Approximate Bayesian Computations to fit and compare insurance loss models - Archive ouverte HAL
Article Dans Une Revue Insurance: Mathematics and Economics Année : 2021

Approximate Bayesian Computations to fit and compare insurance loss models

Résumé

Approximate Bayesian Computation (ABC) is a statistical learning technique to calibrate and select models by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires only the ability to generate synthetic data from the models of interest. We apply ABC to fit and compare insurance loss models using aggregated data. A state-of-the-art ABC implementation in Python is proposed. It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to compare the observed and synthetic data. MSC 2010 : 60G55, 60G40, 12E10.
Fichier principal
Vignette du fichier
ABCFitLoMo_Goffard_Laub_V2.pdf (481.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02891046 , version 1 (06-07-2020)
hal-02891046 , version 2 (29-04-2021)

Identifiants

Citer

Pierre-Olivier Goffard, Patrick Laub. Approximate Bayesian Computations to fit and compare insurance loss models. Insurance: Mathematics and Economics, 2021, 100, pp.350-371. ⟨10.1016/j.insmatheco.2021.06.002⟩. ⟨hal-02891046v2⟩
110 Consultations
742 Téléchargements

Altmetric

Partager

More