNR Knowledge

In the second scenario, channel estimation is performed
assuming that the SNR estimation at the receiver includes
some errors. In order to consider this issue in the training phase
of the DNN, each DNN is now trained on a data set generated
by choosing uniformly an SNR value within the interval
ISNR = [SNR− εSNR,SNR+ εSNR ] with a step of 0.1. In these
simulations, we consider: εSNR ∈ {1dB, 2dB, 3dB}. For exam-
ple, if the estimated SNR is equal to 5dB, but the actual value
of the SNR belongs to the interval I5 = [5− εSNR, 5 + εSNR ] ,
the DNN trained on this SNR interval will be used for channel
estimation. The accuracy shown for SNR=5dB corresponds to
averaging all the samples where the estimated SNR is 5dB and
the actual SNR belongs to I5.

The generated dataset is divided into 80% training data and
20% testing data.
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We can observe from Fig. 4, that adaptive DNN perfor-
mance varies with different SNR error intervals. It is difficult
to get a predictable behaviour of the DNN depending on the
value of εSNR. In fact, when the DNN is trained with different
SNR values within an interval ISNR, it is supposed to learn
better in high SNR values within this interval (where there
is less noise) compared to low SNR values within the same
interval (where the noise is more dominant).

It is worth mentioning that the fluctuations in the DNN
NMSE curves in Fig. 3 and 4 are related to the ability of the
DNN in learning the channel statistics. There is no accurate
prediction of the exact DNN behaviour, since its performance
depends on the SNR value and the hyper parameters used in
the training process. However, integrating the proposed DNN
architecture in the channel estimation process leads to signif-
icant performance improvement, even though adaptive DNN
performance varies for different εSNR, it still outperforms both
accurate and adaptive LMMSE channel estimation schemes,
even if LMMSE is more robust to SNR estimation errors.

C. Computational complexity analysis

In DNN, a matrix multiplication is computed for each
transition between the l-th and (l − 1)-th layers. Thus, the
online DNN computational complexity is represented by the
total number of real-valued multiplications required in the
DNN network:

Nmul =

L+1∑
l=1

Jl−1Jl, J0 = 2|Kon|, JL+1 = 2|Kon|. (13)

As mentioned in Section III, the proposed adaptive DNN
based channel estimation scheme consists of one hidden layer
(L = 1) having |Kon| neurons, therefore the number of
real-valued multiplications for adaptive DNN is (4|Kon|2).
The computational complexity of accurate LMMSE channel
estimation scheme is of order |Kon|3 complex multiplica-
tions [20], which is equivalent to 4|Kon|3 real-valued mul-
tiplications. On the other hand, for adaptive LMMSE assum-
ing the SNR knowledge at the receiver, thus pre-calculating
LMMSE estimation matrix, makes the number of real-valued
multiplications for adaptive LMMSE equal to those needed
for the adaptive DNN. However, the accuracy of the adaptive
DNN is still appealing, and outperforming the performance of
both accurate and adaptive LMMSE, even in imperfect SNR
estimation scenarios.

V. CONCLUSION

This paper presents a novel adaptive DNN channel estima-
tion scheme, based on the estimation of the SNR value at the
receiver. First, classical channel estimation schemes illustrated
by accurate and adaptive LMMSE have been surveyed. After
that, a brief DNN introduction, followed by presentation of
the proposed adaptive DNN channel estimation scheme is
discussed. Unlike accurate and adaptive LMMSE channel esti-
mation schemes, the proposed scheme does not require specific
channel statistics knowledge, making it more suitable to real

case scenarios. Simulation results reveal that the proposed
adaptive DNN channel estimation scheme outperforms both
accurate and adaptive LMMSE channel estimation in both
perfect and imperfect SNR estimation scenarios, with similar
computational complexity.
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