Approximate Bayesian Computations to fit and compare insurance loss models - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Approximate Bayesian Computations to fit and compare insurance loss models

Résumé

Approximate Bayesian Computation (ABC) is a statistical learning technique to calibrate and select models by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires only the ability to generate synthetic data from the models of interest. We apply ABC to fit and compare insurance loss models using aggregated data. We present along the way how to use ABC for the more common claim counts and claim sizes data. A state-of-the-art ABC implementation in Python is proposed. It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to compare the observed and synthetic data. MSC 2010 : 60G55, 60G40, 12E10.
Fichier principal
Vignette du fichier
ABCFitLoMo_Goffard_Laub.pdf (581.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02891046 , version 1 (06-07-2020)
hal-02891046 , version 2 (29-04-2021)

Identifiants

  • HAL Id : hal-02891046 , version 1

Citer

Pierre-Olivier Goffard, Patrick Laub. Approximate Bayesian Computations to fit and compare insurance loss models. 2020. ⟨hal-02891046v1⟩
110 Consultations
742 Téléchargements

Partager

More