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Abstract

Approximate Bayesian Computation (ABC) is a statistical learning
technique to calibrate and select models by comparing observed data to
simulated data. This technique bypasses the use of the likelihood and
requires only the ability to generate synthetic data from the models of
interest. We apply ABC to fit and compare insurance loss models using
aggregated data. We present along the way how to use ABC for the
more common claim counts and claim sizes data. A state-of-the-art ABC
implementation in Python is proposed. It uses sequential Monte Carlo to
sample from the posterior distribution and the Wasserstein distance to
compare the observed and synthetic data.
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Keywords: Bayesian statistics, approximate Bayesian computation, likelihood-
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1 Introduction

Over a fixed time period, an insurance company experiences a random number
of claims called the claim frequency, and each claim requires the payment of a
randomly sized compensation called the claim severity. The claim frequency is
a counting random variable while the claim sizes are non-negative continuous
random variables. Let us say that the claim frequency and the claim severity
distributions are specified by the parameters θfreq and θsev respectively, with
θ = (θfreq;θsev). For each time s = 1, . . . , t the number of claims ns and the
claim sizes us := (us,1, us,2, . . . , us,ns) are distributed as

ns ∼ pN (n ; θfreq) and (us | ns) ∼ fU (u ; n,θsev).

We wish to fit these distributions, however, we assume that these independent
and identically distributed (i.i.d.) values {(n1,u1), . . . , (nt,ut)} are unobservable.
Instead, we only have access to some real-valued summaries of the claim data at
each time, denoted by

xs = Ψ(ns,us) for s = 1, . . . , t. (1)
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The summaries could be the aggregated claims if Ψ(n,u) =
∑n
i=1 ui or the

maximum claims if Ψ(n,u) = max1≤i≤n ui. Our problem is to take some
observations of these summaries x = (x1, . . . , xt) and find the θ which best
explains them for a given parametric model.

Such incomplete data situations arise in reinsurance, see the monograph of
Albrecher et al. [1, Chapter I, Section 3]. For instance, within a global non-
proportional reinsurance agreement, the reinsurance company covers the risk
that the insurer’s total claim amount is in excess of a threshold c > 0. The
reinsurer is only observing its payout at each time period xs = (

∑ns
i=1 us,i − c)+.

Being able to infer the parameters of the claim frequency and the claim severity
distributions would help the reinsurer to better understand the risk they have
underwritten.
Remark 1.1. When the summary is the aggregated loss Ψ(n,u) =

∑n
i=1 ui,

we effectively decompound the random sum. Traditionally, a decompounding
method builds a non-parametric estimate of the claim severity distribution based
on the observations of the aggregated sums, see Buchmann and Grübel [7] or
Bøgsted and Pitts [6]. A popular application is the study of discretely observed
compound Poisson processes, see for instance van Es et al. [32], Coca [8] and
Gugushvili et al. [17] where a Bayesian non-parametric approach is used.

A Bayesian approach to estimating θ would be to treat θ as a random variable
and find (or approximate) the posterior distribution π(θ | x). Bayes’ theorem
tells us that

π(θ | x) ∝ p(x | θ)π(θ), (2)

where p(x | θ) is the likelihood and π(θ) is the prior distribution. The prior
represents our beliefs about θ before seeing any of the observations and is
informed by our domain-specific expertise. The posterior distribution is a very
valuable piece of information that gathers our knowledge over the parameters.
A point estimate θ̂ may be derived by taking the mean or mode of the posterior.
For an overview on Bayesian statistics, we refer to the book of Gelman et al.
[14].

The posterior distribution (2) rarely admits a closed-form expression, so it is
approximated by an empirical distribution of samples from π(θ | x). Posterior
samples are typically obtained using Markov Chain Monte Carlo (MCMC), yet
a requirement for MCMC sampling is the ability to evaluate (at least up to a
constant) the likelihood function p(x | θ). When considering the definition of
x in (1), we can see that there is little hope of finding an expression for the
likelihood function even in simple cases (e.g. when the claim sizes are i.i.d.). If
the claim sizes are not i.i.d. or if the number of claims influences their amount,
then the chance that a tractable likelihood for x exists is extremely low. Even
when a simple expression for the likelihood exists, it can be prohibitively difficult
to compute (such as in a big data regime), and so a likelihood-free approach can
be beneficial.

We advertise here a likelihood-free estimation method known as approximate
Bayesian computation (ABC). This technique has attracted a lot of attention
recently due to its wide range of applicability and its intuitive underlying principle.
One resorts to ABC when the model at hand is too complicated to write the
likelihood function but still simple enough to generate artificial data. Given
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some observations x, the basic principle consists in iterating the following steps:

(i) generate a potential parameter from the prior distribution θ∗ ∼ π(θ);

(ii) simulate ‘fake data’ x∗ from the likelihood (x∗ | θ∗) ∼ p(x | θ);

(iii) if ‖x− x∗‖ ≤ ε, where ε > 0 is small, then store θ∗,

where ‖ · ‖ denotes a distance measure and ε is an acceptance threshold. The
algorithm provides us with a sample of θ’s whose distribution is close to the
posterior distribution π(θ | x).

The ABC algorithm presented in this work allows us to consider a wide variety
of Ψ functions (1) without imposing common simplifying assumptions such as
assuming the claim amounts are i.i.d. and independent from the claim frequency.
In addition to parameter estimation, ABC allows us to perform model selection
in a Bayesian manner. This direction is also investigated. For a comprehensive
overview on ABC, we refer to the monograph of Sisson et al. [29]. In finance
and insurance, ABC has been considered in the context of operational risk
management [21] and for reserving purposes [22].

The rest of the paper is organized as follows. Section 2 provides a gentle
introduction to ABC algorithms. We start by presenting the ABC routines used
on count data and continuous data, then show how to use ABC to fit an insurance
loss model based on aggregated data. Section 3 explains how to adapt the ABC
algorithm to compare models by computing the a posteriori model probability
of each competing model. The performance of our ABC implementation are
illustrated on simulated data in Section 4 and on a real world insurance data set
in Section 5.

2 Model calibration

ABC is a method for approximating the posterior probability π(θ | x) without
using the likelihood function. The implementation of ABC is tied to the nature of
the data at hand. In our problem, the frequency data is discrete, the individual
claim sizes are continuous and the aggregated data is a mixture of discrete and
continuous (due to the atom at 0). We take advantage of this fact to introduce
ABC algorithms for discrete data in Section 2.1, continuous data in Section 2.2,
and mixed data in Section 2.3. The acceptance–rejection algorithm laid out in
the introduction most often leads to considerable computing time, so Section 2.4
explains how to speed up ABC using sequential Monte Carlo (SMC). Section 2.5
shows the validity of our ABC implementation on an illustrative example.

2.1 ABC for count data

Consider some count data n1, . . . , nt ∈ N0 which are i.i.d. with the probability
mass function (p.m.f.) pN (n | θ); for example, the ns’s could be claim frequencies.
The likelihood of such data is p(n | θ) =

∏t
s=1 pN (ns | θ), where n = (n1, . . . , nt).

For common discrete distributions, such as the Poisson or negative binomial, the
likelihood function is tractable and may be plugged into an MCMC sampling
algorithm to produce samples from the posterior distribution π(θ | n) ∝ p(n |
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θ)π(θ). Alternatively, we can sample from the posterior π(θ | n) in a likelihood-
free way by acceptance–rejection, which is detailed in Algorithm 1.

Algorithm 1 Acceptance–rejection sampling the posterior of count data.

1: input observations n = (n1, . . . , nt)
2: for k = 1→ K do
3: repeat
4: generate θk ∼ π(θ)
5: generate nk ∼ p(n | θk)
6: until nk = n then store θk
7: end for
8: return {θ1, . . . ,θK} which are i.i.d. samples from π(θ | n)

Algorithm 1 gives samples from π0(θ | n) which is exactly the desired posterior
distribution π(θ | n):

π0(θ | n) ∝ π(θ)

∫
Nt0

I{n=ñ} p(ñ | θ) dñ = π(θ)p(n | θ),

where

I{n=ñ} =

{
1, if n = ñ,

0, otherwise.

As we collect more data, the probability of seeing an exact match {n = ñ}
decreases exponentially. This, combined with a diffuse prior distribution, will
result in a cumbersome waiting time before getting a posterior sample. A natural
refinement is to require an exact correspondence between the samples sorted in
ascending order. The acceptance rate may still be too low to be practical, and
in this case an approximate match between the observed and fake data must
be considered. We discuss this matter within the continuous data case in the
following section.

2.2 ABC for continuous data

Let u1, . . . , un ∈ R be an i.i.d. sample of continuous data with a probability
density function (p.d.f.) denoted fU (u | θ). An example of such data would
be the claim sizes. With the notation u = (u1, . . . , un), we can write the
likelihood as p(u | θ) =

∏n
i=1 fU (ui | θ). If the data is fitted to a standard

probability model, say gamma or normal, then we can sample from the posterior
distribution π(θ | u) ∝ π(θ)p(u | θ), with an MCMC scheme. If the likelihood
is unavailable, then we can adapt Algorithm 1 to the case of continuous data
for which exact correspondence between observed and fake data is not possible.
Synthetic samples are then accepted whenever they fall sufficiently close to the
observed data. That is, if the dissimilarity between two samples, assessed by a
norm ‖ · ‖ on Rn, is smaller than some tolerance threshold ε > 0, see Algorithm 2.

The procedure depicted in Algorithm 2 allows us to sample from an approximation
of the posterior distribution given by

πε(θ | u) ∝ π(θ)

∫
Rt

I{‖u−ũ‖<ε} p(ũ | θ) dũ, (3)
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Algorithm 2 ABC acceptance–rejection sampling for continuous data.

1: input observations u = (u1, . . . , un), ε > 0 threshold, ‖·‖ norm
2: for k = 1→ K do
3: repeat
4: generate θk ∼ π(θ)
5: generate uk ∼ p(u | θk)
6: until ‖u− uk‖ < ε then store θk
7: end for
8: return {θ1, . . . ,θK} which are approximately π(θ | u) distributed

where

I{‖u−ũ‖<ε} =

{
1, if ‖u− ũ‖ < ε,

0, otherwise.

Distribution (3) is called the ABC posterior and it has the desirable theoretical
property of converging toward the standard posterior π(θ | u) as ε tends to 0,
see Rubio and Johansen [26], Prangle et al. [24] or Bernton et al. [3].

The ABC procedure suffers from the so-called curse of dimensionality [4]. Specif-
ically, if one takes the Euclidean distance or some variation of it to measure
the dissimilarity between observed and fake data then the odds of getting an
acceptable match will plummet as the number of observations, i.e. the dimension
of u, increases. The dimensionality curse can be alleviated by replacing u ∈ Rn
with summary statistics S(u) ∈ Rd, where d < n, in Algorithm 2 (specifically,
in line 5 the norm becomes ‖S(u)− S(uk)‖). While the choice of the summary
statistics S : Rn 7→ Rd is arbitrary, it is desirable to have d� n while limiting
the information loss. This is difficult. When the model at hand admits sufficient
statistics then these should be taken. In fact, the only statistics which uphold
the convergence of πε(θ | u) to π(θ | u) as ε→ 0 are sufficient statistics. Note
that the summary statistics S are not to be confused with the Ψ summaries in
Section 1!
Remark 2.1. When dealing with frequency data (see Section 2.1), it is possible
to define a map S : Nt0 7→ Rd which allows us to reduce the dimension and adopt
the ABC procedure for continuous data. Consider for instance, the case where
the claim frequency are Poisson distributed and the map S corresponds to the
empirical mean.

Most often, we will not be able to find sufficient statistics. Many research
papers have been dedicated to designing ad hoc summary statistics in the ABC
literature, we refer to the survey of Blum et al. [5]. The problem is that it always
implies a loss of information along with a convergence toward the posterior
distribution conditionally to the summary statistics instead of the true posterior.
We illustrate the use of summary statistics in Section 2.5, but do not use this
technique in the other examples.

Bernton et al. [3] recommend the Wasserstein distance to measure the dissim-
ilarity between two samples. The Wasserstein distance is deemed difficult to
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compute but for real-valued i.i.d. observations it reduces to

Wp(u, ũ) =
1

n

n∑
k=1

∣∣u(k) − ũ(k)

∣∣p , for p ≥ 1,

where u(1) < . . . < u(n) and ũ(1) < . . . < ũ(n) denote the order statistics of
the observed and synthetic data respectively. The use of the order statistics as
summary statistics is not new, it was investigated for instance in the work of
Sousa et al. [30] and Fearnhead and Prangle [11]. Now that we have reviewed
the use of ABC in the case of discrete and continuous data, we turn to the case
of mixed data which is of primary interest for the actuarial application at the
center of this work.

2.3 ABC for mixed data

We return to the problem of fitting a model to aggregated insurance data. Recall
that, for each time period, a random number n ∈ N0 of claims are filed. The
claim frequencies form an i.i.d. sample from the p.m.f. pN (n | θfreq). Given
n, the associated claim sizes u = (u1, . . . , un) have a joint p.d.f. denoted by
fU |N (u | n,θsev).

The distribution of the available information x := Ψ(n,u) is parametrized by
θ = (θfreq,θsev) and admits a point mass pX(0 | θ) at 0. Zeros can occur
if no claims are filed (n = 0) which occurs with probability pN (0 | θfreq), or
because of censoring effects like in the non-proportional reinsurance treaty case,
see Section 1. The continuous part of x’s distribution is characterized by the
conditional p.d.f.

[1− pX(0 | θ)] fX|X>0(x | θ) for x > 0.

For a data history x = (x1, . . . , xt) of t time periods, we separate the zeros from
the non-negative data points, so

x = (x0,x+) = (0, . . . , 0︸ ︷︷ ︸
t0 zeros

, x+
1 , . . . , x

+
t−t0︸ ︷︷ ︸

t−t0 non-zeros

) .

The likelihood function may be written as

p(x | θ) = pX(0 | θ)t0 [1− pX(0 | θ)]t−t0
t−t0∏
s=1

fX|X>0(x+
s | θ) (4)

= pX(0 | θ)t0 [1− pX(0 | θ)]t−t0p(x+ | θ).

To evaluate the conditional p.d.f. fX|X>0 in (4) we must consider all possible
values of n which often leads to an infinite series without closed-form expression,
as illustrated in Example 1.
Example 1. Consider the case where we only observe the aggregate claim sizes
xs =

∑ns
i=1 us,i for s = 1, . . ., t, i.e., Ψ is the sum operator. If the claim sizes

are i.i.d. and independent from the claim frequency, which is common in the
actuarial science literature, the conditional p.d.f. of X taking positive values is

fX|X>0(x | θ) =
1

1− pN (0 | θfreq)

∞∑
n=1

f
(∗n)
U (x | θsev)pN (n | θfreq), (5)
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where f
(∗n)
U (x | θsev) denotes the n-fold convolution product of fU (x | θsev)

with itself. A closed-form expression of (5) is available only in a few cases.
For the remaining cases, quite some energy has been dedicated by actuarial
scientists to finding convenient numerical approximations. Note that none of the
aforementioned numerical routines would be suited to the multiple evaluations
of the conditional p.d.f. required for Bayesian inference or maximum likelihood
inference via some optimization algorithm. We begin our numerical illustration of
the ABC method on some cases where a closed-form expression of (5) is available,
as we will be able to sample from the true posterior via an MCMC simulation
scheme. Point estimates may also be compared to frequentist estimators such
as the maximum likelihood or the method of moment estimators. The latter has
been used in a similar situation in the work of Goffard et al. [15].

The lack of analytical expression for the likelihood function justifies the use of a
likelihood-free inference method such as ABC. The distribution of x is of mixed
type which means we cannot directly apply Algorithm 2 as we would lose the
convergence toward the standard posterior distribution. To address this issue,
we ask that the number of zeros in the synthetic samples t̃0 matches the number
of zeros in the observed data t0 and we treat the non-negative data points as i.i.d.
continuous data. So, in Algorithm 3 we retain synthetic samples that belong to
the set

Bε,x =
{
x̃ ∈ Rt ; x0 = x̃0 and ‖x+ − x̃+‖ < ε

}
. (6)

Algorithm 3 ABC acceptance–rejection sampling for mixed data.

1: input observations x = (x1, . . . , xt), ε > 0 threshold, ‖·‖ norm
2: for k = 1→ K do
3: repeat
4: generate θk ∼ π(θ)
5: generate xk ∼ p(x | θk)
6: until xk ∈ Bε,x, then store θk . Bε,x defined by (6)
7: end for
8: return {θ1, . . . ,θK} which are approximately π(θ | x) distributed

Algorithm 3 samples from the approximate posterior distribution

πε(θ | x) ∝ π(θ)

∫
Rt

IBε,x(x̃) p(x̃ | θ) dx̃, (7)

where

IBε,x(x̃) =

{
1, if x0 = x̃0 and ‖x+ − x̃+‖ < ε,

0, otherwise.

The following result shows the convergence of πε toward the standard posterior
as we let ε approaching 0.
Proposition 1. Suppose that

sup
(x̃,θ)∈Bε,x×Θ

p(x̃ | θ) <∞,

for some ε > 0. Then, for each θ ∈ Θ, we have

πε(θ | x) −→ π(θ | x), as ε→ 0.
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Proof. The modified prior πε(θ | x) is defined as

πε(θ | x) =
π(θ)

∫
Rt IBε,x(x̃) p(x̃ | θ) dx̃∫

Θ
π(θ)

∫
Rt IBε,x(x̃) p(x̃ | θ) dx̃ dθ

=
π(θ)pε(x | θ)∫

Θ
π(θ)pε(x | θ) dθ

, (8)

where pε(x | θ) is an approximation of the likelihood

pε(x | θ) =

∫
Rt IBε,x(x̃) p(x̃ | θ) dx̃∫

Rt IBε,x(x̃) dx̃
. (9)

Since the data is i.i.d., we rearrange the vectors x and x̃ to set aside the zeros in
the data, so x = (x0,x+) and x̃ = (x̃0, x̃+), respectively. It allows us to write
the indicator function in (9) as the product

IBε,x(x̃) = I{x0=x̃0} · I{‖x+−x̃+‖≤ε}. (10)

Inserting (10) into the quasi-likelihood (9) leads to

pε(x | θ) = pX(0 | θ)t0 [1− pX(0 | θ)]t−t0
∫
Rt−t0 I{‖x+−x̃+‖≤ε}p(x̃

+ | θ) dx̃∫
Rt−t0 I{‖x+−x̃+‖≤ε} dx̃

−→
ε→0

pX(0 | θ)t0 [1− pX(0 | θ)]t−t0p(x+ | θ) = p(x | θ), (11)

where the limit in (11) follows from applying Proposition 1 of Rubio and Johansen
[26], see also Bernton et al. [3, Proposition 2]. Taking the limit as ε tends to 0
in (8) yields the announced result.

Following up on the discussion in Section 2.2, we take the Wasserstein distance
to evaluate the dissimilarities between the non-negative portions of the fake and
observed data. When comparing the non-negative data points, a small ε leads
to an accurate but potentially slow ABC algorithm. The combination of a small
ε and a prior more diffuse than the posterior distribution makes ABC rejection
sampling inefficient as acceptance almost never occurs. We therefore move from
the acceptance–rejection simulation scheme to a Sequential Monte Carlo (SMC)
scheme inspired by the work of Del Moral et al. [9].

2.4 ABC using SMC

Sequential Monte Carlo (ABC-SMC) is an ABC approach where a sequence
of distributions is constructed by gradually decreasing tolerance ε through a
sequence (εg)g≥1. The ABC-SMC algorithm starts by sampling a finite number
of parameter sets (particles) from the prior distribution and each intermediate
distribution (called a generation) is obtained as a weighted sample approximated
via a multivariate Kernel Density Estimator (KDE).

We start by setting the number of generation G and the number of particles K.
For the first generation (g = 1), the tolerance level is set to ε1 =∞. Particles
are proposed from the prior distribution θ1

k ∼ π(θ) and retained if the synthetic
data xk ∼ p(x | θ1

k) satisfies xk ∈ B∞,x. It goes on until K particles are selected.
Note that the condition xk ∈ B∞,x simply means that the number of zeros
in the fake data matches the number of zeros in the observed data. A first
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approximation of the posterior distribution follows from fitting a multivariate
Kernel Density Estimator (KDE) Kh to the first generation of particles

π̂ε1(θ | x) =
1

K

K∑
k=1

Kh

(
‖θ − θ1

k‖
)
,

where h denotes the bandwidth. For a given generation g > 1, we hold an
approximation π̂εg−1

(θ | x) of the posterior distribution based on the (g − 1)th

generation of particles. New particles θgk are proposed by sampling repeatedly
from π̂εg−1(θ | x) until the synthetic data xk ∼ p(x | θgk) satisfies xk ∈ B∞,x.
It goes on until K particles are selected, the synthetic data is also kept. An
acceptance threshold εg is defined as the empirical quantile of order α ∈ (0, 1) of
the distances ||x+ − x+

k ||, k = 1, . . . ,K. Each particle is assigned a weight

wgk ∝
π(θgk)

π̂g−1(θgk | x)
IBεg,x(xk), k = 1, . . . ,K,

which is used to update the posterior approximation to

π̂εg (θ | x) =

K∑
k=1

wgkKh(‖θ − θgk‖).

The pseudocode of the algorithm is provided in Appendix A, see Algorithm 5.

A common choice for the kernel is the multivariate Gaussian kernel with covari-
ance matrix set to twice the empirical covariance matrix assessed over the cloud
of weighted particles {(θgk, w

g
k)}k=1,...,K , see Beaumont et al. [2].

The behavior of the algorithm can be investigated by calculating the Effective
Sample Size (ESS), defined in Del Moral et al. [9] as

ESSg =
[ K∑
k=1

(wgk)2
]−1

, g = 1, . . . , G.

The effective sample size ranges from 1 to N and indicates whether the algorithm
is efficient in sampling from the targeted distribution. An ESS falling below
a certain threshold, typically N/2 see Del Moral et al. [9], should trigger a
resampling step. We close this section by illustrating the performance of our
ABC implementation on an example where both the likelihood and sufficient
summary statistics are available.

2.5 Illustrations on total claim amounts data

Let the claim frequency be geometrically distributed

n1, . . . , nt
i.i.d.∼ Geom(p = 0.8),

with p.m.f. given by pN (n ; p) = (1 − p)pn, n ∈ N0. Assume that the claim
amounts are exponentially distributed

us,1, . . . , us,ns
i.i.d.∼ Exp(δ = 5), s = 1, . . . , t.
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with p.d.f. defined as f(x ; δ) = (1/δ)e−x/δ, x > 0, irrespective of the claim
frequency. The available data is the aggregated claim sizes

xs =

ns∑
k=1

us,k, s = 1, . . . , t,

and we assume that t = 100 data points are available to conduct the inference.
The likelihood function of the data is given by

p(x | θ) = (1− p)t
(p
δ

)t−t0
exp
[
−1− p

δ

t−t0∑
s=1

x+
s

]
,

and allows us to sample from the standard posterior distribution via an MCMC
scheme. This compound geometric-exponential model admits t0 (the number

of zeros in the data) and
∑(t−t0)
s=1 x+

s (sum of the non-negative data points) as
sufficient statistics which in turn allows us to sample from an ABC posterior
based on sufficient summary statistics. We set uniform priors

p ∼ Unif(0, 1), δ ∼ Unif(0, 100)

over the parameters of the Geom(p)–Exp(δ) we want to fit. We set the number
of generation to G = 10, the number of particles to K = 1000 and the order of
the quantile to α = 0.5 for the ABC sampler. Figure 1 displays the histograms
of the posterior samples produced via MCMC, ABC with sufficient statistics
and ABC using the Wasserstein distance.

0.0 0.5 1.0 0 25 50 75 100

p δ

Prior ABC ABC SS MCMC True

Figure 1: Fitting a Geom(p)–Exp(δ) model to simulated data. The true parame-
ters are p = 0.8 and δ = 5. The ABC posterior, ABC summary statistics
posterior, and the true posterior (by MCMC) coincide very well, and are
considerably narrower than the prior.

The MCMC posterior sample has been obtained by using the dedicated function
in the PyMC3 Python library, see Salvatier et al. [27].

3 Model selection

When it comes to modeling claim data, one has plenty of options for both the
claim frequency and the claim sizes, see for instance the book of Klugman et al.
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[19, Chapters V & VI]. A decision must be made to find the most suitable
models among a set of candidates {1, . . . ,M}. The Bayesian approach to model
selection and hypothesis testing consists in defining a categorical random variable
m with state space {1, . . . ,M} and a priori distribution π(m). The a posteriori
model evidence is then given by

π(m | x) =
p(x | m)π(m)∑M
m̃=1 p(x | m̃)π(m̃)

, m ∈ {1, . . . ,M}.

One often compares two models, say 1 and 2, by computing the Bayes factors
B12 = π(2 | x)/π(1 | x). For an overview on Bayesian model selection and Bayes
factor, we refer the reader to Kass and Raftery [18]. The marginal likelihood of
the data according to given model m ∈ {1, . . . ,M} is defined by

p(x | m) =

∫
Θm

p(x | m,θ)π(θ | m) dθ, for m ∈ {1, . . . ,M}, (12)

where Θm denotes the parameter space of model m. The evaluation of (12) is
challenging from a computational point of view, even when the likelihood is
available. The acceptance–rejection implementation of ABC proposed in Grelaud
et al. [16] reduces to add a layer to the standard Algorithm 3 by first drawing a
model from π(m). The posterior probability of a model is then proportional to
the number of times this model was selected, see Algorithm 4.

Algorithm 4 Acceptance–rejection to compute the model evidence.

1: for k = 1→ K do
2: repeat
3: generate mk ∼ π(m)
4: generate θk ∼ π(θ | m)
5: generate xk ∼ p(x | mk, θk)
6: until xk ∈ Bε,x then store (mk,θk)
7: end for

The spirit of Algorithm 4 relates to the Monte Carlo approach to the computation
of models’ marginal likelihood, see for instance McCulloch and Rossi [20]. Namely,
the model evidence is evaluated by

p(x | m) ≈ 1

K

K∑
k=1

p(x | m,θk),

where θ1, . . . ,θK ∼ π(θ | m). This procedure might be inefficient as most of the
θi have small likelihoods when the posterior is more concentrated than the prior
distribution. Importance sampling strategies have been proposed to address this
issue. The sequential Monte Carlo idea used in Algorithm 5 have been adapted
in the works of Toni and Stumpf [31] and Prangle et al. [23] to improve the
sampling efficiency. Our implementation is described hereafter.

We fix the number of generations G and the number of particles K. When
several models are competing, a particle is a combination of a model and its
parameters.
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For the first generation (g = 1), for each particle k = 1, . . . ,K, a model m1
k

is drawn from π(m) with parameter θ1
k sampled from the prior distribution

π(θ | m1
k) until the synthetic data xk ∼ p(x|m1

k,θ
1
k) satisfies xk ∈ Bε1,x, where

ε1 =∞. A first approximation of the posterior model probability is given by

π̂ε1(m | x) =
1

K

K∑
k=1

I{m1
k=m}.

A multivariate Kernel Density Estimator (KDE) Kh with bandwidth h is then
fitted to the parameter values associated to each model with

π̂ε1(θ | m,x) =
1

K

K∑
k=1

1

π̂ε1(m | x)
Kh(‖θ − θ1

k‖)I{m1
k=m}, m ∈ {1, . . . ,M}.

At a given generation g ∈ {1, . . . , G} and for each model m ∈ {1, . . . ,M}, we
hold an approximation of the posterior model evidence π̂εg−1(m | x) and the
posterior distribution of the parameters π̂εg−1(θ | m,x). New particles (mg

k,θ
g
k)

are proposed by sampling from π(m) and π̂εg−1
(θ | mg

k,x) until the synthetic
data xk ∼ p(x | mg

k,θ
g
k) satisfies xk ∈ Bεg−1,x. Sampling is performed repeatedly

until K particles are selected. The acceptance threshold εg becomes the empirical
quantile of order α ∈ (0, 1) of the distances ‖x+ − x+

k ‖, k = 1, . . .K. To each
particle is assigned a weight given by

wgk ∝
π(θgk | m

g
k)

π̂εg−1(θgk | m
g
k, x)

IBεg,x(xk), k = 1, . . . ,K.

The model probability is then updated

π̂εg (m | x) =

K∑
k=1

wikI{mgk=m},

along with the posterior distribution of the parameters associated to each model

π̂εg (θ | m,x) =

K∑
k=1

wgk
π̂εg (m | x)

Kh(‖θ − θgk‖) I{mgk=m}, m = 1, . . . ,M.

The algorithm is summarized in Algorithm 6 of Appendix A.

Our ABC implementation when evaluating posterior model probabilities is tested
on a simple example where we aim at fitting individual claim sizes generated
from a lognormal distribution

u1, . . . , un
i.i.d.∼ LogNorm(µ = 0, σ = 1),

with associated p.d.f.

f(x ; µ, σ) =
1

xσ
√

2π
exp
[
− (lnx− µ)

2σ2

]
, x > 0.

The lognormal model is compared to a gamma model Gamma(r,m) with p.d.f.

f(x ; r,m) =
e−x/mxr−1

mrΓ(r)
, x > 0,
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and a Weibull model Weib(r,m) with p.d.f.

f(x ; k, β) =
k

β

(x
β

)k−1
exp
[
−
(x
β

)k]
, x > 0.

Uniform priors are set over the parameters of all the model:

µ ∼ Unif(−20, 20), and σ ∼ Unif(0, 5),

for the lognormal model,

r ∼ Unif(0, 5), and m ∼ Unif(0, 100),

for the gamma model, and

k ∼ Unif( 1
10 , 5), and β ∼ Unif(0, 100),

for the Weibull model. The likelihood function of the data u = u1, . . . , un
may be computed for these loss models and the model probability can be
estimated through the Sequential Monte Carlo sampler of the PyMC3 library. The
computation of model probabilities via ABC is more demanding than simply
estimating parameters. Namely, the number of iterations must be larger to lead
to an accurate model probability estimation. We therefore set the number of
iterations to G = 25. The model evidences of all three models are reported in
Table 1 for samples of size ranging from 25 to 200.

PyMC3 ABC

Gamma LogNorm Weib Gamma LogNorm Weib
sample size

25 0.42 0.18 0.40 0.51 0.15 0.34
50 0.25 0.64 0.11 0.31 0.51 0.18
75 0.04 0.95 0.01 0.15 0.79 0.07
100 0.01 0.99 0.00 0.07 0.91 0.02
150 0.00 1.00 0.00 0.01 0.99 0.00
200 0.00 1.00 0.00 0.00 1.00 0.00

Table 1: Model evidence for individual claim sizes data simulated by a
LogNorm(µ = 0, σ = 1) model. The model evidences computed via ABC
fare well compared to the model evidences computed by relying on the likelihood
function.

Further approximate Bayesian model evidence computations are proposed in
Section 4 and Section 5 when the data at hand is aggregated.

4 Simulation Study

This section aims at studying the finite sample behavior of our ABC implementa-
tion on two case studies based on simulated data. In Section 4.1, we assume that
the claim sizes are independent from the claim frequency and that the insurer
have access to the right truncated aggregated sum. In Section 4.2, we consider a
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model in which the average of the claim sizes depends on the number of claims
and the insurer have access to the total claim sizes for each time period.

Our goal is to check whether our ABC sampling algorithm manage to return
a posterior sample that concentrates around the true value when the model is
well specified. Another question is how does the ABC posterior behave when
the model is misspecified? The ABC posterior samples are compared, in that
case, to the maximum likelihood estimates of the parameters.

Finally, we assume that the claim frequency data is available in addition to
the aggregated data. The number of claims is then input directly in our ABC
implementation to specify how many claim sizes should be generated for each
time period. It reduces the computing time, and allow us to drop the parametric
assumption over the claim frequency distribution and direct our focus on the
claim amounts distribution.

In both examples, the number of generations for ABC is set to G = 7 and each
consists of K = 1000 particles when only one model is considered and when
the claim frequency is not available. Knowing the number of claims leads to a
reduction in calculation time, which in turn allows us to bring the number of
iterations to G = 10.

4.1 Negative-Binomial Weibull model with truncation

Let the claim frequency be negative binomial distributed

n1, . . . , nt
i.i.d.∼ NegBin(α = 4, p = 2

3 ),

with p.m.f.

pN (n ; α, p) =

(
α+ n− 1

n

)
pα(1− p)n, n ≥ 0,

while the claim sizes are Weibull distributed

us,1, . . . , us,ns
i.i.d.∼ Weib(k = 1

3 , β = 1), s = 1, . . . , t.

The available data is the aggregated claim size in excess of a threshold c, given
by

xs =
( ns∑
i=1

us,i − c
)

+
, s = 1, . . . , t. (13)

It corresponds to the data available to a reinsurance company within the frame
of a global non-proportional treaty over a non-life insurance portfolio. The
cases t = 50 and t = 250 are considered. The prior distributions over the four
parameters are

α ∼ Unif(0, 10), p ∼ Unif( 1
1000 , 1), k ∼ Unif( 1

10 , 10), and β ∼ Unif(0, 20).
(14)

Figure 2 displays the ABC posterior samples when only using the aggregated
data (13).

The p and k posteriors are quite informative, whereas the scale parameters α
and β are skewed in opposite directions and seem to compensate for each other.

14



0 10 0 1 0 10 0 20

α p k β

Prior ABC (50 xs’s) ABC (250 xs’s) True

Figure 2: ABC posterior samples of a NegBin(α, p)–Weib(k, β) model fitted to
data simulated by a NegBin(α = 4, p = 2

3 )–Weib(k = 1
3 , β = 1). The posteriors

are based on 50 observations and 250 observations of the xs summaries as
in (13).

We then include the claim frequencies ns in the input data of our ABC algorithm
to see if this helps in getting posterior samples closer to the target. Figure 3
displays the ABC posterior samples of the claim sizes model when the claim
frequency data is available in addition to the summaries (13).

0.0 2.5 5.0 7.5 10.0 0 5 10 15 20

k β

ABC (50 xs’s)

ABC (50 xs’s & ns’s)

ABC (250 xs’s)

ABC (250 xs’s & ns’s)

True

Figure 3: ABC posterior samples of a Weib(k, β) model fitted to data simulated
by a NegBin(α = 4, p = 2

3 )–Weib(k = 1
3 , β = 1). The data includes each summary

xs as in (13) and each frequency ns. The posterior with 250 observations is a
slight improvement over the one with 50 observations.

The ABC posteriors are very strongly concentrated around the true values k = 1
3

and β = 1 compared to that of Figure 2.

We now turn to the case where the model is misspecified. The same data
simulated from a NegBin(α = 4, p = 2

3 )–Weib(k = 1
3 , β = 1) model is used to

fit a NegBin(α, p)–Gamma(r,m) model. The prior distributions over the four

15



parameters are uniform with

α ∼ Unif(0, 20), p ∼ Unif( 1
1000 , 1), r ∼ Unif(0, 10), and m ∼ Unif(0, 20).

(15)
The true values for the gamma distribution parameters are replaced by the
maximum likelihood estimators based on a large sample of Weibull distributed
individual losses. Figure 4 displays the ABC posterior samples when only using
the aggregated data (13).

0 10 0 1 0 10 0 50

α p r m

Prior ABC (50 xs’s) ABC (250 xs’s)

True MLE

Figure 4: ABC posterior samples of a NegBin(α, p)–Gamma(r,m) model fitted
to data simulated by a NegBin(α = 4, p = 2

3 )–Weib(k = 1
3 , β = 1) model. The

data only includes the summaries xs as in (13). The target values are the true
values for α and p and the MLE estimates for k and β given the claim sizes.

The ABC posterior distributions are informative regarding p, r and m, however
the algorithm does not improve significantly the prior assumption over α.

Figure 5 displays the ABC posterior samples for the parameter of the gamma
distribution when the claim frequency data is available in addition to the
summaries (13).

The posterior sample for m does not seem to center around the maximum likeli-
hood estimator. Note that the situation improves greatly when considering a
larger sample, of size 500 say. Also note that by fitting a gamma model on the
individual losses, the mean a posteriori for m is around 40, which may explain
why our ABC posterior somewhat miss the target.

To perform model selection, we specify to our ABC algorithm the Weibull and
the gamma distribution as competing models for the claim sizes and we set
uniform priors as in (14) and (15) over the parameters. The model evidences
computed via ABC are reported in Table 2.

When only the summaries xs are available and the claim frequency is modeled by
a negative binomial distribution then ABC cannot decide between the Weibull
and the gamma distributions. When the claim counts ns are also available then
ABC favors greatly the Weibull model for the claim sizes.
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0 1 2 3 4 0 20 40

r m

ABC (50 xs’s)

ABC (50 xs’s & ns’s)

ABC (250 xs’s)

ABC (250 xs’s & ns’s)

MLE

Figure 5: ABC posterior samples of a Gamma(r,m) model fitted to data simulated
by a NegBin(α = 4, p = 2

3 )–Weib(k = 1
3 , β = 1) model. The data includes each

summary xs as in (13) and each frequency ns.

Sample Sizes
Frequency Model

Negative Binomial Observed Frequencies

50 0.51 0.88
250 0.44 1.00

Table 2: Model evidence in favor of a Weib(k, β) model when compared against
a Gamma(r,m) model for data simulated by a NegBin(α = 4, p = 2

3 )–Weib(k =
1
3 , β = 1) model. The values should increase to 1 as the sample size increases.

4.2 Dependence between the claim frequency and severity

Let the claim frequency be Poisson distributed

n1, . . . , nt
i.i.d.∼ Poisson(λ = 4),

with p.m.f.

pN (k ; λ) =
e−λλk

k!
, k ≥ 0.

The claim sizes are assumed to be exponentially distributed with a scale parameter
depending on the observed claim frequency with

us,1, . . . , us,ns | ns
i.i.d.∼ Exp(µ = β eδns), for s = 1, . . . , t.

We denote this us ∼ DepExp(ns ; β, δ), and take β = 2 and δ = 0.2. The
resulting conditional p.d.f. is

fU (x | n ; β, δ) =
1

βeδn
exp
(
− x

βeδn
)
, x > 0.

This dependence structure relates to the insurance ratemaking practice where
premiums are computed using the average claim frequency and severity predicted
by a generalized linear models (GLM). In the classical setting, the claim frequency
is assumed to be Poisson distributed and the claim sizes are gamma distributed.
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The GLM are then fitted independently for the claim frequency and the claim
severity, we refer to Renshaw [25]. Empirical studies, like the one conducted
in Frees et al. [12], have shown how the claim sizes may vary with the claim
frequency. A standard practice is then to include the predicted claim frequency
as a covariate within the claim sizes model, see for instance Shi et al. [28]. It
then reduces to bump the expectation of the severity by a factor eδns . Our case
study is inspired by Garrido et al. [13, Example 3.1]. The available data is the
aggregated claim sizes

xs =

ns∑
k=1

us,k, s = 1, . . . , t. (16)

We consider data histories of length t = 50 and 250.

Uniform prior distributions are set over the model parameters as

λ ∼ Unif(0, 10), β ∼ Unif(0, 20), and δ ∼ Unif(−1, 1).

Figure 6 displays the posterior samples of λ the parameter of the Poisson
distribution, β the scale parameter of the exponential parameter and δ the
frequency/severity correlation parameter.

0 5 10 0 10 20 -1 0 1

λ β δ

Prior ABC (50 xs’s) ABC (250 xs’s) True

Figure 6: ABC posterior samples of a Poisson(λ)–DepExp(n;β, δ) model fitted
to data simulated by a Poisson(λ = 4)–DepExp(n;β = 2, δ = 0.2). The data only
includes the summaries xs as in (16).

The algorithm does a tremendous job on this example even without including
the claim count information of each time period.

Figure 7 displays the ABC posterior samples associated to the claim sizes
distribution DepExp(n;β, δ) when including the frequency information in addition
to the summaries (16).

As already noted, the inclusion of the claim frequency information improves the
ABC posterior samples.

5 Application to a real-world insurance data set

We consider an open source insurance data set named ausautoBI8999 consisting
of 22, 036 settled personal injury insurance claims in Australia, the first five
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0 5 10 15 20 -0.5 0.0 0.5

β δ

ABC (50 xs’s)

ABC (50 xs’s & ns’s)

ABC (250 xs’s)

ABC (250 xs’s & ns’s)

True

Figure 7: ABC posterior samples of a DepExp(n;β, δ) model fitted to data
simulated by a Poisson(λ = 4)–DepExp(n;β = 2, δ = 0.2). The data includes
each summary xs as in (16) and each frequency ns.

observations are displayed in Table 3.

Date Month Claim Severity

1993-10-01 52 87.75
1994-02-01 56 353.62
1994-02-01 56 688.83
1994-05-01 59 172.80
1994-09-01 63 43.29

Table 3: ausautoBI8999 personal injury claim data.

The data is accessible from the R package CASDatasets, see Dutang and Charp-
entier [10]. The data is then aggregated monthly by reporting the number of
claims along with the sum of all the compensations associated to each month,
see Table 4.

Month Claim Frequency Total Claim Severity

49 149 1.55e+06
50 188 3.21e+06
51 196 4.81e+06
52 203 4.22e+06
53 226 5.27e+06

Table 4: Monthly aggregated data.

Descriptive statistics for the claim sizes, claim frequencies and the aggregated
claims sizes are reported in Table 5.

We are going to use ABC to fit and compare loss models using only the monthly
aggregated data in Table 4. We would like to know whether the results differ
from fitting the same loss models but using the individual claim sizes data in
Table 3.
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Statistics Claim Severity Claim Frequency Total Claim Severity

Count 2.20e+04 6.90e+01 6.90e+01
Mean 3.84e+04 3.19e+02 1.23e+07
Std 9.10e+04 1.09e+02 5.22e+06
Min 9.96e+00 9.40e+01 1.55e+06
25% 6.30e+03 2.31e+02 8.21e+06
50% 1.39e+04 3.12e+02 1.20e+07
75% 3.51e+04 3.81e+02 1.55e+07
Max 4.49e+06 6.06e+02 2.63e+07

Table 5: Descriptive statistics of the claim data.

Severity model Parameters MLE BIC

Gamma
r 4.09e+0

6.46e+5
m 5.35e+3

Weibull
k 7.08e-1

5.03e+5
β 2.86e+4

Lognormal
σ 9.56e+0

5.00e+5
µ 1.46e+0

Table 6: Maximum likelihood estimates of a gamma, Weibull and lognormal
distribution based on the individual claim sizes data.

We start by studying the individual loss distribution. We fit a gamma, a
lognormal and a Weibull model to the data shown in Table 3 using maximum
likelihood estimation. The estimates of the parameters are given in Table 6 and
will serve as benchmark for our ABC posterior samples.

The lognormal distribution seems to provide the best fit when looking at the val-
ues of the Bayesian Information Criteria (BIC). This result is visually confirmed
by the quantile-quantile plots displayed in Figure 8.

We then investigate the stationarity of the individual loss distribution by fitting
the three loss models to the data associated to each time period separately.
Figures 9 to 11 display the parameters of the gamma, Weibull and lognormal
distribution respectively depending on the time period considered.

The parameters of the Weibull and gamma distributions exhibit a high variability,
see Figures 9 and 10, while the parameters of the lognormal distribution are
more stable, see Figure 11. The model evidences, displayed in Figure 12, are
computed using the Schwarz criterion that approximates the Bayes factor using
the maximum likelihood estimators and the BIC.

The model probabilities mostly favor the lognormal model.

We use ABC to fit a NegBin(α, p)–LogNorm(µ, σ) model to the total claim
severities data in Table 4 which consists of t = 69 summaries of the form

xs =

ns∑
k=1

us,k, s = 1, . . . , t. (17)
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Figure 8: Quantile-quantile plots associated to the gamma, Weibull and lognormal
models fitted to the individual claim sizes data.
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Figure 9: Parameters of the gamma model.
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Figure 10: Parameters of the Weibull model.

We consider two sets of prior assumptions over the parameters:

1. α ∼ Unif(0, 20), p ∼ Unif( 1
1000 , 1), µ ∼ Unif(−10, 10), and σ ∼ Unif(0, 10),

2. α ∼ Unif(0, 20), p ∼ Unif( 1
1000 , 1), µ ∼ Unif(0, 20), and σ ∼ Unif(0, 10).

Prior settings 1 and 2 only differ in the boundaries of the uniform distribution
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Figure 11: Parameters of the lognormal model.
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Figure 12: Model evidence for the gamma, lognormal and Weibull models.

of µ. We opt for a more intensive ABC calibration compared to that of section
4. The number of iterations is fixed at G = 20 when the claim frequencies
are known and G = 15 when they are not. The ABC posterior samples of
the NegBin(α, p)–LogNorm(µ, σ) model using only the summaries xs in (17) are
shown in Figure 13.

The results with prior settings 1 and 2 are noticeably different. More specifically,
the ABC posterior are tighter and more centered around the MLE estimates
with prior 2 at least when it comes to estimating the parameters p, µ and σ.

The ABC posterior samples when including the claim frequency information are
shown in Figure 14. We keep the same prior assumptions over µ and σ.

Including the claim frequency data helps in making the results consistent from
one prior setting to the other.

We now turn to the problem of selecting a model for the claim sizes, so we specify
a negative binomial distribution NegBin(α, p) with uniform prior distributions

α ∼ Unif(0, 20), p ∼ Unif(0, 1)

to model the claim frequency and let our ABC algorithm pick a claim amounts
models among the following:
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Figure 13: ABC posterior samples of a NegBin(α, p)–LogNorm(µ, σ) model fitted
to a real world insurance data set. The data includes the total claim severities
(17) data in Table 4. The posterior samples are closer to the MLE estimates
with prior 2 than with prior 1.

5.0 7.5 10.0 12.5 15.0 0 1 2 3

µ σ

Prior 1 (xs’s)

Prior 1 (xs’s & ns’s)

Prior 2 (xs’s)

Prior 2 (xs’s & ns’s)

MLE

Figure 14: ABC posterior samples of a LogNorm(µ, σ) model fitted to a real
world insurance data set. The data includes the total claim severities and the
claim frequencies in Table 4. When the xs’s and ns’s are both observed, the
posterior samples with Prior 1 and Prior 2 almost totally overlap and are
reasonably close to the MLE estimates.

• Weib(k, β) with prior distributions

k ∼ Unif( 1
1000 , 1), β ∼ Unif(0, 4× 104),

• Gamma(r,m) with prior distributions

r ∼ Unif(0, 100), β ∼ Unif(0, 1.5× 105),

• LogNorm(µ, σ) with prior distributions

µ ∼ Unif(5, 10), σ ∼ Unif(0, 3).
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The bounds of the uniform distributions are set to reflect the variability of the
parameters in Figures 9 to 11. The model evidences are reported in Table 7.

Frequency Model
Severity Model

Gamma Lognormal Weibull

Negative Binomial 0.92 0.01 0.07
Observed Frequencies 0.00 0.49 0.51

Table 7: ABC model evidence with the claim frequency and the aggregated
claim sizes data.

We see that ABC strongly favors the gamma model when the claim frequency is
assumed to have a negative binomial distribution. When including the claim
count, ABC discards the gamma model but is unable to decide between the
Weibull or the lognormal model. This result is of course a little disappointing
but probably means that ABC would need more than 69 observations to pick
the right model.

6 Conclusion

This paper is a case study of an ABC application in insurance. We showed how
to use this method to calibrate insurance loss models with limited information
(one data point per time period). The fact that the method does not require the
knowledge of the likelihood function permits to go beyond the classical setting
where independence is assumed between the claim frequency and the claim sizes.

An ABC routines essentially relies on two things: (i) an efficient sampling
strategy and (ii) a reliable measure of dissimilarity between samples of data. We
put together an ABC routine that implements a parallel sequential Monte Carlo
sampler and uses the Wasserstein distance to compare the synthetic data to the
observed one. The python code may be downloaded from the following GitHub
repository https://github.com/LaGauffre/ABCFitLoMo.

ABC has become over the years a common practice in a variety of fields ranging
from ecology to genetics. We believe that ABC could be also applied to a wide
range of sophisticated models that arise in finance and insurance.
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A Algorithmic details

Algorithm 5 Sequential Monte Carlo Approximate Bayesian Computation
Algorithm.

1: for k = 1→ K do
2: repeat
3: generate θ1

k ∼ π(θ)
4: generate xk ∼ p(x | θ1

k)
5: until xk ∈ B∞,x
6: end for
7: compute π̂ε1(θ | x) = 1

K

∑K
k=1Kh(‖θ − θ1

k‖)
8: for g = 2→ G do
9: for k = 1→ K do

10: repeat
11: generate θgk ∼ π̂εg−1(θ | x)
12: generate xk ∼ p(x | θgk)
13: until xk ∈ Bεg−1,x

14: end for
15: set εg = Quantile

(
‖x+ − x+

1 ‖, . . . , ‖x+ − x+
K‖ ; α

)
16: for k = 1→ K do
17: set wgk ∝

π(θgk)

π̂εg (θgk|x)
IBεg,x(xk)

18: end for
19: compute π̂εg (θ | x) =

∑K
k=1 w

g
kKh(‖θ − θgk‖)

20: end for
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Algorithm 6 ABC-SMC for model selection.

1: for k = 1→ K do
2: repeat
3: generate m1

k ∼ π(m)
4: generate θ1

k ∼ π(θ | m1
k)

5: generate xk ∼ p(x | m1
k,θ

1
k)

6: until xk ∈ B∞,x
7: end for
8: for m = 1, . . . ,M do
9: compute π̂ε1(m | x) = 1

K

∑K
k=1 I{m1

k=m}

10: compute π̂ε1(θ | m,x) = 1
K

∑K
k=1

1
π̂ε1 (m|x)Kh(‖θ − θ1

k‖)I{m1
k=m}

11: end for
12: for g = 2→ I do
13: for k = 1→ K do
14: repeat
15: generate mg

k ∼ π(m)
16: generate θgk ∼ π̂εg−1

(θ | mg
k, x)

17: generate xk ∼ p(x | mg
k, θ

g
k)

18: until xk ∈ Bεg−1,x

19: end for
20: set εg = Quantile(‖x+ − x+

1 ‖, . . . , ‖x+ − x+
K‖ ; α)

21: for k = 1→ K do
22: set wgk ∝

π(θgk|m
g
k)

π̂εg−1
(θgk|m

g
k,x)

IBεg,x(xk)

23: end for
24: for m = 1, . . . ,M do
25: compute π̂εg (m | x) =

∑K
k=1 w

g
kI{mgk=m}

26: compute π̂εg (θ | m,x) =
∑K
k=1

wgk
π̂εg (m|x)Kh(‖θ − θgk‖)I{mgk=m}

27: end for
28: end for
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