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, selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already studied in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection for anisotropic projection estimators of f and bf is covered.

Introduction

Consider n ∈ N * independent R d × R-valued (d ∈ N * ) random variables (X 1 , Y 1 ), . . . , (X n , Y n ), having the same probability distribution assumed to be absolutely continuous with respect to Lebesgue's measure, and

s K, (n; x) := 1 n n i=1 K(X i , x) (Y i ) ; x ∈ R d ,
where : R → R is a Borel function and K is a symmetric continuous map from R d × R d into R. This is an estimator of the function s : R d → R defined by

s(x) := E( (Y 1 )|X 1 = x)f (x) ; ∀x ∈ R d ,
where f is a density of X 1 . For = 1, s K, (n; .) coincides with the estimator of f studied in Lerasle et al. [START_REF] Lerasle | Optimal Kernel Selection for Density Estimation[END_REF], covering Parzen-Rosenblatt's and projection estimators already deeply studied in the literature (see Parzen [START_REF] Parzen | On the Estimation of a Probability Density Function and the Mode[END_REF], Rosenblatt [START_REF] Rosenblatt | Remarks on some Nonparametric Estimates of a Density Function[END_REF], Tsybakov [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF], etc.), but for = 1, it covers estimators involved in nonparametric regression. Assume that for every i ∈ {1, . . . , n},

Y i = b(X i ) + σ(X i )ε i (1) 
where ε i is a centered random variable of variance 1, independent of X i , and b, σ : R d → R are Borel functions.

• If = Id R , k is a symmetric kernel and

(2) K(x , x) = d q=1 1 h q k x q -x q h q with h 1 , . . . , h d > 0 for every x, x ∈ R d , then s K, (n; .) is the numerator of the well-known Nadaraya-Watson estimator of the regression function b (see Nadaraya [START_REF] Nadaraya | On a Regression Estimate[END_REF] and Watson [START_REF] Watson | Smooth Regression Analysis[END_REF]). Precisely, s K, (n; .) is an estimator of s = bf because ε 1 is independent to X 1 and E(ε 1 ) = 0. If = Id R , then s K, (n; .) is the numerator of the estimator studied in Einmahl and Mason [START_REF] Einmahl | An Empirical Process Approach to the Uniform Consistency of Kernel-Type Function Estimators[END_REF][START_REF] Einmahl | Uniform in Bandwidth Consistency of Kernel-Type Function Estimators[END_REF]. 

• If = Id R , B mq = {ϕ
Y i = σ(X i )ε i .

If (x) = x 2 for every x ∈ R, then s K, (n; .) is an estimator of s = σ 2 f . These ten last years, several data-driven procedures have been proposed in order to select the bandwidth of Parzen-Rosenblatt's estimator ( = 1 and K defined by ( 2)). First, Goldenshluger-Lepski's method, introduced in [START_REF] Goldenshluger | Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality[END_REF], which reaches the adequate bias-variance compromise, but is not completely satisfactory on the numerical side (see Comte and Rebafka [START_REF] Comte | Nonparametric Weighted Estimators for Biased Data[END_REF]). More recently, in [START_REF] Lacour | Estimator Selection: a New Method with Applications to Kernel Density Estimation[END_REF], Lacour, Massart and Rivoirard proposed the PCO (Penalized Comparison to Overfitting) method and proved an oracle inequality for the associated adaptive Parzen-Rosenblatt's estimator by using a concentration inequality for the U-statistics due to Houdré and Reynaud-Bouret [START_REF] Houdré | Exponential Inequalities, with Constants, for U-statistics of Order Two[END_REF]. Together with Varet, they established the numerical efficiency of the PCO method in Varet et al. [START_REF] Varet | Numerical Performance of Penalized Comparison to Overfitting for Multivariate Density Estimation[END_REF]. Still in the density estimation framework, the PCO method has been extended to bandwidths selection for the recursive Wolverton-Wagner estimator in Comte and Marie [START_REF] Comte | Bandwidth Selection for the Wolverton-Wagner Estimator[END_REF]. Comte and Marie [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF] deal with an oracle inequality and numerical experiments for an adaptive Nadaraya-Watson's estimator with a numerator and a denominator having distinct bandwidths, both selected via the PCO method. Since the output variable in a regression model has no reason to be bounded, there were significant additional difficulties, bypassed in [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], to establish an oracle inequality for the numerator's adaptive estimator. Via similar arguments, the present article deals with an oracle inequality for s K, (n; .), where K is selected via the PCO method in the spirit of Lerasle et al. [START_REF] Lerasle | Optimal Kernel Selection for Density Estimation[END_REF]. As in Comte and Marie [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], one can deduce an oracle inequality for the adaptive quotient estimator s K, (n; .)/ s L,1 (n; .) of

E( (Y 1 )|X 1 = •)
, where K and L are both selected via the PCO method.

In addition to the bandwidth selection for kernel-based estimators already studied in [START_REF] Lacour | Estimator Selection: a New Method with Applications to Kernel Density Estimation[END_REF][START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], the present paper covers the dimension selection for projection estimators of f , bf when Y 1 , . . . , Y n are defined by Model (1) with = Id R , and σ 2 f when Y 1 , . . . , Y n are defined by Model (4) with (x) = x 2 for every x ∈ R. For projection estimators, when d = 1, the usual model selection method (see Comte [START_REF] Comte | Estimation non-paramétrique[END_REF], Chapter 2, Section 5) seems hard to beat. However, when d > 1 and K is defined by (3), m 1 , . . . , m d are selected via a Goldenshluger-Lepski type method (see Chagny [START_REF] Chagny | Warped Bases for Conditional Density Estimation[END_REF]), which has the same numerical weakness than the Goldenshluger-Lepski method for bandwidth selection when K is defined by [START_REF] Comte | Estimation non-paramétrique[END_REF]. So, for the dimension selection for anisotropic projection estimators, the PCO method is interesting.

In Section 2, some examples of kernels sets are provided and a risk bound on s K, (n; .) is established. Section 3 deals with an oracle inequality for s K, (n; .), where K is selected via the PCO method.

Risk bound

Throughout the paper, s ∈ L 2 (R d ). Let K n be a set of symmetric continuous maps from R d × R d into R, of cardinality less or equal than n, fulfilling the following assumption.

Assumption 2.1. There exists a deterministic constant m K, > 0, not depending on n, such that

(1) For every K ∈ K n , sup

x ∈R d K(x , .) 2 2 m K, n.
(2) For every

K ∈ K n , s K, 2 2 m K, with s K, := E( s K, (n; .)) = E(K(X 1 , .) (Y 1 )). (3) For every K, K ∈ K n , E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) m K, s K , with s K , := E( K (X 1 , .) (Y 1 ) 2 2 ). (4) For every K ∈ K n and ψ ∈ L 2 (R d ), E( K(X 1 , .), ψ 2 
2 ) m K, ψ 2 2 . The elements of K n are called kernels. Let us provide two natural examples of kernels sets.

Proposition 2.2. Consider K k (h min ) := (x , x) → d q=1 1 h q k x q -x q h q ; h 1 , . . . , h d ∈ H(h min ) ,
where k is a symmetric kernel (in the usual sense), h min ∈ [n - 

s K, = k 2d 2 E( (Y 1 ) 2 ) d q=1 1 h q . Proposition 2.3. Consider K B1,...,Bn (m max ) :=    (x , x) → d q=1 mq j=1 ϕ mq j (x q )ϕ mq j (x q ) ; m 1 , . . . , m d ∈ {1, . . . , m max }    ,
where m d max ∈ {1, . . . , n} and, for every m ∈ {1, . . . , n},

B m = {ϕ m 1 , . . . , ϕ m m } is an orthonormal family of L 2 (R) such that sup x ∈R m j=1 ϕ m j (x ) 2 m B m
with m B > 0 not depending on m and n, and such that one of the two following conditions is satisfied: 

(5) B m ⊂ B m+1 ; ∀m ∈ {1, . . . , n -1} or (6) m B := sup{|E(K(X 1 , x))| ; K ∈ K B1,...,
ψ mq j (X 1,q )ψ mq j (x q )   = m1 j1=1 • • • m d j d =1 d q=1 m q 1 [(jq-1)/mq,jq/mq[ (x q ) × j1/m1 (j1-1)/m1 • • • j d /m d (j d -1)/m d f (x 1 , . . . , x d )dx 1 • • • dx d f ∞ d q=1 mq j=1 1 [(j-1)/mq,j/mq[ (x q ) f ∞
for every m 1 , . . . , m d ∈ {1, . . . , n} and x ∈ R d .

The following proposition shows that Legendre's basis also fulfills Condition (6).

Proposition 2.6. For every m ∈ {1, . . . , n} and j ∈ {1, . . . , m}, let ξ m j be the function defined on [-1, 1] by

ξ m j (x) := 2j + 1 2 Q j (x) ; ∀x ∈ [-1, 1],
where [START_REF] Devore | Constructive Approximation[END_REF].

Q j : x ∈ [-1, 1] -→ 1 2 j j! • d j dx j (x 2 -1) j is the j-th Legendre's polynomial. If f ∈ C 2d ([0, 1] d ) and B m = {ξ m 1 , . . . , ξ m m } for every m ∈ {1, • • • , n}, then K B1,...,Bm (m max ) fulfills Condition
The following proposition provides a suitable control of the variance of s K, (n; .). Proposition 2.7. Under Assumption 2.1.(1,2,3), if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞, then there exists a deterministic constant c 2.7 > 0, not depending on n, such that for every θ ∈]0, 1[,

E sup K∈Kn s K, (n; .) -s K, 2 2 - s K, n - θ n s K, c 2.7 log(n) 5 θn .
Finally, let us state the main result of this section. 

s K, -s 2 2 + s K, n - 1 1 -ϑ s K, (n; .) -s 2 2 c L ϑn (1 + λ) 3
with probability larger than 1 -9.4|K n |e -λ . When Condition (7) doesn't hold true, one can replace the exponential moment condition of Proposition 2.7 and Theorem 2.8 by a q-th order moment condition on (Y 1 ) (q ∈ N * ), but with a damaging effect on the rate of convergence of s K, (n; .). For instance, at Remark B.5, it is established that under a

(12-4ε)/β- th moment condition (ε ∈]0, 1[ and 0 < β < ε/2), the rate of convergence is of order O(1/n 1-ε ) (instead of 1/n) in Lemma B.2.
This holds true for the three technical lemmas of Subsection B.1, and then for Proposition 2.7 and Theorem 2.8.

Kernel selection

This section deals with a risk bound on the adaptive estimator s K, (n; .), where

K ∈ arg min K∈Kn { s K, (n; •) -s K0, (n; •) 2 2 + pen (K)},
K 0 is an overfitting proposal for K in the sense that

K 0 ∈ arg max K∈Kn sup x∈R d |K(x, x)| , and (8) 
pen (K) := 2 n 2 n i=1 K(., X i ), K 0 (., X i ) 2 (Y i ) 2 ; ∀K ∈ K n .
Example. On the one hand, for any

K ∈ K k (h min ) (i.e. defined by (2) with h 1 , . . . , h d ∈ H(h min )), sup x∈R d |K(x, x)| = |k(0)| d d q=1 1 h q .
Then, for

K n = K k (h min ), K 0 (x , x) = 1 h d min d q=1 k x q -x q h min ; ∀x, x ∈ R d .
On the other hand, for any K ∈ K B1,...,Bn (m max ) (i.e. defined by (3) with m 1 , . . . , m n ∈ {1, . . . , m max }),

sup x∈R d |K(x, x)| = sup x∈R d d q=1 mq j=1 ϕ mq j (x q ) 2 .
Then, for K n = K B1,...,Bn (m max ), at least for the usual bases mentioned at Remark 2.5,

K 0 (x , x) = d q=1 mmax j=1 ϕ mmax j (x q )ϕ mmax j (x q ) ; ∀x, x ∈ R d .
In the sequel, in addition to Assumption 2.1, the kernels set K n fulfills the following assumption.

Assumption 3.1. There exists a deterministic constant m K, > 0, not depending on n, such that

E sup K,K ∈Kn K(X 1 , .), s K , 2 2 m K, .
The following theorem provides an oracle inequality for the adaptive estimator s K, (n; .).

Theorem 3.2. Under Assumptions 2.1 and 3.1, if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞, then there exists a deterministic constant c 3.2 > 0, not depending on n, such that for every ϑ ∈]0, 1[,

E( s K, (n; .) -s 2 2 ) (1 + ϑ) min K∈Kn E( s K, (n; .) -s 2 2 ) + c 3.2 ϑ s K0, -s 2 2 + log(n) 5 n .
Remark 3.3. As mentioned in Comte and Marie [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], p. 6, when K n = K k (h min ), if s belongs to a Nikol'skii ball and h min = 1/n, then Theorem 3.2 says that the PCO estimator has a performance of same order than O n := min K∈Kn E( s K, (n; .) -s 2 2 ) up to a factor 1 + ϑ. When K n = K B1,...,Bn (m max ), it depends on the bases B 1 , . . . , B n . For instance, with the same ideas than in Comte and Marie [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], thanks to DeVore and Lorentz [START_REF] Devore | Constructive Approximation[END_REF], Theorem 2.3 p. 205, if s belongs to a Sobolev space and m max = n, then our Theorem 3.2 also says that the PCO estimator has a performance of same order than O n .

Notation. For any

B ∈ B(R d ), . 2,f,B is the norm on L 2 (B, f (x)λ d (dx)) defined by ϕ 2,f,B := B ϕ(x) 2 f (x)λ d (dx) 1/2 ; ∀ϕ ∈ L 2 (B, f (x)λ d (dx)).
The following corollary provides an oracle inequality for s K, (n; .)/ s L,1 (n; .), where K and L are both selected via the PCO method.

Corollary 3.4. Let (β j ) j∈N be a decreasing sequence of elements of ]0, ∞[ such that lim ∞ β j = 0 and, for every j ∈ N, consider B j := {x ∈ R d : f (x) β j }. Under Assumptions 2.1 and 3.1 for and 1, if s, f ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞, then there exists a deterministic constant c 3.2 > 0, not depending on n, such that for every ϑ ∈]0, 1[,

E   s K, (n; .) s L,1 (n; .) - s f 2 2,f,Bn   c 3.2 β 2 n (1 + ϑ) min (K,L)∈K 2 n {E( s K, (n; .) -s 2 2 ) + E( s L,1 (n; .) -f 2 2 )} + 1 ϑ s K0, -s 2 2 + s K0,1 -f 2 2 + log(n) 5 n where K ∈ arg min K∈Kn { s K, (n; •) -s K0, (n; •) 2 2 + pen (K)} and L ∈ arg min L∈Kn { s L,1 (n; •) -s K0,1 (n; •) 2 2 + pen 1 (L)}.
The proof of Corollary 3.4 is the same than the proof of Comte and Marie [START_REF] Comte | On a Nadaraya-Watson Estimator with Two Bandwidths[END_REF], Corollary 4.3.

Finally, let us discuss about Assumption 3.1. This assumption is difficult to check in practice, then let us provide a sufficient condition.

Assumption 3.5. The function s is bounded and

m K := sup{ K(x , .) 2 1 ; K ∈ K n and x ∈ R d } doesn't depend on n.
Under Assumption 3.5, K n fulfills Assumption 3.1. Indeed,

E sup K,K ∈Kn K(X1, .), s K , 2 2 sup K ∈Kn s K , 2 ∞ E sup K∈Kn K(X1, .) 2 1 mK sup ∞ -∞ |K (x , x)s(x)|dx 2 ; K ∈ Kn and x ∈ R m 2 K s 2 ∞ .
Note that in the nonparametric regression framework (see Model ( 1)), to assume s bounded means that bf is bounded. For instance, this condition is fulfilled by the linear regression models with Gaussian inputs.

Let us provide two examples of kernels sets fulfilling Assumption 3.5, the sufficient condition for Assumption 3.1:

• Consider K ∈ K k (h min ). Then, there exist h 1 , . . . , h d ∈ H(h min ) such that K(x , x) = d q=1 1 h q k x q -x q h q ; ∀x, x ∈ R d .
Clearly, K(x , .) Proposition 3.6. Consider χ 1 := 1 [0,1] and, for every j ∈ N * , the functions χ 2j and χ 2j+1 defined on R by

1 = k d 1 for every x ∈ R d . So, for K n = K k (h min ), m K k 2d 1 . • For K n = K B1,.
χ 2j (x) := √ 2 cos(2πjx)1 [0,1] (x) and χ 2j+1 (x) := √ 2 sin(2πjx)1 [0,1] (x) ; ∀x ∈ R. If s ∈ C 2 (R d
) and B m = {χ 1 , . . . , χ m } for every m ∈ {1, . . . , n}, then K B1,...,Bn (m max ) fulfills Assumption 3.1.

Appendix A. Details on kernels sets: proofs of Propositions 2.2, 2.3, 2.6 and 3.6

A.1. Proof of Proposition 2.2. Consider K, K ∈ K k (h min ). Then, there exist h, h ∈ H(h min ) d such that K(x , x) = k h (x -x) and K (x , x) = k h (x -x) for every x, x ∈ R d , where k h (x) := d q=1 1 h q k x q h q ; ∀x ∈ R d .
(1) For every

x ∈ R d , since nh d min 1, K(x , .) 2 2 = d q=1 1 h 2 q R d d q=1 k x q -x q h q 2 λ d (dx) = k 2d 2 d q=1 1 h q (9) k 2d 2 1 h d min k 2d 2 n.
(2) Since s K, = K * s and by Young's inequality, s K,

2 2 k 2d 1 s 2 2 .
(3) On the one hand, thanks to Equality [START_REF] Giné | Mathematical Foundations of Infinite-Dimensional Statistical Models[END_REF],

s K , = E( K (X 1 , .) (Y 1 ) 2 2 ) = k 2d 2 E( (Y 1 ) 2 ) d q=1 1 h q .
On the other hand, for every

x, x ∈ R d , K(x, .), K (x , .) 2 = R d k h (x -x )k h (x -x )λ d (dx ) = (k h * k h )(x -x ).
Then,

E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) = E((k h * k h )(X 1 -X 2 ) 2 (Y 2 ) 2 ) = R d+1 (y) 2 R d (k h * k h )(x -x) 2 f (x )λ d (dx ) P (X2,Y2) (dx, dy) f ∞ k h * k h 2 2 E( (Y 2 ) 2 ) f ∞ k 2d 1 s K , . ( 
) For every ψ ∈ L 2 (R d ), E( K(X 1 , .), ψ 2 2 ) = E((k h * ψ)(X 1 ) 2 ) f ∞ k h * ψ 2 2 f ∞ k 2d 1 ψ 2 2 . 4 
A.2. Proof of Proposition 2. ϕ m q j (x q )ϕ m q j (x q )

for every x, x ∈ R d .

(1) For every

x ∈ R d , since m d max n, K(x , .) 2 2 = d q=1 mq j,j =1 ϕ mq j (x q )ϕ mq j (x q ) ∞ -∞ ϕ mq j (x)ϕ mq j (x)dx = d q=1 mq j=1 ϕ mq j (x q ) 2 (10) m d B d q=1 m q m d B n.
(2) Since

s K, (.) = m1 j1=1 • • • m d j d =1 s, ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d 2 (ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d )(.),
by Pythagoras theorem, s K,

2 2 s 2 2 .
(3) First of all, thanks to Equality [START_REF] Goldenshluger | Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality[END_REF],

s K , = E   (Y 1 ) 2 d q=1 m q j=1 ϕ m q j (X 1,q ) 2   m d B E( (Y 1 ) 2 ) d q=1 m q .
On the one hand, under Condition (5) on B 1 , . . . , B n , for any j ∈ {1, . . . , m}, ϕ m j doesn't depend on m, so it can be denoted by ϕ j , and then

E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) = R d E      d q=1 mq∧m q j=1 ϕ j (x q )ϕ j (X 2,q )   2 (Y 2 ) 2    f (x )λ d (dx ) f ∞ E   (Y 2 ) 2 d q=1 mq∧m q j,j =1 ϕ j (X 2,q )ϕ j (X 2,q ) ∞ -∞ ϕ j (x )ϕ j (x )dx   f ∞ s K , .
On the other hand, under Condition (6) on B 1 , . . . , B n , since X 1 and (X 2 , Y 2 ) are independent, and since K(x, x) 0 for every x ∈ R d ,

E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) E( K(X 1 , .) 2 2 K (X 2 , .) 2 2 (Y 2 ) 2 ) = E(K(X 1 , X 1 ))E( K (X 2 , .) 2 2 (Y 2 ) 2 ) m B s K , . (4) For every ψ ∈ L 2 (R d ), E( K(X 1 , .), ψ 2 2 ) = E    m1 j1=1 • • • m d j d =1 ψ, ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d 2 (ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d )(X 1 ) 2    f ∞ m1 j1=1 • • • m d j d =1 ψ, ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d 2 (ϕ m1 j1 ⊗ • • • ⊗ ϕ m d j d )(.) 2 2 f ∞ ψ 2 2 .
A.3. Proof of Proposition 2.6. For the sake of readability, assume that d = 1. Consider m ∈ {1, . . . , m max }. Since each Legendre's polynomial is uniformly bounded by 1,

E   m j=1 ξ m j (X 1 )ξ m j (x )   m j=1 2j + 1 2 1 -1 Q j (x)f (x)dx .
Moreover, since Q j is a solution to Legendre's differential equation for any j ∈ {1, . . . , m}, thanks to the integration by parts formula,

1 -1 Q j (x)f (x)dx = - 1 j(j + 1) 1 -1 d dx [(1 -x 2 )Q j (x)]f (x)dx = - 1 j(j + 1) [(1 -x 2 )Q j (x)f (x)] 1 -1 + 1 j(j + 1) 1 -1 (1 -x 2 )Q j (x)f (x)dx = - 1 j(j + 1) 1 -1 Q j (x) d dx [(1 -x 2 )f (x)]dx.
Then,

1 -1 Q j (x)f (x)dx 2c 1 j(j + 1) Q j 2 = 2 √ 2c 1 j(j + 1)(2j + 1) 1/2 with c 1 = max{2 f ∞ , f ∞ }. So, E   m j=1 ξ m j (X 1 )ξ m j (x )   2c 1 m j=1 1 j 3/2 2c 1 ζ 3 2
where ζ is Riemann's zeta function. Thus, Legendre's basis satisfies Condition [START_REF] Devore | Constructive Approximation[END_REF].

A.4. Proof of Proposition 3.6. The proof of Proposition 3.6 relies on the following technical lemma.

Lemma A.1. For every x ∈ [0, 2π] and p, q ∈ N * such that q > p, q j=p+1 sin(jx) j 2 (1 + p) sin(x/2) .

See Subsubsection A.4.1 for a proof.

For the sake of readability, assume that d = 1. Consider K, K ∈ K B1,...,Bn (m max ). Then, there exist m, m ∈ {1, . . . , m max } such that

K(x , x) = m j=1 χ j (x)χ j (x ) and K (x , x) = m j=1 χ j (x)χ j (x ) ; ∀x, x ∈ R.
First, there exist m 1 (m, m ) ∈ {0, . . . , n} and c 1 > 0, not depending on n, K and K , such that for any x ∈ [0, 1],

| K(x , .), s K , 2 | = m∧m j=1 E( (Y 1 )χ j (X 1 ))χ j (x ) c 1 + 2 m1(m,m ) j=1 E( (Y 1 )(cos(2πjX 1 ) cos(2πjx ) + sin(2πjX 1 ) sin(2πjx ))1 [0,1] (X 1 )) = c 1 + 2 m1(m,m ) j=1 E( (Y 1 ) cos(2πj(X 1 -x ))1 [0,1] (X 1 )) .
Moreover, for any j ∈ {2, . . . , m 1 (m, m )},

E( (Y 1 ) cos(2πj(X 1 -x ))1 [0,1] (X 1 )) = 1 0 cos(2πj(x -x ))s(x)dx = 1 j sin(2πj(x -x )) 2π s(x) 1 0 + 1 j 2 cos(2πj(x -x )) 4π 2 s (x) 1 0 - 1 j 2 1 0 cos(2πj(x -x )) 4π 2 s (x)dx = s(0) -s(1) 2π • α j (x ) j + β j (x ) j 2
where α j (x ) := sin(2πjx ) and

β j (x ) := 1 4π 2 (s (1) -s (0)) cos(2πjx ) - 1 0 cos(2πj(x -x ))s (x)dx .
Then, there exists a deterministic constant c 2 > 0, not depending on n, K, K and x , such that (11) K(x , .), s K ,

2 2 c 2   1 +   m1(m,m ) j=1 α j (x ) j   2 +   m1(m,m ) j=1 β j (x ) j 2   2    .
Let us show that each term of the right-hand side of Inequality ( 11) is uniformly bounded in x , m and m . On the one hand,

m1(m,m ) j=1 β j (x ) j 2 max j∈{1,...,n} β j ∞ n j=1 1 j 2 1 24 (2 s ∞ + s ∞ ).
On the other hand, for every x ∈]0, π[ such that [π/x] + 1 m 1 (m, m ) (without loss of generality), by Lemma A.1,

m1(m,m ) j=1 sin(jx) j [π/x] j=1 sin(jx) j + m1(m,m ) j=[π/x]+1 sin(jx) j x π x + 2 (1 + [π/x]) sin(x/2) π + 2. ( 12 
)
Since x → sin(x) is continuous, odd and 2π-periodic, Inequality (12) holds true for every x ∈ R. So,

m1(m,m ) j=1 α j (x ) j π + 2.
Therefore,

E sup K,K ∈K B 1 ,...,Bn (mmax) K(X 1 , .), s K , 2 2 c 2 1 + (π + 2) 2 + 1 24 2 (2 s ∞ + s ∞ ) 2 .
A.4.1. Proof of Lemma A.1. For any x ∈ [0, 2π] and q ∈ N * , consider

f q (x) := q j=1 sin(jx) j , g q (x) := q j=1 1 j - 1 j + 1 h j (x) and h q (x) := q j=1
sin(jx).

On the one hand,

g q (x) = h 1 (x) - 1 q + 1 h q (x) + q j=2 1 j (h j (x) -h j-1 (x)).
Then, f q (x) = g q (x) + 1 q + 1 h q (x).

On the other hand,

h q (x) = Im   q j=1
e ijx   = Im e i(q+1)x/2 sin(qx/2) sin(x/2) = sin((q + 1)x/2) sin(qx/2) sin(x/2) = cos(x/2) -cos((q + 1/2)x) 2 sin(x/2) .

Then,

sin x 2 |h q (x)| 1
and, for any p ∈ N * such that q > p,

sin x 2 |g q (x) -g p (x)| 1 p + 1 - 1 q + 1 .
Therefore,

sin x 2 |f q (x) -f p (x)| sin x 2 |g q (x) -g p (x)| + sin x 2 |h q (x)| q + 1 + sin x 2 |h p (x)| p + 1 2 p + 1 .
In conclusion,

q j=p+1 sin(jx) k 2 (1 + p) sin(x/2) .
Appendix B. Proofs of risk bounds B.1. Preliminary results. This subsection provides three lemmas used several times in the sequel.

Lemma B.1. Consider (13) U K,K , (n) := i =j K(X i , .) (Y i ) -s K, , K (X j , .) (Y j ) -s K , 2 ; ∀K, K ∈ K n . Under Assumption 2.1.(1,2,3), if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞,
then there exists a deterministic constant c B.1 > 0, not depending on n, such that for every θ ∈]0, 1[,

E sup K,K ∈Kn |U K,K , (n)| n 2 - θ n s K , c B.1 log(n) 5 θn . Lemma B.2. Consider V K, (n) := 1 n n i=1 K(X i , .) (Y i ) -s K, 2 2 ; ∀K ∈ K n . Under Assumption 2.1.(1,2), if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞,
then there exists a deterministic constant c B.2 > 0, not depending on n, such that for every θ ∈]0, 1[,

E sup K∈Kn 1 n |V K, (n) -s K, | - θ n s K, c B.2 log(n) 3 θn . Lemma B.3. Consider (14) W K,K , (n) := s K, (n; .) -s K, , s K , -s 2 ; ∀K, K ∈ K n .
Under Assumption 2.1.(1,2,4), if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) < ∞, then there exists a deterministic constant c B.3 > 0, not depending on n, such that for every θ ∈]0, 1[,

E sup K,K ∈Kn {|W K,K , (n)| -θ s K , -s 2 2 } c B.3 log(n) 4 θn . B.1.1. Proof of Lemma B.1.
The proof of Lemma B.1 relies on the following concentration inequality for U-statistics, proved in dimension 1 in Houdré and Reynaud-Bouret [START_REF] Houdré | Exponential Inequalities, with Constants, for U-statistics of Order Two[END_REF] first, and then extended to the infinite-dimensional framework by Giné and Nickl in [START_REF] Giné | Mathematical Foundations of Infinite-Dimensional Statistical Models[END_REF].

Lemma B.4. Let ξ 1 , . . . , ξ n be i.i.d. random variables on a Polish space Ξ equipped with its Borel σalgebra. Let f i,j , 1 i = j n, be some bounded and symmetric measurable maps from Ξ 2 into R such that, for every i = j, f i,j = f j,i and E(f i,j (z, ξ 1 )) = 0 dz-a.e.

Consider the totally degenerate second order U-statistic

U n := i =j f i,j (ξ i , ξ j ).
There exists a universal constant m > 0 such that for every λ > 0,

P(U n m(c n λ 1/2 + d n λ + b n λ 3/2 + a n λ 2 )) 1 -2.7e -λ
where

a n = sup i,j=1,...,n sup z,z ∈Ξ |f i,j (z, z )| , b 2 n = max    sup i,z i-1 j=1 E(f i,j (z, ξ j ) 2 ) ; sup j,z n i=j+1 E(f i,j (ξ i , z ) 2 )    , c 2 n = i =j E(f i,j (ξ i , ξ j ) 2 )
and

d n = sup (a,b)∈A E   i<j f i,j (ξ i , ξ j )a i (ξ i )b j (ξ j )   with A =    (a, b) : E n-1 i=1 a i (ξ i ) 2 1 and E   n j=2 b j (ξ j ) 2   1    .
See Giné and Nickl [START_REF] Giné | Mathematical Foundations of Infinite-Dimensional Statistical Models[END_REF], Theorem 3.4.8 for a proof.

Consider m(n

) := 8 log(n)/α. For any K, K ∈ K n , U K,K , (n) = U 1 K,K , (n) + U 2 K,K , (n) + U 3 K,K , (n) + U 4 K,K , (n) where U l K,K , (n) := i =j g l K,K , (n; X i , Y i , X j , Y j ) ; l = 1, 2, 3, 4
with, for every (x , y), (x , y

) ∈ E = R d × R, g 1 K,K , (n; x , y, x , y ) := K(x , .) (y)1 | (y)| m(n) -s + K, (n; .), K (x , .) (y )1 | (y)| m(n) -s + K , (n; .) 2 , g 2 K,K , (n; x , y, x , y ) := K(x , .) (y)1 | (y)|>m(n) -s - K, (n; .), K (x , .) (y )1 | (y)| m(n) -s + K , (n;
.) 2 , g 3 K,K , (n; x , y, x , y ) := K(x , .) (y)1 | (y)| m(n) -s + K, (n; .), K (x , .) (y )1 | (y)|>m(n) -s - K , (n; .) 2 , g 4 K,K , (n; x , y, x , y ) := K(x , .) (y)1 | (y)|>m(n) -s - K, (n; .), K (x , .) (y )1 | (y)|>m(n) -s - K , (n; .) 2 and, for every k ∈ K n ,

s + k, (n; .) := E(k(X 1 , .) (Y 1 )1 | (Y1)| m(n) ) and s - k, (n; .) := E(k(X 1 , .) (Y 1 )1 | (Y1)|>m(n)
). On the one hand, since E(g 1 K,K , (n; x , y, X 1 , Y 1 )) = 0 for every (x , y) ∈ E, by Lemma B.4, there exists a universal constant m 1 such that for any λ > 0, with probability larger than 1 -5.4e -λ ,

|U 1 K,K , (n)| n 2 m n 2 (c K,K , (n)λ 1/2 + d K,K , (n)λ + b K,K , (n)λ 3/2 + a K,K , (n)λ 2 )
where the constants a K,K , (n), b K,K , (n), c K,K , (n) and d K,K , (n) are defined and controlled later. First, note that

U 1 K,K , (n) = i =j (ϕ K,K , (n; X i , Y i , X j , Y j ) -ψ K,K , (n; X i , Y i ) -ψ K ,K, (n; X j , Y j ) + E(ϕ K,K , (n; X i , Y i , X j , Y j ))), (15) 
where ϕ K,K , (n; x , y, x , y

) := K(x , .) (y)1 | (y)| m(n) , K (x , .) (y )1 | (y )| m(n) 2 and ψ k,k , (n; x , y) := k(x , .) (y)1 | (y)| m(n) , s + k , (n; .) 2 = E(ϕ k,k , (n; x , y, X 1 , Y 1 )) for every k, k ∈ K n and (x , y), (x , y ) ∈ E. Let us now control a K,K , (n), b K,K , (n), c K,K , (n) and d K,K , (n): • The constant a K,K , (n). Consider a K,K , (n) := sup (x ,y),(x ,y )∈E |g 1 K,K , (n; x , y, x , y )|.
By [START_REF] Nadaraya | On a Regression Estimate[END_REF], Cauchy-Schwarz's inequality and Assumption 2.1.(1),

a K,K , (n) 4 sup (x ,y),(x ,y )∈E | K(x , .) (y)1 | (y)| m(n) , K (x , .) (y )1 | (y )| m(n) 2 | 4m(n) 2 sup x ∈R d K(x , .) 2 sup x ∈R d K (x , .) 2 4m K, m(n) 2 n. So, 1 n 2 a K,K , (n)λ 2 4 n m K, m(n) 2 λ 2 . • The constant b K,K , (n). Consider b K,K , (n) 2 := n sup (x ,y)∈E E(g 1 K,K , (n; x , y, X 1 , Y 1 ) 2 ).
By ( 15), Jensen's inequality, Cauchy-Schwarz's inequality and Assumption 2.1.( 1),

b K,K , (n) 2 16n sup (x ,y)∈E E( K(x , .) (y)1 | (y)| m(n) , K (X 1 , .) (Y 1 )1 | (Y1)| m(n) 2 2 ) 16nm(n) 2 sup x ∈R d K(x , .) 2 2 E( K (X 1 , .) (Y 1 )1 | (Y1)| m(n) 2 2 ) 16m K, n 2 m(n) 2 s K , .
So, for any θ ∈]0, 1[,

1 n 2 b K,K , (n)λ 3/2 2 3m θ 1/2 2 n 1/2 m 1/2 K, m(n)λ 3/2 × θ 3m 1/2 1 n 1/2 s 1/2 K , θ 3mn s K , + 12mλ 3 θn m K, m(n) 2 .
• The constant c K,K , (n). Consider

c K,K , (n) 2 := n 2 E(g 1 K,K , (n; X 1 , Y 1 , X 2 , Y 2 ) 2 )
. By (15), Jensen's inequality and Assumption 2.1.(3),

c K,K , (n) 2 16n 2 E( K(X 1 , .) (Y 1 )1 | (Y1)| m(n) , K (X 2 , .) (Y 2 )1 | (Y2)| m(n) 2 2 ) 16n 2 m(n) 2 E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) 16m K, n 2 m(n) 2 s K , . So, 1 n 2 c K,K , (n)λ 1/2 θ 3mn s K , + 12mλ θn m K, m(n) 2 . • The constant d K,K , (n). Consider d K,K , (n) := sup (a,b)∈A E   i<j a i (X i , Y i )b j (X j , Y j )g 1 K,K , (n; X i , Y i , X j , Y j )   ,
where

A :=    (a, b) : n-1 i=1 E(a i (X i , Y i ) 2 ) 1 and n j=2 E(b j (X j , Y j ) 2 ) 1    .
By (15), Jensen's inequality, Cauchy-Schwarz's inequality and Assumption 2.1.(3),

d K,K , (n) 4 sup (a,b)∈A E   n-1 i=1 n j=i+1 |a i (X i , Y i )b j (X j , Y j )ϕ K,K , (n; X i , Y i , X j , Y j )|   4nm(n)E( K(X 1 , .), K (X 2 , .) (Y 2 ) 2 2 ) 1/2 4m 1/2 K, nm(n)s 1/2 K , .
So,

1 n 2 d K,K , (n)λ θ 3mn s K , + 12mλ 2 θn m K, m(n) 2 .
Then, since m 1 and λ > 0, with probability larger than 1 -5.4e -λ ,

|U 1 K,K , (n)| n 2 θ n s K , + 40m 2 θn m K, m(n) 2 (1 + λ) 3 .
So, with probability larger than

1 -5.4|K n | 2 e -λ , S K, (n, θ) := sup K,K ∈Kn |U 1 K,K , (n)| n 2 - θ n s K , 40m 2 θn m K, m(n) 2 (1 + λ) 3 .
For every t ∈ R + , consider

λ K, (n, θ, t) := -1 + t m K, (n, θ) 1/3 with m K, (n, θ) = 40m 2 θn m K, m(n) 2 .
Then, for any T > 0,

E(S K, (n, θ)) T + ∞ T P(S K, (n, θ) (1 + λ K, (n, θ, t)) 3 m K, (n, θ))dt T + 5.4|K n | 2 ∞ T exp(-λ K, (n, θ, t))dt = T + 5.4|K n | 2 ∞ T exp - t 1/3 2m K, (n, θ) 1/3 exp 1 - t 1/3 2m K, (n, θ) 1/3 dt T + 5.4c 1 |K n | 2 m K, (n, θ) exp - T 1/3 2m K, (n, θ) 1/3 with c 1 = ∞ 0 e 1-r 1/3 /2 dr. Moreover, m K, (n, θ) c 2 log(n) 2 θn with c 2 = 40 • 8 2 m 2 α 2 m K, .
So, by taking

T = 2 4 c 2 log(n) 5 θn ,
and since

|K n | n, E(S K, (n, θ)) 2 4 c 2 log(n) 5 θn + 5.4c 1 m K, (n, θ) |K n | 2 n 2 (2 4 + 5.4c 1 )c 2 log(n) 5 θn .
On the other hand, by Assumption 2.1.(1), Cauchy-Schwarz's inequality and Markov's inequality,

E sup K,K ∈Kn |g 2 K,K , (n; X1, Y1, X2, Y2)| 4m(n) K,K ∈Kn E(| (Y1)|1 | (Y 1 )|>m(n) | K(X1, .), K (X2, .) 2|) 4m(n)m K, n|Kn| 2 E( (Y1) 2 ) 1/2 P(| (Y1)| > m(n)) 1/2 c3 log(n) n with c 3 = 32 α m K, E( (Y 1 ) 2 ) 1/2 E(exp(α| (Y 1 )|)) 1/2 .
So,

E sup K,K ∈Kn |U 2 K,K , (n)| n 2 c 3 log(n) n
and, symmetrically,

E sup K,K ∈Kn |U 3 K,K , (n)| n 2 c 3 log(n) n .
By Assumption 2.1.(1), Cauchy-Schwarz's inequality and Markov's inequality,

E sup K,K ∈Kn |g 4 K,K , (n; X1, Y1, X2, Y2)| 4 K,K ∈Kn E(| (Y1) (Y2)|1 | (Y 1 )|,| (Y 2 )|>m(n) | K(X1, .), K (X2, .) 2|) 4m K, n|Kn| 2 E( (Y1) 2 )P(| (Y1)| > m(n)) c4 n 5 with c 4 = 4m K, E( (Y 1 ) 2 )E(exp(α| (Y 1 )|)).
So,

E sup K,K ∈Kn |U 4 K,K , (n)| n 2 c 4 n 5 .
Therefore, 

E sup K,K ∈Kn |U K,K , (n)| n 2 - θ n s K , ( 2 
s K, 2 2 E( (Y 1 ) 2 ) R d f (x ) R d K(x , x) 2 λ d (dx)λ d (dx ) E( (Y 1 ) 2 )m K, n (16) 
and

E(V K, (n)) = E( K(X 1 , .) (Y 1 ) -s K, 2 2 ) = E( K(X 1 , .) (Y 1 ) 2 2 ) + s K, 2 2 -2 R d s K, (x)E(K(X 1 , x) (Y 1 ))λ d (dx) = s K, -s K, 2 2 . ( 17 
)
Consider m(n) := 2 log(n)/α and

v K, (n) := V K, (n) -E(V K, (n)) = v 1 K, (n) + v 2 K, (n), where v j K, (n) = 1 n n i=1 (g j K, (n; X i , Y i ) -E(g j K, (n; X i , Y i ))) ; j = 1, 2
with, for every (x , y) ∈ E,

g 1 K, (n; x , y) := K(x , .) (y) -s K, 2 2 1 | (y)| m(n) and g 2 K, (n; x , y) := K(x , .) (y) -s K, 2 2 1 | (y)|>m(n) .
On the one hand, by Bernstein's inequality, for any λ > 0, with probability larger than 1 -2e -λ ,

|v 1 K, (n)| 2λ n v K, (n) + λ n c K, (n) where c K, (n) = g 1 K, (n; .) ∞ 3 and v K, (n) = E(g 1 K, (n; X 1 , Y 1 ) 2 ). Moreover, c K, (n) = 1 3 sup (x ,y)∈E K(x , .) (y) -s K, 2 2 1 | (y)| m(n) 2 3 m(n) 2 sup x ∈R d K(x , .) 2 2 + s K, 2 2 2 3 (m(n) 2 + E( (Y 1 ) 2 ))m K, n
by Inequality [START_REF] Parzen | On the Estimation of a Probability Density Function and the Mode[END_REF], and

v K, (n) g 1 K, (n; .) ∞ E(V K, (n)) 2(m(n) 2 + E( (Y 1 ) 2 ))m K, n(s K, -s K, 2 
2 ) by Inequality [START_REF] Parzen | On the Estimation of a Probability Density Function and the Mode[END_REF] and Equality [START_REF] Rosenblatt | Remarks on some Nonparametric Estimates of a Density Function[END_REF]. Then, for any θ ∈]0, 1[,

|v 1 K, (n)| 2 λ(m(n) 2 + E( (Y 1 ) 2 ))m K, (s K, -s K, 2 2 ) + 2λ 3 (m(n) 2 + E( (Y 1 ) 2 ))m K, θs K, + 5λ 3θ (1 + E( (Y 1 ) 2 ))m K, m(n) 2
with probability larger than 1 -2e -λ . So, with probability larger than

1 -2|K n |e -λ , S K, (n, θ) := sup K∈Kn |v 1 K, (n)| n - θ n s K, 5λ 3θn (1 + E( (Y 1 ) 2 ))m K, m(n) 2 .
For every t ∈ R + , consider

λ K, (n, θ, t) := t m K, (n, θ) with m K, (n, θ) = 5 3θn (1 + E( (Y 1 ) 2 ))m K, m(n) 2 .
Then, for any T > 0, 

E(S K, (n, θ)) T + ∞ T P(S K, (n, θ) λ K, (n, θ, t)m K, (n, θ))dt T + 2|K n | ∞ T exp(-λ K, (n, θ, t))dt = T + 2|K n | ∞ T exp - t 2m K, (n, θ) exp - t 2m K, (n, θ) dt T + 2c 1 |K n |m K, (n, θ) exp - T 2m K, (n, θ) with c 1 = ∞ 0 e -
E(S K, (n, θ)) 2c 2 log(n) 3 θn + 4m K, (n, θ) |K n | n 6c 2 log(n) 3 θn .
On the other hand, by Inequality ( 16) and Markov's inequality,

E sup K∈Kn |v 2 K, (n)| n 2 n E sup K∈Kn K(X 1 , .) (Y 1 ) -s K, 2 2 1 | (Y1)|>m(n) 4 n E (Y 1 ) 2 sup K∈Kn K(X 1 , .) 2 2 + sup K∈Kn s K, 2 2 2 1/2 P(| (Y 1 )| > m(n)) 1/2 c 3 n with c 3 = 8m K, E( (Y 1 ) 4 ) 1/2 E(exp(α| (Y 1 )|)) 1/2 .
Therefore,

E sup K∈Kn |v K, (n)| n - θ n s K, ) 6c 2 log(n) 3 θn + c 3 n
and, by Equality [START_REF] Rosenblatt | Remarks on some Nonparametric Estimates of a Density Function[END_REF], the definition of v K, (n) and Assumption 2.1.( 2),

E sup K∈Kn 1 n |V K, (n) -s K, | - θ n s K, 6c 2 log(n) 3 θn + c 3 + m K, n .
Remark B.5. As mentioned in Remark 2.10, replacing the exponential moment condition by the weaker q-th moment condition with q = (12-4ε)/β, ε ∈]0, 1[ and 0 < β < ε/2, allows to get a rate of convergence of order 1/n 1-ε . Indeed, by Inequality [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF], with m(n) = n β and

T = 2c 1 θn 1-ε with c 1 = 5 3 (1 + E( (Y 1 ) 2 ))m K, ,
and by letting α = 1 + 2β -ε, there exist n ε,α ∈ N * and c ε,α > 0 not depending on n, such that for any n n ε,α ,

E(S K, (n, θ)) 2c 1 θn 1-ε + 4c 1 |K n | n 2β-1 θ exp(-n ε-2β ) 2c 1 θn 1-ε + 4c 1 c ε,α n 2β θn α = 2c 1 (1 + 2c ε,α ) θn 1-ε .
Furthermore, by Markov's inequality,

P(| (Y 1 )| > n β ) E(| (Y 1 )| (12-4ε)/β ) n 12-4ε .
So, as previously, there exists a deterministic constant c 2 > 0 such that

E sup K,K ∈Kn |W 2 K,K , (n)| c 2 |K n | 2 P(| (Y 1 )| > m(n)) 1/4 c 3 E(| (Y 1 )| (12-4ε)/β ) 1/4 n 1-ε ,
and then

E sup K,K ∈Kn {|W K,K , (n)| -θ s K , -s 2 2 } c 3 θn 1-ε with c 3 = 2c 1 (1 + 2c ε,α ) + c 2 E(| (Y 1 )| (12-4ε)/β ) 1/4 . B.1.3. Proof of Lemma B.3. Consider m(n) = 12 log(n)/α. For any K, K ∈ K n , W K,K , (n) = W 1 K,K , (n) + W 2 K,K , (n) where W j K,K , (n) := 1 n n i=1 (g j K,K , (n; X i , Y i ) -E(g j K,K , (n; X i , Y i ))) ; j = 1, 2
with, for every (x , y) ∈ E,

g 1 K,K , (n; x , y) := K(x , .) (y), s K , -s 2 1 | (y)| m(n) and g 2 K,K , (n; x , y) := K(x , .) (y), s K , -s 2 1 | (y)|>m(n) .
On the one hand, by Bernstein's inequality, for any λ > 0, with probability larger than 1 -2e -λ ,

|W 1 K,K , (n)| 2λ n v K,K , (n) + λ n c K,K , (n) where c K,K , (n) = g 1 K,K , (n; .) ∞ 3 and v K,K , (n) = E(g 1 K,K , (n; X 1 , Y 1 ) 2 ). Moreover, c K,K , (n) = 1 3 sup (x ,y)∈E | K(x , .) (y), s K , -s 2 |1 | (y)| m(n) 1 3 m(n) s K , -s 2 sup x ∈R d K(x , .) 2 1 3 m 1/2 K, n 1/2 m(n) s K , -s 2
by Assumption 2.1.(1), and

v K, (n) E( K(X 1 , .) (Y 1 ), s K , -s 2 2 1 | (Y1)| m(n) ) m(n) 2 m K, s K , -s 2 2
by Assumption 2.1.(4). Then, since λ > 0, for any θ ∈]0, 1[,

|W 1 K,K , (n)| 2λ n m(n) 2 m K, s K , -s 2 2 + λ 3n 1/2 m 1/2 K, m(n) s K , -s 2 θ s K , -s 2 2 + m K, 2θn m(n) 2 (1 + λ) 2
with probability larger than 1 -2e -λ . So, with probability larger than 1

-2|K n | 2 e -λ , S K, (n, θ) := sup K,K ∈Kn {|W 1 K,K , (n)| -θ s K , -s 2 2 } m K, 2θn m(n) 2 (1 + λ) 2 .
For every t ∈ R + , consider

λ K, (n, θ, t) := -1 + t m K, (n, θ) 1/2 with m K, (n, θ) = m K, 2θn m(n) 2 .
Then, for any T > 0, 

E(S K, (n, θ)) T + ∞ T P(S K, (n, θ) (1 + λ K, (n, θ, t)) 2 m K, (n, θ))dt T + 2|K n | 2 ∞ T exp(-λ K, (n, θ, t))dt = T + 2|K n | 2 ∞ T exp - t 1/2 2m K, (n, θ) 1/2 exp 1 - t 1/2 2m K, (n, θ) 1/2 dt T + 2c 1 |K n | 2 m K, (n, θ) exp - T 1/2 2m K, (n, θ) 1/2 with c 1 = ∞ 0 e 1-r
E(S K, (n, θ)) 2 3 c 2 log(n) 4 θn + 2c 1 m K, (n, θ) |K n | 2 n 2 (2 3 + 2c 1 )c 2 log(n) 4 θn .
On the other hand, by Assumption 2.1.(2,4), Cauchy-Schwarz's inequality and Markov's inequality, (Y i ) K(X i , .), s K0, 2 + 1 n s K0, , s K, 2 and ψ 3,n (K) := W K,K0, (n) + W K0,K, (n) + s K, -s, s K0, -s 2 .

E sup K,K ∈Kn |W 2 K,K , (n)| 2E( (Y 1 ) 2 1 | (Y1)|>m(n) ) 1/2 K,K ∈Kn E( K(X 1 , .), s K , -s 2 2 ) 1/2 2m 1/2 K, s K , -s 2 E( (Y 1 ) 4 ) 1/4 |K n | 2 P(| (Y 1 )| > m(n))
Step 2. In this step, we give controls of the quantities • On the one hand, for any K, K ∈ K n , consider

Ψ 2,n (K, K ) := 1 n n i=1 (Y i ) K(X i , .), s K , 2 .
Then, by Assumption 3.1, 

E sup K,K ∈Kn |Ψ 2,n (K, K )| E( (Y 1 ) 2 ) 1/2 E sup K,K ∈Kn K(X 1 , .), s K ,

mq 1 , 2 (

 12 . . . , ϕ mq mq } (m q ∈ N * and q ∈ {1, . . . , d}) is an orthonormal family of L q )ϕ mq j (x q ) for every x, x ∈ R d , then s K, (n; .) is the projection estimator onS = span(B m1 ⊗ • • • ⊗ B m d ) of s = bf . Now, assume that b = 0 in Model (1): for every i ∈ {1, . . . , n},

1 [ 1 .

 11 ..,Bn (m max ), the condition on m K seems harder to check in general. Let us show that it is satisfied for the regular histograms basis defined in Section 2. For every m 1 , . . . , m d ∈ {1, . . . , n}, (j-1)/mq,j/mq[ (x q ) Now, let us show that even if it doesn't fulfill Assumption 3.5, the trigonometric basis fulfills Assumption 3.1.

3 .

 3 Consider K, K ∈ K B1,...,Bn (m max ). Then, there exist m, m ∈ {1, . . . , m max } d such that K(x , x) = q ) and K (x , x) =

2 s 2 - 2 s 2 =

 2222 K, (n; •) -s 2 2 + pen (K) -pen ( K) + s K0, (n; •) -s 2 K, (n; •) -s K, (n •), s K0, (n; •) -s s K, (n; •) -s 2 2 + ψ n (K) -ψ n ( K) (20)whereψ n (K) := 2 s K, (n; •) -s, s K0, (n; •) -s 2 -pen (K).Let's complete the decomposition of s K, (n; •) -s 2 2 by writingψ n (K) = 2(ψ 1,n (K) + ψ 2,n (K) + ψ 3,n (K)), where ψ 1,n (K) := U K,K0, ) K 0 (X i , .), s K, 2 + n i=1

E

  (ψ i,n (K)) and E(ψ i,n ( K)) ; i = 1, 2, 3.• By Lemma B.1, for any θ ∈]0, 1[,E(|ψ 1,n (K)|) θ n s K, + c B.1 log(n) 5θn andE(|ψ 1,n ( K)|) θ n E(s K, ) + c B.1 log(n) 5 θn .

2 K, E( (Y 1 ) 2 ) 1 / 2 .

 21212 On the other hand, by Assumption 2.1.(2),| s K, , s K0, 2 | m K, .Then, there exists a deterministic constant c 1 > 0, not depending on n and K, such thatE(|ψ 2,n (K)|) c 1 n and E(|ψ 2,n ( K)|) c 1 n .

  Remark 2.4. For the sake of simplicity, the present paper focuses on K B1,...,Bn (m max ), but Proposition 2.3 is still true for the weighted projection kernels set K B1,...,Bn (w 1 , . . . , w n ; m max ) :=

				 	(x , x) →	d	mq	w j ϕ	 j (x q ) ; m 1 , . . . , m d ∈ {1, . . . , m max } j (x q )ϕ mq mq 	,
						q=1	j=1	
	where w 1 , . . . , w n ∈ [0, 1].			
	Remark 2.5. Note that Condition (5) is close, but more restrictive than Condition (19) of Lerasle et al.
	[13], Proposition 3.2, which is that the spaces span(B m ), m ∈ N are nested. See Massart [14], Subsection
	7.5.2 for examples of nested spaces. Our Condition (5) is fulfilled by the trigonometric basis, Hermite's
	basis or Laguerre's basis.			
	Note also that in the same proposition of Lerasle et al. [13], Condition (20) coincides with our Con-
	dition (6). The regular histograms basis satisfies Condition (6). Indeed, by taking ϕ m j = ψ m j √ m1 [(j-1)/m,j/m[ for every m ∈ {1, . . . , n} and j ∈ {1, . . . , m},	:=
			d	mq			
	E						
		q=1	j=1			

Bn (m max ) and x ∈ R d } is finite and doesn't depend on n.

The kernels set K B1,...,Bn (m max ) fulfills Assumption 2.1 and, for any K ∈ K B1,...,Bn (m max ) (i.e. defined by (3) with m 1 , . . . , m n ∈ {1, . . . , m max }),

s K, m d B E( (Y 1 ) 2 ) d q=1 m q .

  Note that the first inequality in Theorem 2.8 gives a risk bound on the estimator s K, (n; .): (R d ), then there exists a deterministic constant c L > 0, depending on L = sup z∈supp(P Y 1

	Remark 2.9. E( s K, (n; .) -s 2 2 ) (1 + θ) s K, -s 2 2 +	s K, n	+ c 2.8	log(n) 5 θn
	for every θ ∈]0, 1[. The second inequality is useful in order to establish a risk bound on the adaptive
	estimator defined in the next section (see Theorem 3.2).			
	Remark 2.10. In Proposition 2.7 and Theorem 2.8, the exponential moment condition may appear too
	strong. Nevertheless, this is de facto satisfied when				
	(7)		(Y 1 ), . . . , (Y n ) have a compactly supported distribution.
	This last condition is satisfied in the density estimation framework because = 1, but even in the non-
	parametric regression framework, where is not bounded, when Y 1 , . . . , Y n have a compactly supported
	distribution. Moreover, note that under Condition (7), the risk bounds of Theorem 2.8 can be stated in
	deviation, without additional steps in the proof. Precisely, under Assumption 2.1 and Condition (7), if
	s ∈ L 2									
	Theorem 2.8. Under Assumption 2.1, if s ∈ L 2 (R d ) and if there exists α > 0 such that E(exp(α| (Y 1 )|)) <
	∞, then there exist deterministic constants c 2.8 , c 2.8 > 0, not depending on n, such that for every θ ∈]0, 1[,
		E sup K∈Kn	s K, (n; .) -s 2 2 -(1 + θ) s K, -s 2 2 +	s K, n		c 2.8	log(n) 5 θn
	and	E sup K∈Kn	s K, -s 2 2 +	s K, n	-	1 1 -θ	s K, (n; .) -s 2 2	c 2.8	log(n) 5 θ(1 -θ)n	.

) | (z)| but not on n, such that for every ϑ ∈]0, 1[ and λ > 0, sup K∈Kn

  Proof of Lemma B.2. First, the two following results are used several times in the sequel:

	4 + 5.4c 1 )c 2	log(n) 5 θn	+ 2c 3	log(n) n	+	c 4 n 5 .
	B.1.2.					

  1/2 /2 dr.

	Moreover,			
	m K, (n, θ) c 2	log(n) 2 θn	with c 2 =	12 2 2α 2 m K, .
	So, by taking			
	T = 2 3 c 2	log(n) 4 θn	,
	and since |K			

n | n,

  K, + s 2 )E( (Y 1 ) 4 ) 1/4 E(exp(α| (Y 1 )|)) 1/4 . = (2 3 + 2c 1 )c 2 + c 3 . B.2. Proof of Proposition 2.7. For any K ∈ K n , K, (n) = U K,K, (n) and V K, (n) = V K,K, (n).Then, by Lemmas B.1 and B.2, = c B.1 + c B.2 . B.3. Proof of Theorem 2.8. On the one hand, for everyK ∈ K n , s K, (n; .) -s 2 2 -(1 + θ) s K, -s 2 2 + (n) -θ s K, -s 2 2 ,where W K, (n) := W K,K, (n) (see (14)). Then, by Proposition 2.7 and Lemma B.3, K, (n) = U K,K, (n) (see (13)). By Lemmas B.2 and B.1, there exists a deterministic constant c 1 > 0, not depending n and θ, such that with c 2.8 = c B.3 + c 1 . B.4. Proof of Theorem 3.2. The proof of Theorem 3.2 is dissected in three steps. Step 1. This first step is devoted to provide a suitable decomposition of s K, (n; •) -s 2 2 . First, s K, (n; •) -s 2 2 = s K, (n; •) -s K0, (n; •) 2 2 + s K0, (n; •) -s 2 2 -2 s K0, (n; •) -s K, (n; •), s K0, (n; •) -s 2 From (8), it follows that for any K ∈ K n , s K, (n; •) -s 2

	1/4 log(n) 4 θn log(n) 5 c 3 n c 4 log(n) 5 + c 2.7 log(n) 4 θn V K, (n) (2 3 + 2c 1 )c 2 U K, (n) n 2 + n s K, n -θ n s K, θn with c 2.7 s K, with c 3 = 2m 1/2 K, (m 1/2 Therefore, E sup 2 2 } s K, (n; .) -s K, 2 2 = with U E sup K∈Kn s K, (n; .) -s K, 2 2 -n can be written s K, (n; .) -s K, 2 2 -(1 + θ) s K, n + 2W K, E sup Then, (1 -θ) s K, -s 2 2 + s K, 2 2 -s K, n . By Equalities (19) and (17), Λ K, (n) = U K, (n) n 2 + v K, (n) n -s K, 2 2 n with U E sup K∈Kn Λ K, (n) -θ s K, n c 1 log(n) 5 θn . By Lemma B.3, E sup K∈Kn {|W K, (n)| -θ s K, -s 2 2 } c B.3 log(n) 4 θn . Therefore, with c 4 (19) E sup K∈Kn s K, -s 2 2 + s K, n -1 1 -θ s K, (n; .) -s 2 2 c 2.8 θ(1 -θ)n	c 3 n

K,K ∈Kn {|W K,K , (n)| -θ s K , -s K∈Kn s K, (n; .) -s 2 2 -(1 + θ) s K, -s 2 2 + s K, n c 2.8 log(n) 5 θn with c 2.8 = c 2.7 + c B.3 . On the other hand, for any K ∈ K n , s K, -s 2 2 = s K, (n; .) -s 2 2 -s K, (n; .) -s K, 2 2 -W K, (n). n -s K, (n; .) -s 2 2 |W K, (n)| -θ s K, -s 2 2 + Λ K, (n) -θ s K, n

where Λ K, (n) := s K, -s K,
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