Learning Personalized ADL Recognition Models from Few Raw Data - Archive ouverte HAL Access content directly
Journal Articles Artificial Intelligence in Medicine Year : 2020

Learning Personalized ADL Recognition Models from Few Raw Data


Recognition of Activities of Daily Living (ADL) is an essential component of assisted living systems based on actigraphy. This task can nowadays be performed by machine learning models which are able to automatically extract and learn relevant features but, most of time, need to be trained with large amounts of data collected on several users. In this paper, we propose an approach to learn personalized ADL recognition models from few raw data based on a specific type of neural network called matching network. The interest of this few-shot learning approach is threefold. Firstly, people perform activities their own way and general models may average out important individual characteristics unlike personalized models that could thus achieve better performance. Secondly, gathering large quantities of annotated data from one user is time-consuming and threatens privacy in a medical context. Thirdly, matching networks are by nature weakly dependent on the classes they are trained on and can generalize easily to new activities without needing extra training, thus making them very versatile for real applications. Our results show the effectiveness of the proposed approach compared to general neural network models, even in situations with few training data.
Fichier principal
Vignette du fichier
compagnon_learing_personalized.pdf (441.39 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02882684 , version 1 (04-03-2021)



Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia. Learning Personalized ADL Recognition Models from Few Raw Data. Artificial Intelligence in Medicine, 2020, pp.101916. ⟨10.1016/j.artmed.2020.101916⟩. ⟨hal-02882684⟩
164 View
195 Download



Gmail Facebook X LinkedIn More