N

N

Learning Personalized ADL Recognition Models from
Few Raw Data
Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia

» To cite this version:

Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia. Learning Personalized
ADL Recognition Models from Few Raw Data. Artificial Intelligence in Medicine, 2020, pp.101916.
10.1016/j.artmed.2020.101916 . hal-02882684

HAL Id: hal-02882684
https://hal.science/hal-02882684

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02882684
https://hal.archives-ouvertes.fr

Learning Personalized ADL Recognition Models
from Few Raw Data

Paul Compagnon®P?, Grégoire Lefebvre?, Stefan Duffner®, Christophe Garcia”

%Orange Labs, Grenoble, France
YLIRIS, UMR 5205 CNRS, INSA Lyon, France

Abstract

Recognition of Activities of Daily Living (ADL) is an essential component of as-
sisted living systems based on actigraphy. This task can nowadays be performed
by machine learning models which are able to automatically extract and learn
relevant features but, most of time, need to be trained with large amounts of
data collected on several users. In this paper, we propose an approach to learn
personalized ADL recognition models from few raw data based on a specific
type of neural network called matching network. The interest of this few-shot
learning approach is three-fold. Firstly, people perform activities their own way
and general models may average out important individual characteristics un-
like personalized models that could thus achieve better performance. Secondly,
gathering large quantities of annotated data from one user is time-consuming
and threatens privacy in a medical context. Thirdly, matching networks are by
nature weakly dependent on the classes they are trained on and can generalize
easily to new activities without needing extra training, thus making them very
versatile for real applications. Our results show the effectiveness of the proposed
approach compared to general neural network models, even in situations with
few training data.

Keywords: Few-Shot learning, Matching Networks, Activity of Daily Living,
eHealth, Inertial Measurement Unit, Gated Recurrent Units
2010 MSC: 68T05, 62H30

1. INTRODUCTION

As life expectancy increases, more and more elderly people show difficulties
in their every day life, and allowing them to stay at home is a social and public
health issueﬂ Many people even struggle performing basic need activities. They
are also particularly exposed to chronic diseases: diabetes, cancer, psychological
and cognitive disorders, heart diseases, Parkinson and Alzheimer, etc. They are
finally vulnerable in simple daily life activities where they could fall, make a

Lwww.who.int/ageing/publications/world-report-2015

Preprint submitted to Journal of Artificial Intelligence In Medicine March 4, 2021

www.who.int/ageing/publications/world-report-2015

20

25

30

35

40

45

wrong move or loose attention. Furthermore, 15% of the world population
lives with a form of handicap, between 2 and 4% suffering severe disabilitiesﬂ
All these persons could benefit from eHealth services and particularly activity
monitoring [I]. The process of recording the every day life activities of a subject
using sensors (inertial sensors, for instance) is called actigraphy. Instead of
organizing regular visits at the hospital, the patient can be monitored in his/her
house with several upsides: it improves the quality of life of the patient and
shortens hospital stays while facilitating the diagnosis as important data are
collected in the usual environment of the patient. Of course, clinical visits are
indispensable but can only take a snapshot of the patient’s condition and may
occur too late during the disease development [2].

Inertial data are particularly interesting and nowadays easy to record with
smartphone sensors (or smart watches, clothes, etc.) which can be carried with-
out stigmatizing the person. They are judged less intrusive at home and more
respectful of privacy. They also allow for a continuous monitoring of the person
whereas home sensors only work where they are installed and do not target a
specific inhabitant. These data can then be used to provide eHealth services
regarding the recorded level of activity and the distribution of those activities
during the day. Traditionally, the level of autonomy has been evaluated thanks
to several criteria related to the Activities of Daily Living (ADL, e.g. having
lunch, watching television etc.). This evaluation appears as a pertinent factor
for the clinical evaluation of elderly people [3]. It is possible to observe, with
the help of actigraphy systems, changes in a person’s behavior and so the possi-
ble loss of autonomy. Data obtained this way allow to perform ADL or posture
classification and prediction and to automatically detect falls. Early approaches
consisted in (manually) defining expert rules and thresholds for the sensor values
leading to posture recognition and then activities, nowadays machine learning
models can automatically learn to classify these data. Moreover, neural net-
work models are able to automatically extract the relevant features to process
and are able to adapt easily to new activities and new users [4]. To be able
to eventually equip people with such systems, high classification accuracy is re-
quired, particularly for critical events such as falls. Moreover, compliance with
legal regulations, such as the General Data Protection Regulationﬂ (GDPR),
and privacy preservation are a necessity.

We tackle both of these issues in this extended version of our paper [5] by
proposing a model able to perform personalized ADL classification from few raw
data. Contrary to a common practice [6], we advocate for personalized models
instead of general models: better performances can be achieved with person-
alized models since each user has his/her own way of doing his/her activities.
It is for example, possible to recognize a person by analyzing his/her gait [7].
In broader perspectives, these personalized models may be more compact as
well as easier and faster to train, adapted to smartphones and embedded wear-

2www.who.int/disabilities/world_report/2011/report

Shttps://eugdpr.org/the-regulation/

www.who.int/disabilities/world_report/2011/report
https://eugdpr.org/the-regulation/

50

55

60

65

70

75

80

85

90

able devices with less energy consumption [8] in the critical context of climate
change. However, most of the time, due to privacy concerns and the time needed
to annotate each sample, we have very few data coming from a single user in
order to effectively train supervised activity recognition models. To overcome
this issue, we propose an ADL recognition model based on the matching net-
work architecture [9], and performing few-shot learning, that is, a model able
to recognize classes from just one or few samples. Matching networks are by
design weakly dependent on the classes they are trained on and therefore can
adapt with only one new annotated sample to any new activity class performed
by the user, making them very versatile and suited for real environments. Ex-
ploiting this property, we demonstrate that the performance can be improved
by using another inertial dataset that contains different classes to pretrain the
encoding part of the network and that further acts as a validation set to prevent
overfitting. The final results show that our approach called SSMN (Sequence-to-
Sequence Matching Networks) achieves comparable performances with classical
neural network approaches trained on a whole dataset and further obtains over
90% accuracy on one-shot fall classification.

The paper is organized as follows. We summarize in Section [2| previous work
on personalized activity recognition and few-shot learning. We then describe
our approach for few-shot personalized activity recognition based on matching
networks in Section In the Section [4] we report the results of several ex-
periments on the MobiAct V2 Dataset [10] and the UCI HAR dataset [1I] and
assess the utility of the different components of the model and its capacity to
predict classes that have not been used for training. Finally, conclusions and
perspectives are drawn in Section [5]

2. RELATED WORK

Human Activity Recognition is a very broad computer science field which
alms to recognize what a person is doing by analyzing data related to this
person recorded from various sensors or instruments. It has numerous applica-
tions: from crime detection on video surveillance images to gesture recognition
when performing a physical activity. It can be performed in several contexts
(Lara et al. [12] listed seven types: ambulation, transportation, phone usage,
exercise/fitness, military, upper body gestures, for instance involved in human-
computer interactions), using different types of data (e.g. photos, videos, sounds
but also smart home data, smart phone communications data or inertial data)
and with different approaches i.e. time series analyses, rule-based models, sta-
tistical models, machine learning and especially neural networks. The question
of personalized models is essential to achieve the best performances: indeed,
most of the time, people perform activities in a very personal way. In 2004,
Bao et al. [I3] already observed that user-specific models could lead to bet-
ter results. They used a decision tree to classify 20 activities including daily
household activities with data coming from five accelerometers placed at dif-
ferent body locations. The activities were represented as vectors composed of
several extracted features such as mean, energy, etc. Since then, several other

95

100

105

110

115

120

125

130

135

papers came to the same conclusion that personalized models are indeed more
accurate. Sun et al. [I4] proposed an approach based on multitask learning to
learn online personalized activity recognition models while taking advantage of
the high resemblance of each task. Another approach by Longstaff et al. [15]
proposes to improve the training of already deployed models with specific-user
data to obtain a more adapted model. They succeeded in improving the perfor-
mance by at least 10% with various methods of active learning or co-learning,
though active learning requires a large amount of additional user interaction.
This issue of not having sufficient data from a single user was not really tackled
by previous works, and few-shot learning provides in this context a promising
approach. For example, Nguyen et al. [16] built a model able, once operational,
to learn to detect never seen activities from very few wearable-sensor data. The
model consists in a feature-based part associated by decision fusion with rules
connecting the new activity to the others already learned by the model. This
way, the model is able to prevent the degradation of performances resulting
from adding a class but also not to overfit too much by learning from only 2
or 3 sequences. In another work, Wu et al. [I7] presented an approach for
one-shot classification of gestures from RGBD videos. They used classical video
features and tried to match test samples with one unique training example using
the maximum correlation coefficient. Matching networks [9] (see Section [3.2] for
details) are also based of this idea of matching samples with references but use
metric learning instead [I8]. Following this idea, Sani et al. [19] proposed to use
matching nets to produce personalized models from accelerometer data. Their
method achieved 79% of F-measure on 9 classes, outperforming most standard
approaches trained on every user data. However, our work differs from theirs
in several points. First, they seem not to have used the full-context embed-
ding (see which can provide slight improvements. Then, they trained and
tested the model on every class at the same time whereas matching networks
are conceived to work independently of the classes they are trained on. Finally,
they used discrete cosine transform coefficients as features whereas we trained a
sequence-to-sequence model on a different dataset to get a good encoder with-
out having to select handcrafted features.

All previous works tested their approach on different datasets and the lack
of reference datasets is a known issue among the activity recognition commu-
nity. It is due to the variety of contexts in which it can be performed and also
the variety of data that can be used. We chose to concentrate on two recent
datasets on which results have already been published in order to be able to
perform comparisons. The first one is MobiAct V2 [10] which contains 12 ADL
and 4 falls. The authors of the dataset used it for activity and fall recogni-
tion with the goal to develop the most effective pipeline in terms of accuracy.
To do so, the authors conducted an exhaustive study to find the best features
(for example, they found that the spectral centroid was quite essential). They
achieved 97% accuracy score with an instance-based k-nearest neighbor classi-
fier. On the contrary, Di Pietro et al. [20] proposed a new neural network model
called MIxed hiSTory Recurrent Neural Networks (MIST) which they tested on

140

145

150

155

160

165

170

175

MobiAct V2, among others. They did not select features and learn directly
from the raw data. They separated users into fixed train, validation and test
groups and repeated the same experiment 50 times and kept the 5 best results.
Their approach requires less computation and produces better results than a
Long Short-Term Memory (LSTM) Neural Network by achieving 71% of accu-
racy. Finally, Tsinganos [2I] proposed a threshold-based approach combined
with a nearest neighbor algorithm and a mechanism of adaptation to the user
of the feature vectors to classify falls. They achieved above 90% of accuracy of
fall detection on MobiAct V2 dataset. Contrary to those approaches, we aim
at building personalized models on the MobiAct V2 but each user has at most
around 50 sequences, which is not enough to train a classical neural network
model able to automatically extract and process the relevant features. We thus
propose to use matching networks instead to build our architecture.

We also experimented on a second dataset called UCI HAR [II] containing 30
users and 6 activities. The authors notably achieved 96% accuracy with a mul-
ticlass SVM. Numerous results have since been published for this dataset. Zhao
et al. [22] proposed to use a residual bidirectionnal long-short term memory
recurrent neural network to classify the sequences of the dataset and obtained
an accuracy of 91.1%. Jiang et al. [23] proposed an approach based on convo-
lutional neural networks (CNN). They designed an architecture able to achieve
high accuracy with a low computational cost and got around 95% test accuracy.
CNN notably require a large quantity of data to be properly trained which
is more difficult to obtain in these personalized settings. San-Segundo et al.
[24] proposed to use Hidden Markov models (HMM) but with user adaptation
which resulted in an error rate of 2% and a recall of 95.3%. Their model is
first trained on the data of every users before being tuned for one specific user
with Bayesian adaptation. Though being personalized and using finetuning, our
approach presents several differences with theirs. First, their approach actually
needs to be first trained with the whole dataset before being finetuned for one
user whereas the proposed Matching Networks-based approach can be finetuned
with any inertial dataset from the literature. Then, their model is composed
of 6 HMM, one for every class which makes the addition of a new class more
difficult to set up whereas, once trained, our approach can recognize a new class
using just one sequence.

3. LEARNING PERSONALIZED MODELS FOR ADL CLASSIFI-
CATION

3.1. Sequence Processing with Recurrent Neural Networks

Postures, ADL or falls exhibit a dynamic characteristic signature (e.g. walk-
ing, running, going upstairs) or are, on the contrary, more static (i.e. lying,
sitting, standing, etc). Considering the whole sequence of raw data to clas-
sify a posture is thus pertinent [25]. A classical approach when working with
sequences is to extract several signal feature vectors from subsequences of the
signal in order to build a classifier. This approach is efficient in numerous cases

180

185

190

195

200

but, as the window size is limited, it cannot exploit long term dependencies.
Recurrent Neural Networks (RNN) possess recurrent connections which give
the ability to map an input sequence to an output sequence while at each step
taking the information of previous steps into account. This enables the network
to not only extract inter-signal but also intra-signal correlations and thus to
detect more complex patterns. Let x be the sequence of inputs of the network
and x; be the input at time ¢. A recurrent network computes g, the sequence
of outputs following this equation:

gt = f(W:vxtb:v + Whhtfl + bh)a (1)

where W, and W), are respectively the input and hidden synaptic weight ma-
trices, b, and by, the biases and h;_1, the hidden state of the previous step. f
is an activation function, generally tanh. It is a well-known issue that these
networks struggle with long-term dependencies, i.e. when they need to learn
to retain information during a long time [26]. This is the so-called vanishing
gradient problem which has been partly solved by the LSTM model [27]. Gated
Recurrent Units (GRU) [28] can be viewed as a simplified version of the LSTM
approach, while showing similar performance on most sequential data analysis
tasks [29], e.g. speech and music modeling. A GRU computes the vector h; as
follows:

ht = (1 — Zt) * ?lt + 2 * ht—1~ (2)

The hidden state h; is updated by forgetting the old content and directly
adding some new. z; is called the update gate and is computed according to the
following equation:

2zt = o(Wias + bz + Whahe—1 + bpz), (3)

_ where o is the logistic sigmoid function. We have the following relation for
h: named the new gate:

hy = tanh(W;z¢ + by, + 1e(Wyphee1 + 7)), (4)

where finally r; is the reset gate computed similarly as z;:

Ty = U(Wirxt + bir + Whrhtfl + bhr)~ (5)
One interesting way of using RNN and GRU is to learn vector represen-
tations in a similar fashion as auto-encoders [30] by connecting two RNN: an
encoder and a decoder. So-called Sequence-to-Sequence models [31] learn how
to reconstruct the input sequence from the last output of the encoder. In that
way, a robust representation of the sequence can be learned. Adding noise (of-
ten putting 30 or 50% of the values of the sequence to zero) to the input is a
good way to improve the model’s generalization capacities [32]. The decoder
is therefore trained to reconstruct the non-noisy original sequence, forcing the
encoder to produce more robust features. The learned representations can then
be used by other neural network architectures such as matching networks, which
we will describe in the following.

205

210

215

220

225

3.2. Few-shot Learning with Matching Networks

Neural networks typically need a large quantity of annotated data to be
trained properly, this requirement is even harder to fulfill for personalized mod-
els. A way around that would be to train a GRU on data from several users
and then to perform a fine tuning of the last layer with user-specific data. This
typically works well for image classification [33] and allows to reuse classical
CNN architectures trained on large datasets (e.g. Imageneiﬁ) on more specific
tasks. These types of models make use of several layers of representations, the
first ones extracting low-level features common to many images, the last more
high-level and specific patterns.

Another way is to train models specifically designed to work with few training
samples. Vinyals et al. [9] developed a model called matching networks based
on metric learning and attention to efficiently learn to perform this task. This
model is not actually trained to classify but rather to match samples with other
examples that are part of a support set called S: it learns to produce a nearest-
neighbor classifier. It allows the model to work at test time with some classes
never seen during training and therefore to perform few-shot and even one-shot
learning. S contains N labeled support examples, one or several for each of the
C classes. The model is described in Figure [1] and is composed of 4 parts. The
first is an encoder, a neural network (in this case, a GRU) trained to produce a
vector representation y of the example x to be matched and of each sequence in
the support set thus called Sepy,. The following two parts are called the context
embedding and are used to adapt the representations y and Senp relatively to
each other. Thus, the second part, the bidirectional GRU, will produce S, _,,
representations of each element in Sen, according to each other element of the
set. This component processes the sequence in both directions and aggregates
the results according to the following equation:

- —
Sémb:: h +’h +’Semba (6)

where ﬁ and % are the sequences of hidden states produced by the bidirectional
GRU which therefore contain the same number of vectors than Sen,. The
aggregation is an element-wise addition. Another level of sophistication is the
third part which consists in transforming the embedding y according to S, ,,
that is, make it closer in the latent space to the embedding of the support
elements it could match. This is done thanks to an Attention GRU model,
detailed in Algorithm [1} in order to avoid the new representation ¢’ depending
on the order of the vectors in S’ _, [34]. The parameter p, the number of
processing steps, is the number of times 3’ will be passed through the GRU
with r, as input hidden state. Once representations are produced, the last part
computes the distances between y’ and each vector in S/ with, for instance,
the Euclidean distance or the cosine distance. A softmax function allows then

to get probabilities of matching for each member of S which correspond to the

Ihttp://www.image-net.org/

http://www.image-net.org/

230

235

Encoder training Validation

support
dataset l

s L7 Semb T Bidirectional GRU [—1—»| Semb
encoder rep _
distances
and
softmax
denoising
x decoder ¥ Attention GRU [¥
Sequence to Sequence Few-shot training

model

Figure 1: Overview of the SSMN architecture adapted to few-shot sequence classification

Algorithm 1 GRU with read attention [34]

procedure ATTENTIONGRU(y/, S/ .. p)
h + Ol,n
h « GRU(y/, h)
140
for i = (2..p) do
h+ h+y
a <— Ol,N
for j = (0.N —1) doe

!
ai,j A h’Semb,j

a + Softmax(a)
T Zf:fgol ain émb,n
h < GRU(h, r)
t+i+1

return h < h +y/

probability for x to belong to the same class as the member. Finally, the highest
probability determines the class of the input sample.

8.8. Few-shot Learning for Personalized ADL Classification

Matching networks, which are able to generalize new classes from just one
example, present several attracting properties in the context of activity recogni-
tion. They are particularly adapted to build personalized models and can easily
adapt to new activities performed by the user. This is very interesting in a real
context where people do a large variety of activities every day and sometimes
completely new ones which would thus be recognizable without retraining the
whole model. The general architecture described in the previous section can be
used with any type of data by choosing the right encoder for those data. In
their original paper, Vinyals et al. [9] used classical convolutional models pre-
trained on large datasets as encoders (such as VGG [35] or Inceptions [36] for

240

245

250

255

260

265

270

275

280

image processing tasks) then they perform or not a finetuning of this encoder at
training time on the specific small datasets. Here, we propose to train a GRU
encoder for sequences as a sequence-to-sequence model [37] from which we kept
only the encoder part. We leverage the properties of matching nets previously
exposed by proposing to use another dataset to train the sequence-to-sequence
model, and we therefore call our approach SSMN (Sequence-to-Sequence Match-
ing Networks). This dataset must contain very similar data (i.e. inertial data)
to the dataset we are trying learn but can be taken from the literature and can
have completely different classes. This could be assimilated to some form of
transfer learning [38] but the data actually stay very similar. Another way to
exploit this property is to also use this similar dataset as a validation set to
avoid overfitting during the training of the matching nets which is done with
very few data (2 or 5 sequences for each activity plus one in the support set).
Thus more data can be kept to train and test the model. We call this other
dataset, a support dataset: it is not strictly necessary but can largely increase
the performanc of SSMN.

In the next section, we experimentally verify the benefit of using a support
dataset together with the property of matching networks to be independent
of the classes they are trained on by presenting only test results on classes not
used for training and recognized from just one support example (i.e. performing
one-shot learning).

4. EXPERIMENTS

4.1. Preliminary Fxzperiment: Personalized Postures Classification

We first propose a preliminary experiment on a dataset called Postures where
personalized models are learned on inertial data with a standard GRU only. This
dataset will be used afterwards as support dataset as explained in section [3.3
The Postures dataset was created by Quach [39]. The data has been acquired
using a 9-axes Inertial Measurement Unit (accelerometer, gyroscopes and mag-
netometer, IMU) on 9 subjects executing the same sequence several times. Each
user produced 5 sequences apart from user 2 who did 10. The sequences are
composed of five postures, repeated several times: walking, sitting, lying, stand-
ing and transfer and have been conceived to reflect a daily routine of 24h on a
12 minutes activity sequence. “Transfer” represents the transition between two
postures. Overall, there are about 358k labeled 9D vectors and 1938 segments
of sequence related to one activity (see Table [1| for details). The sampling fre-
quency is about 10 Hz. The used sensor was a Shake SK6 [40] with the following
range and precision for each sensor. The range of the triple axes accelerometer
is at most £6g with a precision of 1mg. The range of the triple axes gyroscope
is of £500 ° /s with a precision of 0.1 deg/second. The triple axes magnetometer
has a range of £2 Gauss and a precision of 1 mGauss.

The personalized posture GRU-based models were trained on four sequences
(i.e. nine for user #2) during 150 epochs and were tested on 1 randomly chosen

285

290

295

300

305

310

walking | sitting | lying | standing | transfer | Total
segments 454 280 138 280 751 1938
vectors 63863 | 118802 | 149602 19555 28425 | 380247

Table 1: Summary of Postures dataset activity sequences

Table 2: Results for posture classification on Postures with GRU. (SD: Standard Deviation)

Method F-measure | SD | Accuracy | SD
Makni et al [43] - - 0.807 0.024
GRU [8,3] (all users) 0.553 0.068 | 0.742 | 0.056
GRU [8,8] (user 2) 0.705 0.059 0.874 0.049

sequence. Based on preliminary experiments on the full dataset, we use person-
alized GRU models with two hidden layers of size 8 and found that this shallow
architecture was sufficient to achieve good performance. The process was repro-
duced excluding a different sequence each time (5 times for each user except for
user 2, 10 times). We thus performed a k-folds leave-one-out test of our archi-
tecture where k is the number of sequences associated to one user. Moreover,
regularization is introduced in the training by using dropout and weight decay.
Dropout [41] randomly drops units with a probability 0.5. Weight decay adds a
small penalty to the loss function for the magnitude of the weights, improving
generalization [42]. Finally, each training starts with a learning rate of 0.01
which decreases by a factor 10 if the loss does not diminish during 10 epochs.
In a previous paper using this dataset, Makni et al. [43] compared two
attitude device estimation algorithms and used expert rules and Kalman filters
in order to estimate the individual postures. Our first experiment consists in
reproducing these experiments using only machine learning and no expert a
priori rules. A comparison is presented in Table 2] On average, the GRU
accuracy of 0.742 is lower than the 0.807 achieved in [43]. Nevertheless, our
model is not tuned for each user and no specific expert rule is applied. We used
only one GRU architecture which learns on few examples and generalizes well
to unknown user sequences. This is particularly encouraging when we focus on
the user #2 performances which achieved the best accuracy of 0.874. This is
mainly due to the fact that the user provides twice as much data as other users.
Consequently, asking people to collect only 10 sequences for building a shallow
GRU model shows promising results with an acceptable user effort, in practice.

This preliminary experiment shows the benefit to learn personalized models
with GRU even from only 5 continuous sequences of activities. We will now
push this approach further on a larger dataset with more users and activities
but less data per activities. Based on the results of this preliminary experiment,
we will test our approach SSMN by performing a pretraining of the encoder as
a Sequence-to-Sequence model on Postures.

10

315

320

325

330

335

340

345

350

4.2. The MobiAct V2 Dataset

The MobiAct V2 dataset [10] is an inertial dataset created to support re-
search in ADL recognition. It includes 15 different activity labels: 4 falls and
11 ADL. The activities were recorded following a realistic scenario: a typical
day of work by 67 subjects. In total, the dataset is constituted of about 3200
trial sequences. Data were acquired using a smartphone which the user could
place anywhere. The IMU is composed of a LSM330DLC' itself composed of
a tri-axes gyroscope and a tri-axes accelerometer. The measurement range of
the accelerometer can be selected between +2g, +4g, +8g or +16g. The mea-
surement range of the gyroscope can be selected between £250° /s, +500° /s or
+2000°/s. The orientation sensor combines data from the accelerometer and
the magnetometer. We considered only the 19 usersﬂ for our experiments who
have performed the 15 activities with at least two trials for 12 activities out
of the 15 and one trial for “walking”, “sitting” and “standing”. Each user has
around 53/54 trial sequences in total. No preprocessing was applied to the trial
sequences apart from a resampling to a size of 50. Some trial sequences contain
only one activity, others have several (for example, standing and lying before
and after a fall). We treated each trial as one activity, the one mentioned in the
name of the file containing the trial, and we labeled the resampled sequence.
We did the same on the Postures dataset, after segmenting the dataset to train
the encoder. In a real environment, this segmentation could be replaced by
resampled sliding windows of the signal.

The Postures and MobiAct datasets have three postures in common: walk-
ing, standing and sitting. The lying posture is not independent and always
concatenated with a fall. The posture “transfer” in the Postures dataset can be
assimilated to “stand to sit” ADL in the MobiAct V2 dataset. However, “trans-
fer” is very diverse and less characterized and we did not consider those two
as strictly similar. Moreover, the activities “walking”, “sitting” and “standing”
only have one trial sequence available per user which is not enough to test our
algorithm: we need at least one sequence to be the support example and an-
other to match with it. Thus, we removed “walking”, “sitting” and “standing”
from the MobiAct dataset, to have both datasets having strictly disjoint sets
of activitiesﬂ Features in both datasets are globally the same apart from the
magnetometers which is rather an orientation computed from the other features
in MobiAct. The learned encoder is therefore not exactly adapted to the fea-
tures of MobiAct. We hereafter name this modified version of MobiAct dataset
MiniMobiAct.

5The selected users are the following : 1, 2, 3, 5, 6, 12, 20, 45, 53, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67.

6 Actually, there remain some “standing” or “lying” parts in some sequences, for example
in fall sequences. However, they are not labeled as such and thus will not be learned as such
by the model. Potentially, this could be a factor of confusion for the model, but, in view of
the experimental results, our approach still focuses on the relevant parts of the sequence.

11

355

360

365

370

375

380

385

390

4.8. Training Strategies and Protocol Details

The protocol to train matching networks differs significantly from a classi-
cal machine learning protocol. It is not trained to classify but to produce a
one-shot learning classifier at test time by matching test samples with one sup-
port example per class. The training of such algorithm needs therefore to be
independent from the classes and from the support examples: thus, classes and
not instances are sampled. Nine classes and their corresponding sequences are
randomly chosen to be part of the training set, the remaining three are part of
the test set. During the training, the batches are composed of disjoint classes
and not of a specific number of sequences. We chose a batch size of three to
match the number of classes to predict at test time. In a batch of three classes,
one instance of each class is randomly selected to be a support example. After
each batch, the parameters of the model are updated by computing the log like-
lihood loss on the remaining sequences of the batch classified with the support
examples. At test time, one support example from each test classes is chosen
to be a support example, the other instances are classified. Therefore, at test
time, SSMN is a one-shot classifier (one labeled example per class) which does
not require any more training and every validation or test results subsequently
presented are one-shot learning results on classes never seen at training.

To train this model, we used a learning rate of 0.001 which was divided by
2 every 10 epochs without decreasing of the training loss. The value of the
gradient was also clipped to 6 to avoid exploding gradient in accordance with
[44]. The GRU were initialized with orthogonal weight matrices scaled to have a
spectral radius of 1.1 in accordance with [45]. We used the Postures dataset as a
support dataset to improve the performance of one-shot activity classification.
A sequence-to-sequence model is trained on it and only the encoding part is
kept. For this model, we used a learning rate of 0.01 and a batch size of 10.
To improve generalization capacity, we trained the decoding part as a denoiser
by randomly setting to 0 the values in the input sequence with probability
of 0.3 [32] which produces more robust features. A similar initialization as
mentioned above is also done. In the validation phase, three classes of Postures
are randomly selected to match the batch size.

We report in the following the accuracy and F—measur(ﬂ by concatenating
the results of several train-then-test phases and computing a global score after
40 iterations (thus, on about 400 classifications, depending on the sampling
for MiniMobiAct). The evaluation scores are computed in two different ways.
The 3-way scores are computed from the results of a 3-class classification: the
model is given one new support example (one-shot learning) of three never-seen
classes and tries to classify test instances into these three classes. In the 12-
way setting, the model is given support examples for the three new classes and
also the 9 classes used at training (randomly selected, here again) and tries to
classify the same test instances but with 12 choices instead of 3. Nevertheless,

7Accuracy corresponds to F-measure micro-averaged for multiclass classification so we
report F-measure macro-averaged, which does not take into account class imbalance.

12

395

400

405

410

415

420

425

430

the presented scores are always for the 12 classes due to the 40 test iterations
being concatenated and the selected test classes being different each time.

4.4. Validation of SSMN Components

We subsequently validate each component or the SSMN architecture on the
first user of MiniMobiAct. We first decide if fine-tuning is effective and the
number of processing steps of the Attention GRU to be performed. We begin
with only one processing step and keep the best configuration after each stage.
Then, we validate the interest of using the Postures dataset as a support dataset.

4.4.1. Finetuning Fvaluation

First, we evaluate the interest of finetuning a linear layer after the output
of the pretrained encoder of our SSMN architecture. The encoder provides
representations of size 100: this size was chosen according to the reconstruction
error achieved on the Postures dataset during the pretraining. When using this
encoder, the representation can either be used as is or passed through a linear
layer which will be finetuned with the training data coming from the user we
are learning a model for. We tested two output hidden layer sizes, 20 (a small
version) and 100 (the same output size). The results are presented in Table
We observe that the architectures labeled a1 for cosine distance with 0.856% of
3-way accuracy and a2 for euclidean distance with 0.825% of 3-way accuracy, got
the best results and we therefore select them for the following experiments. We
observe that in both cases, the small size got the worst results with significant
degradation indicating that this representation size does not seem to preserve
enough information.

4.4.2. Number of Attention GRU Processing Steps

Next, we investigate the parameter p, i.e. the number of processing steps
of the attention GRU. We tested four values of processing steps between 1 and
10, the largest value experimented in [34]. The results are presented in Table
We observe that for the cosine distance 0.858% of 3-way accuracy could be
achieved (b1l) with 10 processing steps and that for the euclidean distance, a
maximum of 0.839% could be achieved (b2). We globally notice that better
values are achieved with more processing steps as in [34]. Also as in [9], this is
a very slight improvement. The batch size used here is only three, and a more
important impact should be expected when trying to work with more classes.
We kept these parameters for the remaining experiments.

4.4.8. Impact of Pretraining

Now that components of the architectures and their parameters have been
validated, we aim at measuring the exact impact of using the Postures dataset
to pretrain our model. We thus propose two experiments. First, the same GRU
encoder is trained by only using the MiniMobiAct training data (so not as a
sequence-to-sequence model). The results are shown in Table The proposed
architectures correspond to the ones experimented for the finetuning where a

13

435

440

Distance Finetuned layer size | 3-way accuracy | 3-way F-measure
cosine no 0.812 0.79
cosine 20 0.819 0.763

cosine (al) 100 0.856 0.823
euclidean (a2) no 0.825 0.81
euclidean 20 0.750 0714
euclidean 100 0.793 0.726
(a) With pretraining on the Postures dataset and different finetuned layer sizes.
Distance | GRU network Architecture | 3-way accuracy | 3-way F-measure
cosine [100] 0.745 0.696
cosine [100, 20] 0.694 0.676
cosine [100, 100] 0.733 0.709
euclidean [100] 0.8 0.758
euclidean [100, 20] 0.763 0.736
euclidean [100, 100] 0.784 0.754

(b) Without pretraining on the Postures dataset and different architectures.

Table 3: Classification accuracy on MiniMobiAct, userl, with different matching network
architectures.

layer of size 100 had already been learned and frozen. We observe that none of
those architectures could outperform the results obtained by the best ones for
each metric (b1l and b2). The difference is more flagrant for the cosine metric
where a more than 10% improvement could be achieved with pretraining on the
Postures dataset. These results show the benefit of pretraining an encoder as
a sequence-to-sequence model, on a different dataset containing similar inertial
data even if both have no activities in common.

The other interesting property of matching networks is that they can recog-
nize new classes using just one new sequence. In situations of very few available
training data, there may not even be enough data to perform a proper valida-

Distance Processing steps | 3-way accuracy | 3-way F-measure

SSMN cosine (al) 1 0.856 0.823
SSMN cosine 3 0.793 0.802
SSMN cosine 5 0.779 0.783
SSMN cosine (b1) 10 0.858 0.826
SSMN euclidean (a2) 1 0.825 0.81
SSMN euclidean 3 0.777 0.759
SSMN euclidean (b2) 5 0.839 0.805
SSMN euclidean 10 0.814 0.809

Table 4: Classification accuracy of matching network variants on MiniMobiAct, user 1, with
different numbers of processing steps.

14

445

450

455

460

465

Distance | Epochs | 3-way accuracy | 3-way F-measure
SSMN b1 20 0.845 0.795
SSMN b1 50 0.791 0.762
SSMN b1 100 0.855 0.833
SSMN b2 20 0.705 0.668
SSMN b2 50 0.753 0.709
SSMN b2 100 0.645 0.606

Table 5: SSMN early stopping comparison on MiniMobiAct, user 1.

tion or “early stopping” to prevent overfitting. In those conditions, with SSMN|,
another dataset can be used as validation set, here the Postures dataset. We
trained several models (using the same parameters as bl and b2) with fixed
number of epochs to compare the results with those previously obtained with
early stopping based on the performance on the Postures dataset. The results
are presented in Table

While the advantage for the cosine metric seems not significant, even non-
existent, we remark that the models using the Euclidean distance clearly overfit
and results are worse than those obtained with early stopping and decreasing
over 50 epochs. The use of the Postures dataset as a validation set improves
the training in this case.

4.5. Test Results on All Users

We now apply bl and b2 using a pretrained encoder on Postures dataset
and early stopping of the training also on Postures dataset to every other users
of MiniMobiAct V2 having more than 50 sequences (18). To recall some results
from the state of the art, Chatzaki et al. [I0] achieved 97% accuracy with
an instance-based k-nearest neighbor classifier and heavily relying on signal
processing techniques and manual feature selection. DiPietro et al. [20] achieved
71% accuracy with their MIST-recurrent neural network approach. It is not
possible to directly compare these results to those obtained with matching nets
since the protocols are completely different: at test time, matching net learns in
one shot to predict three new classes whereas the other models were trained on
every class. Thus, these numbers are only a rough indications. The test results
on 18 users are presented in Table [6]

Algorithms | 3-way accuracy 12-way accuracy
SSMN b1 0.755+0.084 0.533+0.103
SSMN b2 0.74240.085 0.505£0.099

3-way F-measure | 12-way F-measure
SSMN b1 0.741+0.087 0.522+0.099
SSMN b2 0.734+0.081 0.494+0.094

Table 6: Test scores on MiniMobiAct, average of 18 users.

15

470

475

480

485

Figure 2a Figure 2b

065

°
°
G

o
g
g

°
3

3-way accuracy

12-way accuracy

0401

055 o —

SSMN bl SSMN b2 SSMN bl SSMN b2

Figure 2: Result per user dispersion for all activities for 3-way accuracy (a) and 12-way
accuracy (b)

The best results are achieved by the cosine metric with 75.5% 3-way accuracy
even if the gap with the Euclidean distance can be considered as not significant
regarding the standard deviations. To make comparisons with the 71% achieved
by DiPietro et al. [20], our model achieved superior results in the 3-way scenario.

We see on Figure that about 25% of the users having more than 80%
accuracy and about 50% more than 75%. On the 12-way classification, our
model achieved more mixed results as could be expected. However, we see on
Figure [2b that two users achieved at least 70% 12-way accuracy with the cosine
metric. These results demonstrate the capacity of SSMN to efficiently classify
new classes from only examples. The worst performing user for the Euclidean
distance is actually always the same across the figures. These performances
seem inherent to the quality of data gathered for this user which indicates that,
although SSMN can work with few data, it still requires good quality data.
Concerning the difference between cosine metric and Euclidean distance, the re-
sults seem in contradiction with what was observed by Snell et al. [46] ﬂ which
they explained by Euclidean distance being a Bregman divergence [47] contrary
to the cosine metric. However, this is coherent with what we observed with
other metric learning architectures making use of GRU [48] where cosine metric
systematically outperformed the Euclidean distance.

On Figure |3) we show the confusion matrices obtained by the best users for

8Snell et al. also proposed a model for few-shot learning called prototypical networks.
Actually, their approach coincides with matching networks in the one-shot scenario which we
performed here.

16

490

495

500

1.0 1.0

BSC 284 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00| Bsc 1MUY 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00|
CHu -{0-00[#X:340.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00| CHU {0-00pREY 0.00 0.000.00 0.000.000.00 0.000.00 0.00 0.00

51 {0.000.03 [¥E[0.000.00 0.000.030.17 0.000.00 0.00 0.03| 0.8 cs| 0-000.00{tX=E] 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00| 0.8
cso -{0.000.00 0.004:140.00 0.00 0.06 0.00 0.000.00 0.00 0.14| €50 {0-000.00 0.00{ek:E:10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

. FkL +0-000.00 0.00 0.00(¢R=E10.05 0.00 0.00 0.000.00 0.00 0.00 06 , FKL +0-000.000.09 0.00{¢X:#10.09 0.00 0.00 0.000.00 0.00 0.00 06
T roL {0.000.00 0.000.00 0.00 jKel] 0.00 0.00 0.00 0.00 0.00 0.00) oL {0-000.000.06 0.00 0.11 {N£10.00 0.00 0.00 0.06 0.00 0.00/

©

% JoG -0-000.00 0.00 0.00 0.00 0.00FK340.00 0.00 0.00 0.00 0.09 T: JOG {0-000.00 0.00 0.050.00 0.00[4%:£40.05 0.050.00 0.00 0.05

= Jum]0.000.08 0.00 0.00 0.00 0.00 0.00{¢kP4 0.00 0.00 0.00 0.00| 0.4 = Jum {0.000.00 0.000.000.00 0.00 0.00 §¥sl8] 0.00 0.00 0.00 0.00 0.4
5CH -{0.000.00 0.00 0.000.00 0.00 0.000.00 ¥[8} 0.00 0.00 0.00| scH {0.000.00 0.000.000.00 0.00 0.00 0.00 p¥s[+s]0.00 0.00 0.00

5pL 40-000.00 0.00 0.00 0.00 0.00 0.000.00 0.00 p&slE] 0.00 0.00| 0.2 spL {0-000.00 0.00 0.000.10 0.00 0.00 0.00 0.00 V%[0.00 0.00 02
STN 10.000.00 0.02 0.050.00 0.000.100.03 0.02 0.00 (U] 0.02 sTN 40-000.00 0.000.100.00 0.000.000.18 0.00 0.00 W= 0.04|
5TU 40.000.00 0.00 0.000.00 0.000.03 0.00 0.00 0.00 0.07 WR:lv} sTU {0.000.03 0.00 0.050.00 0.000.00 0.03 0.00 0.00 0.03{sX:})

T T 0.0 T T T T T T T 0.0

[ORRN T S o LR VR C B S P S P] C >3 ‘ ‘ <) : : N
FFCLETFT SIS FRELE T FFTSHISS
Pradicted lahela Predirted lahels

(a) SSMN b1, User 5 with 89.7% 3-way accuracy (b) SSMN b2, User 6 with 89.4% 3-way accuracy

Figure 3: Confusion matrix of best users for both metrics.

Algorithms | 3-way fall accuracy 12-way fall accuracy
SSMN b1 0.928+0.053 0.92240.057
SSMN b2 0.927+0.049 0.896+0.0876

3-way fall F-measure | 12-way fall F-measure
SSMN b1 0.891+0.071 0.879+0.076
SSMN b2 0.885+0.071 0.848+0.109

Table 7: Test scores for fall detection on MiniMobiAct, average of 18 users.

each metric. We observe difficulties for similar classefﬂ namely STN, JOG or
CSI but the errors are not the same. For example, STN is confused with JOG
or JUM. In the case of the cosine metric, 9 classes out of 12 achieved more than
90% 3-way prediction accuracy.

Finally, we propose to analyze the results as a binary classification of falls
vs. non falls similarly as in [5] where 0.808 of F-measure and 0.878 of Accuracy
could be achieved on personalized fall detection. The results are presented in
Table[7] We observe gains for both models on both metrics, the most important
being the cosine metric with with a gain of 3% accuracy but especially 11% of
F-measure (macro) which means a great improvement of the recognition of falls,
even in a one-shot learning setting. We can also compare those results to the
work from Tsinganos et al. [2I] who achieved a recall of 97.53% and a specificity
of 94.89%. Our one-shot learning approach reached only slightly inferior results
compared to this general approach.

9Class legend, JOG: Jogging ; JUM: Jumping ; STU: Stairs up ; STN: Stairs down ; SCH:
Stand to sit ; CHU: Sit to stand ; CSI: Car-step in ; CSO: Car-step out ; FOL: Forward-lying
; FKL: Front-knees-lying ; BSC: Back-sitting-chair ; SDL: Sideward-lying

17

505

510

515

520

525

530

Distances Finetuning | # Training epochs
Cosine (c1) 20 100
Euclidean (c2) 20 50

Table 8: Parameters validated on User 1 of UCI HAR dataset.

Algorithms | 2-way accuracy 6-way accuracy
SSMN c1 0.755£0.096 0.669+0.07
SSMN c2 0.80+0.081 0.706+0.65

2-way F-measure | 6-way F-measure
SSMN c1 0.72540.093 0.63+0.08
SSMN c2 0.789+0.072 0.665+0.077

Table 9: Test scores on UCI HAR, average of 29 users.

4.6. Complementary Experiments on UCI HAR Dataset

We conducted experiments on another dataset called UCI HAR [I1] which
provides the data of 30 users who performed 6 activities : “walking”, “walking
upstairs”, “walking downstairs”, “sitting”, “standing” and “lying”. It contains
10299 sequences of size 128 which are fixed-width sliding windows of 2.56 sec
with a 50% overlap. The sensors are a tri-axes accelerometer and a tri-axes gy-
roscope recording at 50 Hz. We employed a similar protocol as on MiniMobiAct.
Four activities out of the 6 are sampled to train the model, 2 are left for testing.
We used a batch size of 2 to match the number of test classes. We validated the
parameters reported in Table [§ on the data of user 1 for both distances. These
architectures are hereafter named c1 and c2. AttentionGRU (cf. Algorithm
was not used for this dataset since it lead to weaker results. This may be due to
the low number of vectors in the support set with a batch size of 2 which pro-
vokes overfitting since we observed slightly better results when trying to classify
one element in the 6 classes (i.e. using a support set of size 6). Similarly, early
stopping based on the Postures dataset leads to slightly inferior results for user
1 and was therefore replaced by a fixed number of training epochs. We report,
in Table [J] the test results averaged over the 29 other users.

We observe that the Euclidean distance got slightly better results than the
cosine metric, SSMN achieved an average 2-way accuracy of 0.8 with 16 users
out of the 29 over 0.8 and one user over 0.9. For the 6-way scores, they cul-
minate at 0.706. Best state-of-the-art approaches achieve around 95% accuracy
on the complete dataset. San-Segundo et al. [24] achieved this with a user
adaptation approach. Our approach obtained lower results but the model is
only trained with the data of one user and is much more flexible. This dataset
may actually bring two obstacles for our approach. Firstly, the sequences are
short (128 points, less than 3 seconds) which decreases the quantity of discrimi-
nant information in each sequence and therefore makes matching more difficult.
Secondly, some classes can be very difficult for SSMN to learn to differentiate

18

535

540

545

550

555

560

565

570

from just one or few sequences as the data may look very similar: e.g. “walking
upstairs” and “walking downstairs”, “sitting” and “lying”. This is particularly
visible on the 6-way score values.

5. CONCLUSIONS AND PERSPECTIVES

We presented in this paper an approach for personalized ADL classification
based on matching networks combined with sequence-to-sequence pretraining
(SSMN). This approach presents two major advantages which make it very rel-
evant to be implemented for real applications. First, it addresses the problem
of limited training data that is encountered when learning personalized models
by being able to learn from just a few examples. Second, it is very versatile
regarding each new activity a user could perform by being able to learn it just
from one example. When properly trained, SSMN is indeed independent from
the classes it was trained on and only relies on the provided support set. In
this way, its performance can be boosted with any dataset from the literature
which possesses similar characteristics even if the features are not exactly the
same and the activities different. With this model, we achieved over 75% of
3-way accuracy, a performance comparable to those obtained by classical neural
network models trained on the whole MiniMobiAct dataset whereas our test
results were systematically obtained from classes never seen at training. Those
results were particularly good for “fall” classes with over 90% 3-way accuracy
and 12-way accuracy, meaning SSMN is a relevant approach to detect any kind
of falls. With a second experiment, we showed that this approach could be ex-
tended to another dataset but also that it presents some limits despite its great
flexibility.

A further step of our work would be not to use any annotated data and
work in a pure unsupervised manner to achieve complete flexibility regarding
activities and adaptation to any user since he/she would have nothing to do but
wear the sensor. We started tackling this objective by studying recurrent daily
behaviors (routines) with metric learning algorithms adapted to sequential data
[48]. Metric learning algorithms typically need a notion of similarity between
samples instead of class labels to be trained and we have been using the record-
ing periods of data as such. We aim now at defining a more subtle notion of
similarity for routines and at building more powerful sequence metric learning
algorithms.

References

[1] H. Pigot, B. Lefebvre, J.-G. Meunier, B. Kerhervé, A. Mayers, S. Giroux,
The role of intelligent habitats in upholding elders in residence, in: 5th
international conference on Simulations in Biomedicine, 2003, pp. 497-506.

[2] A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, P. Havinga, Ac-
tivity recognition using inertial sensing for healthcare, wellbeing and sports
applications: A survey, in: ARCS, VDE, 2010, pp. 1-10.

19

580

585

590

595

600

605

610

[3]

[12]

[13]

S. Katz, A. B. Ford, R. W. Moskowitz, B. A. Jackson, M. W. Jaffe, Studies
of illness in the aged: the index of adl: a standardized measure of biological
and psychosocial function, JAMA 185 (12) (1963) 914-919.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, C. Liu, A survey on deep
transfer learning, in: International conference on artificial neural networks,
Springer, 2018, pp. 270-279.

P. Compagnon, G. Lefebvre, S. Duffner, C. Garcia, Personalized pos-
ture and fall classification with shallow gated recurrent units, in: 2019
IEEE 32nd International Symposium on Computer-Based Medical Systems
(CBMS), 2019, pp. 114-119.

C. Debes, A. Merentitis, S. Sukhanov, M. Niessen, N. Frangiadakis,
A. Bauer, Monitoring activities of daily living in smart homes: Under-
standing human behavior, IEEE Signal Processing Magazine 33 (2) (2016)
81-94.

L. Wang, T. Tan, H. Ning, W. Hu, Silhouette analysis-based gait recogni-
tion for human identification, IEEE PAMI 25 (12) (2003) 1505-1518.

E. Strubell, A. Ganesh, A. McCallum, Energy and policy considerations
for deep learning in nlp, arXiv preprint arXiv:1906.02243 (2019).

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching net-
works for one shot learning, in: Advances in neural information processing

systems, 2016, pp. 3630-363S.

C. Chatzaki, M. Pediaditis, G. Vavoulas, M. Tsiknakis, Human daily ac-
tivity and fall recognition using a smartphone’s acceleration sensor, in:
ICT4AWE, Springer, 2016, pp. 100-118.

D. Anguita, A. Ghio, L. Oneto, X. Parra, J. L. Reyes-Ortiz, A public
domain dataset for human activity recognition using smartphones., in:
ESANN, 2013.

O. D. Lara, M. A. Labrador, A survey on human activity recognition us-
ing wearable sensors., IEEE Communications Surveys and Tutorials 15 (3)
(2013) 1192-1209.

L. Bao, S. S. Intille, Activity recognition from user-annotated acceleration
data, in: International Conference on Pervasive Computing, Springer, 2004,
pp. 1-17.

X. Sun, H. Kashima, N. Ueda, Large-scale personalized human activity
recognition using online multitask learning, IEEE Transactions on Knowl-
edge and Data Engineering 25 (11) (2012) 2551-2563.

20

615

620

625

630

635

640

645

[15]

[16]

[17]

[18]

[19]

[20]

[24]

[25]

[26]

[27]

B. Longstaff, S. Reddy, D. Estrin, Improving activity classification for
health applications on mobile devices using active and semi-supervised
learning, in: 2010 4th International Conference on Pervasive Computing
Technologies for Healthcare, IEEE, 2010, pp. 1-7.

L. T. Nguyen, M. Zeng, P. Tague, J. Zhang, Recognizing new activities
with limited training data, in: Proceedings of the 2015 ACM International
Symposium on Wearable Computers, ACM, 2015, pp. 67-74.

D. Wu, F. Zhu, L. Shao, One shot learning gesture recognition from
RGBD images, in: Computer Vision and Pattern Recognition Workshops
(CVPRW), IEEE, 2012, pp. 7-12.

A. Bellet, A. Habrard, M. Sebban, Metric learning, Synthesis Lectures on
Artificial Intelligence and Machine Learning 9 (1) (2015) 1-151.

S. Sani, N. Wiratunga, S. Massie, K. Cooper, Personalised human activity
recognition using matching networks, in: International Conference on Case-
Based Reasoning, Springer, 2018, pp. 339-353.

R. DiPietro, C. Rupprecht, N. Navab, G. D. Hager, Analyzing and exploit-
ing NARX recurrent neural networks for long-term dependencies, Work-
shop track - ICLR (2017).

P. Tsinganos, A. Skodras, A smartphone-based fall detection system for
the elderly, in: Proceedings of the 10th International Symposium on Image
and Signal Processing and Analysis, IEEE, 2017, pp. 53-58.

Y. Zhao, R. Yang, G. Chevalier, X. Xu, Z. Zhang, Deep residual bidir-
Istm for human activity recognition using wearable sensors, Mathematical
Problems in Engineering 2018 (2018).

W. Jiang, Z. Yin, Human activity recognition using wearable sensors by
deep convolutional neural networks, in: Proceedings of the 23rd ACM in-
ternational conference on Multimedia, 2015, pp. 1307-1310.

R. San-Segundo, J. M. Montero, J. Moreno-Pimentel, J. M. Pardo, Hmm
adaptation for improving a human activity recognition system, Algorithms
9 (3) (2016) 60.

G. Lefebvre, S. Berlemont, F. Mamalet, C. Garcia, BLSTM-RNN based
3D gesture classification, in: ICANN, Springer, 2013, pp. 381-388.

Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE transactions on neural networks 5 (2)
(1994) 157-166.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computa-
tion 9 (8) (1997) 1735-1780.

21

650

655

660

665

670

675

680

685

[28]

[33]

[34]

[35]

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-
decoder for statistical machine translation, arXiv preprint arXiv:1406.1078
(2014).

J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of
gated recurrent neural networks on sequence modeling, arXiv preprint
arXiv:1412.3555 (2014).

M. A. Kramer, Nonlinear principal component analysis using autoassocia-
tive neural networks, AIChE journal 37 (2) (1991) 233-243.

I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with
neural networks, in: Advances in neural information processing systems,

2014, pp. 3104-3112.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked
denoising autoencoders: Learning useful representations in a deep net-
work with a local denoising criterion, Journal of machine learning research
11 (Dec) (2010) 3371-3408.

N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, J. Liang, Convolutional neural networks for medical image anal-
ysis: Full training or fine tuning?, IEEE transactions on medical imaging
35 (5) (2016) 1299-1312.

O. Vinyals, S. Bengio, M. Kudlur, Order matters: Sequence to sequence
for sets, arXiv preprint arXiv:1511.06391 (2015).

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 1-9.

I. Sutskever, Training recurrent neural networks, University of Toronto,
Toronto, Ont., Canada (2013).

S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on
knowledge and data engineering 22 (10) (2009) 1345-1359.

K. A. Quach, Extraction de caracteristiques de I’activite ambulatoire du pa-
tient par fusion d’informations de centrales inertielles, Ph.D. thesis, UCBL1
(2012).

J. Williamson, R. Murray-Smith, S. Hughes, Shoogle: excitatory multi-
modal interaction on mobile devices, in: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, ACM, 2007, pp. 121-124.

22

690

695

700

705

710

[41]

[42]

[43]

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, JMLR,
15 (1) (2014) 1929-1958.

A. Krogh, J. A. Hertz, A simple weight decay can improve generalization,
in: NIPS, 1992, pp. 950-957.

A. Makni, G. Lefebvre, Attitude estimation for posture detection in ehealth
services, in: IEEE CBMS, 2018, pp. 310-315.

R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent
neural networks, in: International Conference on Machine Learning, 2013,
pp. 1310-1318.

I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of ini-
tialization and momentum in deep learning, in: Proceedings of the 30th
International Conference on International Conference on Machine Learn-
ing - Volume 28, ICML’13, JMLR.org, 2013.

J. Snell, K. Swersky, R. Zemel, Prototypical networks for few-shot learning,
in: Advances in Neural Information Processing Systems, 2017, pp. 4077—
4087.

A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, Clustering with bregman
divergences, Journal of machine learning research 6 (Oct) (2005) 1705-1749.

P. Compagnon, G. Lefebvre, S. Duffner, C. Garcia, Routine modeling with
time series metric learning, in: Artificial Neural Networks and Machine
Learning — ICANN 2019: Deep Learning, Springer International Publish-
ing, 2019, pp. 579-592.

23

	Introduction
	Related Work
	Learning Personalized Models for ADL Classification
	Sequence Processing with Recurrent Neural Networks
	Few-shot Learning with Matching Networks
	Few-shot Learning for Personalized ADL Classification

	Experiments
	Preliminary Experiment: Personalized Postures Classification
	The MobiAct V2 Dataset
	Training Strategies and Protocol Details
	Validation of SSMN Components
	Finetuning Evaluation
	Number of Attention GRU Processing Steps
	Impact of Pretraining

	Test Results on All Users
	Complementary Experiments on UCI HAR Dataset

	Conclusions and Perspectives

