Kernel Selection in Nonparametric Regression
Résumé
In the regression model $Y = b(X) +\sigma(X)\varepsilon$, where $X$ has a density $f$, this paper deals with an oracle inequality for an estimator of $bf$, involving a kernel in the sense of Lerasle et al. (2016), selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already studied in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection for anisotropic projection estimators of $f$ and $bf$ is covered.
Domaines
Statistiques [math.ST]
Fichier principal
Kernel_Selection_in_Nonparametric_Regression.pdf (573.46 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|