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KERNEL SELECTION IN NONPARAMETRIC REGRESSION

HELENE HALCONRUY* AND NICOLAS MARIET

ABSTRACT. In the regression model Y = b(X) 4 o(X)e, where X has a density f, this paper deals
with an oracle inequality for an estimator of bf, involving a kernel in the sense of Lerasle et al. (2016),
selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already
studied in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection
for anisotropic projection estimators of f and bf is covered.
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1. INTRODUCTION

Consider n € N* independent R? x R-valued (d € N*) random variables (X1,Y7),..., (X,,Y,), having
the same probability distribution assumed to be absolutely continuous with respect to Lebesgue’s measure,
and

. I
Ske(nyx) = - ZK(XZ»,:E)E(Yi) cx e RY,
i=1

where ¢ : R — R is a Borel function and K is a symmetric continuous map from R? x R? into R. This is
an estimator of the function s : R? — R defined by
s(2) = E(C()| Xy = 2) () ; ¥ € RY,

where f is a density of X;. For £ = 1, Sk ¢(n;.) coincides with the estimator of f studied in Lerasle et
al. [13], covering Parzen-Rosenblatt’s and projection estimators already deeply studied in the literature
(see Parzen [16], Rosenblatt [17], Tsybakov [18], etc.), but for ¢ # 1, it covers estimators involved in
nonparametric regression. Assume that for every i € {1,...,n},

(1) Y, =b(X;) + 0(X;)e;

Key words and phrases. Nonparametric estimators ; Projection estimators ; Model selection ; Regression model.
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2 HELENE HALCONRUY* AND NICOLAS MARIE'

where ¢; is a centered random variable of variance 1, independent of X;, and b,0 : R — R are Borel
functions.
o If / =1Idg, k is a symmetric kernel and
d

1 —
2) K(a'o) =[] -k (mq xq) with f1, ..., hg > 0
q=1""1

hq

for every z,x’ € R?, then S ¢(n;.) is the numerator of the well-known Nadaraya-Watson esti-
mator of the regression function b (see Nadaraya [15] and Watson [20]). Precisely, Sk ¢(n;.) is an
estimator of s = bf because €1 is independent to X7 and E(e1) = 0. If £ # Idg, then Sk ¢(n;.) is
the numerator of the estimator studied in Einmahl and Mason [7, 8].

o If { = Idg, B, = {¢]"",...,om'} (mq € N* and ¢ € {1,...,d}) is an orthonormal family of
L2(R) and

d mg
Q K a) = [T 3@} o (@)

q=1j=1
for every z, 2’ € R?, then Sg ¢(n;.) is the projection estimator on S = span(B,,, ® - -+ ® Byy,,) of
s =0bf.
Now, assume that b = 0 in Model (1): for every i € {1,...,n},
(4) Yi = o(Xi)e.

If {(z) = 22 for every = € R, then Sk ¢(n;.) is an estimator of s = o2 f.

These ten last years, several data-driven procedures have been proposed in order to select the band-
width of Parzen-Rosenblatt’s estimator (¢ = 1 and K defined by (2)). First, Goldenshluger-Lepski’s
method, introduced in [10], which reaches the adequate bias-variance compromise, but is not completely
satisfactory on the numerical side (see Comte and Rebafka [5]). More recently, in [12], Lacour, Massart
and Rivoirard proposed the PCO (Penalized Comparison to Overfitting) method and proved an oracle
inequality for the associated adaptive Parzen-Rosenblatt’s estimator by using a concentration inequality
for the U-statistics due to Houdré and Reynaud-Bouret [11]. Together with Varet, they established the
numerical efficiency of the PCO method in Varet et al. [19]. Still in the density estimation framework, the
PCO method has been extended to bandwidths selection for the recursive Wolverton-Wagner estimator
in Comte and Marie [3].

Comte and Marie [4] deal with an oracle inequality and numerical experiments for an adaptive Nadaraya-
Watson’s estimator with a numerator and a denominator having distinct bandwidths, both selected via
the PCO method. Since the output variable in a regression model has no reason to be bounded, there
were significant additional difficulties, bypassed in [4], to establish an oracle inequality for the numera-
tor’s adaptive estimator. Via similar arguments, the present article deals with an oracle inequality for
Si¢(n;.), where K is sclected via the PCO method in the spirit of Lerasle et al. [13]. As in Comte and
Marie [4], one can deduce an oracle inequality for the adaptive quotient estimator Sgo(n;)/sz 1 (n;.) of

K

E(¢(Y1)| X1 = -), where K and L are both selected via the PCO method.

In addition to the bandwidth selection for kernel-based estimators already studied in [12, 4], the present
paper covers the dimension selection for projection estimators of f, bf when Y7,...,Y,, are defined by
Model (1) with ¢ = Idg, and o?f when Yi,...,Y,, are defined by Model (4) with ¢(z) = 22 for every
x € R. For projection estimators, when d = 1, the usual model selection method (see Comte [2], Chapter
2, Section 5) seems hard to beat. However, when d > 1 and K is defined by (3), mq,..., mq are selected
via a Goldenshluger-Lepski type method (see Chagny [1]), which has the same numerical weakness than
the Goldenshluger-Lepski method for bandwidth selection when K is defined by (2). So, for the dimen-
sion selection for anisotropic projection estimators, the PCO method is interesting.

In Section 2, some examples of kernels sets are provided and a risk bound on 5x ¢(n;.) is established.
Section 3 deals with an oracle inequality for 57 ,(n;.), where K is selected via the PCO method.
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2. RISK BOUND

Throughout the paper, s € L2(R%). Let K, be a set of symmetric continuous maps from R% x R into
R, of cardinality less or equal than n, fulfilling the following assumption.

Assumption 2.1. There exists a deterministic constant my , > 0, not depending on n, such that
(1) For every K € K,,,

sup [|K(a",.)[|3 < myc.en.
I'ERd

(2) For every K € ICy,,
Isk.ell3 < mie
with
sk =E(Ske(n;.)) =E(K(X7,.)0(Y71)).
(3) For every K, K' € K,
E((K(X1,.), K' (X2, .)0(Y2))3) < mi 55,0
with
i = E(I[K (X0, )0Y)|13)-
(4) For every K € K,, and ¢ € L2(R9),
E((K(X1,.),%)3) < mce]v]3.

The elements of IC,, are called kernels. Let us provide two natural examples of kernels sets.

Proposition 2.2. Consider

K (homin) 1= { ]i[hl (x _xq> ;hl,...,hdeH(hmin)},

q

where k is a symmetric kernel (in the usual sense), hmin € [0 1] and H(hmin) is a finite subset of
[Amin, 1]. The kernels set Ky (hmin) fulfills Assumption 2.1 and, for any K € Ki(hmin) (i-e. defined by
(2) with hy,...,hg € H(hmin));

1
S0 = ||[k|5E th
q=1"1
Proposition 2.3. Consider
d mgq
ICBl,...,Bn(mmax) = (.I‘/,CC) = HZ@T(I('xq)(p;ﬂq(m;) ;MY ...,Mg € {17"'7mmax} 3
q=1j=1
where m% € {1,...,n} and, for every m € {1,...,n}, By, = {o7,...,¢™} is an orthonormal family
of L2(R) such that
sup » ¢ <mpm
x’ ERZ !

with mp > 0 not depending on m and n, and such that one of the two following conditions is satisfied:
(5) By, CBpg1;Vme{l,...,n—1}

or

(6) mp :=sup{|E(K(X1,2))| ; K € Kg,.. 5, (Mmax) and x € R} is finite and doesn’t depend on n.

The kernels set Kp, ... B, (Mmax) fulfills Assumption 2.1 and, for any K € Kp, ... B, (Mmax) (i-e. defined
by (3) with my,...,m, € {1,..., Mmax}),

Sr.e < mEE(L(Y1)?)

=
S
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Remark 2.4. For the sake of simplicity, the present paper focuses on Kg, ... B, (Mmax), but Proposition
2.8 is still true for the weighted projection kernels set
d mgq
Ksi....5, (W1, ..., We; Mimax) 1=} (2, 2) — H z wjgo;nq (mq)gag-nq () 3 ma, .. ma € {1, Mmax} ¢ 5
q=1j=1
where wy, ..., w, € [0,1].

Remark 2.5. Note that Condition (5) is close, but more restrictive than Condition (19) of Lerasle et al.
[13], Proposition 3.2, which is that the spaces span(B,,), m € N are nested. See Massart [14], Subsection
7.5.2 for examples of nested spaces. Our Condition (5) is fulfilled by the trigonometric basis, Hermite’s
basis or Laguerre’s basis.

Note also that in the same proposition of Lerasle et al. [13], Condition (20) coincides with our Con-
dition (6). The regular histograms basis satisfies Condition (6). Indeed, by taking 7' = ¢ =
VML[G—1)/m,jjm[ for every m € {1,...,n} and j € {1,...,m},

d mg
sz;ﬂq(xlﬂ)w;ﬂq (qu) Z Z (H mq qu)/mq,]q/mq[(xq)>
q=1j=1 =1 ja=1
Ji/ma Ja/ma
x/ / £ 2l de, - da,
(J1—1)/ma (ja—1)/ma
d mq
< llse TT D2 116=1)/maifmal (@) < £l
q=1j=1
for every my,...,mg € {1,...,n} and x € R%.

The following proposition shows that Legendre’s basis also fulfills Condition (6).
Proposition 2.6. For everym € {1,...,n} and j € {1,...,m}, let {* be the function defined on [-1,1]

by
. 2j +1
(@) = Qi) s Vo e [-1,1],
where p
. 1 i, )

is the j-th Legendre’s polynomial. If f € C?%([0,1]¢) and B,, = {&*,..., &} for every m € {1,--- ,n},
then Kp, ... B, (Mmax) fulfills Condition (6).

The following proposition provides a suitable control of the variance of 5 ¢(n;.).

Proposition 2.7. Under Assumption 2.1.(1,2,3), if s € L2(RY) and if there exists a > 0 such that
E(exp(a|f(Y71)|)) < 0o, then there exists a deterministic constant ca.7 > 0, not depending on n, such that

for every 6 €]0,1],
0 1 5
E( sup { - 5K/}> < Ca7 og(n) .
Kek, n on
Finally, let us state the main result of this section.

Theorem 2.8. Under Assumption 2.1, if s € L2(R%) and if there exists a > 0 such that E(exp(al|l(Y71)])) <
00, then there exist deterministic constants cs g,%2.8 > 0, not depending on n, such that for every 6 €]0, 1],

=R 5 log(n)®
E( sup {nsx,e(n; )—slZ—(1+06) (|sK,e — 5|3+ “) }) < 2B
KEICn n 971

S 1 . _ log(n)®
E (sup {lsrce = sl + 5 = o loieatrn) - o3} ) < s s

Kek, 1 (9)71'

SKZ

[5K,e(n;.)

and
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Remark 2.9. Note that the first inequality in Theorem 2.8 gives a risk bound on the estimator Sk ¢(n;.):
log(n)”
on

for every 6 €]0,1[. The second inequality is useful in order to establish a risk bound on the adaptive
estimator defined in the next section (see Theorem 3.2).

~ s
B(lSicr) = s18) < (1+9) (llwce = sl + 24 ) + g

Remark 2.10. In Proposition 2.7 and Theorem 2.8, the exponential moment condition may appear too
strong. Nevertheless, this is de facto satisfied when

(7) Y1), ..., L(Y,) have a compactly supported distribution.

This last condition is satisfied in the density estimation framework because £ = 1, but even in the non-
parametric regression framework, where £ is not bounded, when Yi,...,Y, have a compactly supported
distribution. Moreover, note that under Condition (7), the risk bounds of Theorem 2.8 can be stated in
deviation, without additional steps in the proof. Precisely, under Assumption 2.1 and Condition (7), if
s € L2(RY), then there exists a deterministic constant ¢, > 0, depending on L = SUD, coupp (By, ) [€(2)] but
not on n, such that for every 9 €]0,1[ and X > 0,

SK,e 1

(T RNENTL) ISR /) 3
L aatns ) — sl < L1 42)

sup [lsx,e — 3 +
Kn
with probability larger than 1 — 9.4|KC, [e™*.

When Condition (7) doesn’t hold true, one can replace the exponential moment condition of Proposition
2.7 and Theorem 2.8 by a q-th order moment condition on (Y1) (¢ € N*), but with a damaging effect on
the rate of convergence of Sk ¢(n;.). Forinstance, at Remark B.5, it is established that under a (12—4¢)/B-
th moment condition (¢ €]0,1[ and 0 < B < €/2), the rate of convergence is of order O(1/n'=¢) (instead
of 1/n) in Lemma B.2. This holds true for the three technical lemmas of Subsection B.1, and then for
Proposition 2.7 and Theorem 2.8.

3. KERNEL SELECTION

This section deals with a risk bound on the adaptive estimator 5% ,(n;.), where

K € arg Kﬂél,g {I5K,e(n; ) = 8o e(ns )| + peny (K)},
K is an overfitting proposal for K in the sense that

Ko € arg max {Sup IK(%:E)I},

n (zcRd
and

(8) pen,(K) := % Z(K(.,Xi),KO(.,X,;)>2€(}Q)2 VK € K,.

Example. On the one hand, for any K € K (hmin) (i-e. defined by (2) with hq, ..., hg € H(hmin)),

d
1
sup |K (z,2) = [k(O)* [ [ -
zER ql;[l hq

Then, for K,, = Ki(hmin),

d ’
1 xr, —
1 _ q q . / d
KO(.’II,f)—hde(hrnm> ,Vm,x € R%.
min g—1
On the other hand, for any K € Kp, .. g, (Mmax) (i.e. defined by (3) with mq,...,m, € {1,..., Mmax}),
d mgq

sup |K(z,z)| = sup HZ@?L‘I(@“Q)Q.

zERC zERY q=1j=1
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Then, for K,, = Kp,,... B, (Mmnax), at least for the usual bases mentioned at Remark 2.5,

d Mmax
H Z (lpmm'mx :L'q SDg”nmmx( :1) ;VI‘,,’E/ c Rd-
g=1 j=1
In the sequel, in addition to Assumption 2.1, the kernels set /C,, fulfills the following assumption.

Assumption 3.1. There exists a deterministic constant my , > 0, not depending on n, such that

E( sup (K(Xl,.),sK/’@%)gm,C,g.
K,K'€K,

The following theorem provides an oracle inequality for the adaptive estimator 57 ,(n;.).

Theorem 3.2. Under Assumptions 2.1 and 3.1, if s € L?(R?) and if there exvists o > 0 such that
E(exp(alt(Y1)])) < oo, then there exists a deterministic constant ¢s2 > 0, not depending on n, such that
for every ¥ €]0,1],

)

Remark 3.3. As mentioned in Comte and Marie [4], p. 6, when K, = Kg(hmin), if s belongs to a
Nikol’skii ball and hpyin = 1/n, then Theorem 3.2 says that the PCO estimator has a performance of
same order than O,, := minger, E(|[Sk.e(n;.) — s||3) up to a factor 1 +9. When K,, = Kp,...5, (Mmax),
it depends on the bases By,...,B,. For instance, with the same ideas than in Comte and Marie [4],
thanks to DeVore and Lorentz [6], Theorem 2.8 p. 205, if s belongs to a Sobolev space and Mmax = N,
then our Theorem 3.2 also says that the PCO estimator has a performance of same order than O,,.

Notation. For any B € B(R?), ||.||2,7,5 is the norm on L2(B, f(z)Aq(dz)) defined by

~ . ~ c log(n)®
(157 () ~ s13) < (14 9) gain B(ISwca(mi) = 1) + 52 (lowe = ol + 20 )

1/2
_ ( / ¢<x>2f(x>xd<dx>) g € L2(B, f()Aa(dr).

The following corollary provides an oracle inequality for 5z ,(n;.)/s; ;(n;.), where K and L are both
selected via the PCO method.

Corollary 3.4. Let (8;)jen be a decreasing sequence of elements of 10, 00[ such that lims, 8; = 0 and,
for every j € N, consider

Bj:={z e R%: f(z) = B;}.
Under Assumptions 2.1 and 8.1 for { and 1, if s, f € L2(R?) and if there exists « > 0 such that
E(exp(alt(Y1)])) < oo, then there exists a deterministic constant ¢32 > 0, not depending on n, such that
for every ¥ €]0, 1],
2

§K (nv ) S 3.2 —~
Ell=—7r—=—7% < g |A+0) min {E(II«Sm( ) = sll3) +E(ISpa(ns.) — £13)}
Spalm) f, s (K.L)ex
7.f)B’!L
1 log(n)®
5 (lsmoe = 1B+ oo = 15+ <220
where R
K € arg min {|[5k.e(n; ) — Sko.e(n; )3 + peny (K)}
and

L carg min {|82,1(n5 ) = Sk, (1 )13 + peny (L)}.
The proof of Corollary 3.4 is the same than the proof of Comte and Marie [4], Corollary 4.3.

Finally, let us discuss about Assumption 3.1. This assumption is difficult to check in practice, then
let us provide a sufficient condition.
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Assumption 3.5. The function s is bounded and
my = sup{|[K(z',.)|? ; K € K, and 2’ € R%}
doesn’t depend on n.

Under Assumption 3.5, IC,, fulfills Assumption 3.1. Indeed,

E( sup <K(X17~)»SK',Z>§) < ( sup ||sK/,z||io)E( sup ||K(X1,.>||%>
K Kekn

K K'€Kn ek
oo 2
< m;csup{(/ |K'(m',m)s(m)|dw) i K' € Ky and 2’ E]R} my||s]|%.

Note that in the nonparametric regression framework (see Model (1)), to assume s bounded means that
bf is bounded. For instance, this condition is fulfilled by the linear regression models with Gaussian
inputs.
Let us provide two examples of kernels sets fulfilling Assumption 3.5, the sufficient condition for Assump-
tion 3.1:

e Consider K € Ky (hmin). Then, there exist hq,...,hg € H(hmin) such that

d ’
1 T, —x
K(m’,x):”k( 4 q) ; Vo, 2’ € RL
1 ha hq

Clearly, || K (2, .)|l1 = ||k||{ for every o' € R%. So, for K, = K (hmin), mx < [|k3?
e For I, = ’CBI,‘..,BTL (Mmax), the condition on my seems harder to check in general. Let us show

that it is satisfied for the regular histograms basis defined in Section 2. For every my,...,mgq €
{1,...,n},
d Mg d Mg 3/maq
IT3 e 0 < IT | me X tionmomi) [ o] <1
g=1j=1 q=1 j=1 (i—=1)/mq

1

Now, let us show that even if it doesn’t fulfill Assumption 3.5, the trigonometric basis fulfills Assumption
3.1.

Proposition 3.6. Consider x1 := 1) and, for every j € N*, the functions x2; and x2j+1 defined on
R by
X2;(x) = \/5(:08(277]'3:)1[0)1] () and x2;41(x) == \/isin(Zﬂ'jm)l[oJ] () ; Ve € R.
Ifs € C*(RY) and By, = {x1,--., Xm} for everym € {1,...,n}, then Kp, ... 5, (Mmax) fulfills Assumption
3.1.
APPENDIX A. DETAILS ON KERNELS SETS: PROOFS OF PROPOSITIONS 2.2, 2.3, 2.6 AND 3.6

A.1. Proof of Proposition 2.2. Consider K, K’ € K (hmin). Then, there exist h, h’ € H(hmin)? such
that

K(z',2) = kp(2' — 2) and K'(2/,x) = kp (2' — )

for every x, 2’ € R%, where

(1) For every 2’ € R%, since nhd

>
d d
9) 1K (', )3 = (H h12> /R 1%

q=1

2 —z\? d
q —
(" )m(dx] Ik 117,

< I3
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(2) Since sk, = K * s and by Young’s inequality,
(3) On the one hand, thanks to Equality (9),

3 < |[KIIIs13.

d
- 1
s = E(| K (X1, )eM)I[3) = [1kI3E( H*-

q=1

On the other hand, for every z,z’ € RY,

(K(x,.),K'(2',.))s = » kn(x — 2"y (2) — ") Ag(dx") = (kp * kp/)(x — o).

Then,

E((K(X1,.), K'(X2, )0(Y2))3) = E((kn * kn ) (X1 — X2)*0(Y2)?)

- / [E(y)Q / (kn x k) (2" — 2)? f(2")Aa(d2) | P(x,.,vy) (d, dy)

Rd+1 R4

< N Flloollen  Enr [BEC(Y2)?) < |If oo |16l 3¥5 57 -

(4) For every ¢ € L2(R?),
E((K(X1,.),9)3) = E((kn * ¥)(X1)?)
< N flloollkn = 113 < £ oo BN 1213-

A.2. Proof of Proposition 2.3. Consider K,K’' € Kp, . B,(Mmax). Then, there exist m,m’ €
{1,..., Mmax }? such that

m’

d Mg Myq ,
HZgomq )andK HZ@quq )
q=1j=1 q=1j=1

for every z,z’ € R?.

(1) For every z’ € RY, since m¢?

max

<n,

0o d mg
10 KR =] Z S ()T (3 )/ S (@) (e = TS ¢ (

q= 1J7 - g=1j=1
mBqu mBn

(2) Since
mi

see()=) Zsso;'fl @ (P @ @ ) (),

Jji=1 ja=1

by Pythagoras theorem, ||s (|3 < ||s/13-
(3) First of all, thanks to Equality (10),

’
d ™My

d
S =E (M) D e “(X1.9)? | < mgE(L(Y)?) [ m:

g=1j=1 q=1
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On the one hand, under Condition (5) on By, ..., By, for any j € {1,...,m}, ¢ doesn’t depend
on m, so it can be denoted by ¢;, and then

2
d mq/\m

E(<K(X1,~),K'(X2w)4(Y2)>§)=/ E H Z pi(rg)ei(Xaq) | €(Y2)?| f(2')Aa(da’)

d
R 9=

!
d ™Mq/A\my

< |02 T] 3 o (KaaosCtaa) | " (@) (a!)de’

g=1 jj'=1
< I looSser -

On the other hand, under Condition (6) on By, ..., B,, since X; and (Xs,Y3) are independent,
and since K (z,z) > 0 for every x € R%,

E(K(X1,.), K'(X2, )0(Y2))3) < E(|K (X1, )I31K' (X2, .)l36(Y2)?)
= E(K (X1, X1))E(||K'(Xa,.)[30(Y2)?) < MpSk 0.

(4) For every v € L2(R?),

2
mi
E(<K(X1a ) =E Z Z {lpﬂo]l > ((p;rlll ®®(p§’;d)(X1)
Ji=1 Jja=1
2
mq my
SHAlloo [ DD (gt @+ @)@ @ - @ @) (|| < [ Fllooll]13-
ji=1 ja=1 9

A.3. Proof of Proposition 2.6. For the sake of readability, assume that d = 1. Consider m €
{1,...,Mmax - Since each Legendre’s polynomial is uniformly bounded by 1

m m . 1
E Y &MX)Er ) || < 22]2“ ‘/1Qj(x)f(a:)dx
Jj=1 j=1 -

Moreover, since @Q; is a solution to Legendre’s differential equation for any j € {1,...,m}, thanks to the
integration by parts formula,
! 1 ! d 2 /
Q»xfxdx:—%/ —[(1 — z°)Q’; ()] f(x)dx
| @@ =~ [ 210 =)@l @)
1

= W[(l—x?)@3(x)f<x>}£l+ o [ - s

= j+1 / Qj(x)—[(1 — 2*) f'(z)]dx.

Then,
! 2C1 2\/§C1
1¢4 r)dr| < ———— j = "
‘/_1%( (@) ’ J(J+1)HQJH2 JG+1)25+1)1/2
with ¢; = max{2]|f|sc, | /”lsc }. So,

j=1 j=1

where ( is Riemann’s zeta function. Thus, Legendre’s basis satisfies Condition (6).
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A.4. Proof of Proposition 3.6. The proof of Proposition 3.6 relies on the following technical lemma.

Lemma A.1. For every x € [0,27] and p,q € N* such that ¢ > p,

I sin(jz) 2
2 | S Ty

See Subsubsection A.4.1 for a proof.

For the sake of readability, assume that d = 1. Consider K, K’ € Kp, . B, (Mmax). Then, there ex-
ist m,m’ € {1,..., Mmax} such that

ZXJ "y and K'(2', ) ZXJ Vo, 2’ € R.

First, there exist mq(m,m’ ) €{0,...,n} and ¢; > 0, not dependlng on n, K and K’, such that for any
x’ €10,1],

(K (2,),sm0ed2] = | Y BIOYD)x5(X1))xs (")

Jj=1

<o +2 Z E(£(Y1)(cos(2mj X 1) cos(2mja’) 4 sin(27mj X1) sin(2mjz")) 110,11 (X1))
j=1

= ¢ + 2 E(f(yl) COS(27Tj(X1 — I,))l[o,l] (Xl)) .

Moreover, for any j € {2,...,my(m,m')},
1
E(6(Y1) cos(2mj(X1 — 2'))1p,1)(X1)) = / cos(2mj(x — a'))s(x)dx
0

% {Sin(2ﬂj2(: — ') (x)}

1L feos@mjlw =)y 1 L [ eos(@mi(e =) 0
j2 [ A2 ( ):|O 32/0 A2 ( )d
s =s() ay@) | B
o i

where a;(z’) := sin(2mjz’) and

1 / / - ! - / 1
) <(5 (1) — s'(0)) cos(2mjz’) — /0 cos(2mj(x —x'))s (x)dx) .

Then, there exists a deterministic constant ¢, > 0, not depending on n, K, K’ and 2/, such that

Bi(a') :=

2 2
my (m,m’) my (m,m’ ﬂ
.7

(11) (K(2', ) s 03 <eo |[T4( Y ZICON I Z

=

Let us show that each term of the right-hand side of Inequality (11) is uniformly bounded in &', m and
m/. On the one hand,

mq mm)

5 1
Z < max Hﬁjnmz 2\—42”3 oo =+ 115" lloo)-

je{1,..
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On the other hand, for every = €]0, 7| such that [r/x] + 1 < my(m,m’) (without loss of generality), by
Lemma A.1,

my (m,m’) my(m,m’)

[r/=] .

Zl smgjyx) < Zl 51n§jx) n _[;] smgjm)
s 2
(12) <elg]+ i+ [/l sn(@) S™ 12

Since z — sin(z) is continuous, odd and 27-periodic, Inequality (12) holds true for every x € R. So,

ml(mam/) Oé'(l'/)

P B
=

Therefore,

1
E sup (K (X1, 550003 < e (1 T2 e (@) e+ [ ||oo>2) .
K,K'€Kg,,....By, (Mmax) 24

A.4.1. Proof of Lemma A.1. For any x € [0,27] and g € N*, consider

x)::ZSingj , gol@ zq:( jH)hj()andh Zsmym

j=1 j=1
On the one hand,

q

1
9a(%) = () = +1 ha g; hj-a(@))-

Then,

1

fq(@) = gq(z) + mhq(l’)-

On the other hand,

I ; sin(qz/2)
ha() S e | = Im [e-wﬂwz

= sin(x/2)
_ sin((¢ + 1)z/2) sin(qz/2) _ cos(z/2) — cos((qg + 1/2)x)
sin(x/2) 2sin(z/2) ’

Then,

and, for any p € N* such that ¢ > p,

s (3 ) l9a(@) — 9p(@)] < 7 — 7.
Therefore,
sm( ) |fq(z) — fp(x)] < sin (g) lgq(x) — gp(x)| + sin (g) |Z‘I+i1)| 1 sin (g) |Zp—~(_x1)|
2
Sl

In conclusion,

sin(jx) 2
2 | S Trme
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APPENDIX B. PROOFS OF RISK BOUNDS

B.1. Preliminary results. This subsection provides three lemmas used several times in the sequel.

Lemma B.1. Consider

(13) UK’K/’[(TL) = Z<K(X“ )K(Y;) - SK}LKI(XJ' )f(ij) - SK/’g>2 3 VK, K/ S ’Cn
i#]

Under Assumption 2.1.(1,2,3), if s € L2(RY) and if there exists a > 0 such that E(exp(alé(Y1)])) < oo,
then there exists a deterministic constant cg1 > 0, not depending on n, such that for every 0 €]0, 1],

Uk ik 0 1 5
g g (Um0 VN dos(n)’
K,K'eK, n2 n ’ HTL

Lemma B.2. Consider
% n '——*1 En K(X;, )Y;) — 2. VKekKk
K,K( ) . n 4 - || ( 13 ) ( 7,) SK,Z”Q ’ n-

Under Assumption 2.1.(1,2), if s € L2(RY) and if there exists a > 0 such that E(exp(alf(Y1)])) < oo,
then there exists a deterministic constant cg.o > 0, not depending on n, such that for every 6 €]0, 1],

1 0 log(n)?
E ( sup {|VK,é(n) —3SK.| — 5K,€}> < B2 8(n) .
Kek, (T n on

Lemma B.3. Consider
(14) WKyK/yg(n) = <§K’¢(n; ) — SK 6, SK',t — S>2 s VK, K e K.

Under Assumption 2.1.(1,2,4), if s € L2(RY) and if there exists a > 0 such that E(exp(alé(Y1)])) < oo,
then there exists a deterministic constant cg.3 > 0, not depending on n, such that for every 6 €]0, 1],

log(n)*
On

E(SM’HWKWAWFW%KJ—ﬂ@><%3
K,K'eK,

B.1.1. Proof of Lemma B.1. The proof of Lemma B.1 relies on the following concentration inequality for
U-statistics, proved in dimension 1 in Houdré and Reynaud-Bouret [11] first, and then extended to the
infinite-dimensional framework by Giné and Nickl in [9].

Lemma B.4. Let &,...,&, be i.i.d. random variables on a Polish space = equipped with its Borel o-
algebra. Let f; 5, 1 <1 # j < n, be some bounded and symmetric measurable maps from =2 into R such
that, for everyi # j,

f@j = fj,i and E(fi,j(z,fl)) =0 dz-a.e.

Consider the totally degenerate second order U-statistic

Un =Y fi(&.&)-
i#£]

There exists a universal constant m > 0 such that for every A > 0,

P(U, < m(cn)\l/2 + 0N+ b, N2 4 apA?)) = 1— 2.7¢7 A
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where
a, = sup { sup |fi,j(Z»Z/)|}’
i,7=1,....n (z,2’€E
1—1
bi = max SupZ]E Jij(z ) ; SUP Z (fig (& 2 ) )
i,z DE = J+1
2 = ZE(fi,j(fmfj) ) and
i#]
0, = sup E va,j 517{] al(fl) (5])
(a,b)eA i<j
with

A= (a,b):IE(nz:ai(&)2><landE En:bj(gj)? <1

i=1
See Giné and Nickl [9], Theorem 3.4.8 for a proof.
Consider m(n) := 8log(n)/a. For any K, K’ € K,
Uk k' e(n) = U}(,K/,e(”) + U12<,K/ (n) + UK Kr0(n) + UK K o(n)

where
Ul rero(n) =Y glic ser o (n: X3, Y3, X5, Y5) 5 1= 1,2,3,4
i#£]

with, for every (z',%), (z",y') € E =R% x R,

g}(,K/,Z(n;xlvyvm//uy/) = <K($/7)€(y)1|ﬁ(y)\<m(n) 3[(7@(“;')7[{/(%”7 )E(yl)l\l(y)|<m(n) SK/ (n7 )>27
g e (i y, 2" y) = (K@, W) ey smm) — ke (5, K (@, )W) ey <mn) — Sk o(n5 )2,
g o'y y, 7 y) = (K@, ) e <mm) — ko (5), K (2", )W) Lot smn) — Siero (05 )2,
grxremiay 2 y) = (K@ )W) e smm) — 5x.0(5 ), K (@, )0 ) o) smm) — 5x00(052))2

and, for every k € IC,,,
szz(n; ) = E(k‘(Xl, -)K(Y1)1|Z(Y1)\<m(n)) and Sl;[(n; ) = E(k‘(Xl, ‘)E(Y1)1|5(Y1)\>m(n))'

On the one hand, since E(g}( xo(n @'y, X1,Y1)) = 0 for every (2',y) € E, by Lemma B.4, there exists

a universal constant m > 1 such that for any A > 0, with probability larger than 1 — 5.4e~?,
Uk x| _ m
% < ?(CK,K/,Z(TL)A]./2 + DK’K/’Z(TL)A + beKlyg(n))\?)/z + CleK/7£(n))\2)

where the constants ax g+ ¢(n), bx k' ¢(n), ¢k k' ¢(n) and Vg g ¢(n) are defined and controlled later.
First, note that

Uk xre(n) = Z(SDK,K/,@(”; X, Y, X;,Y5)

ij
(15) —r e 0(n; Xiy Vi) — Y ke e(n; X5, Y5) + Bl ko e(n; X, Yi, X5, Y5))),
where
prc e’ y, 2 y") = (K (@ )Y) e <mnys K (@ DY) Lo <mn))2
and

Ve e(ns ' y) = k@', )W) L) <mn)» S0 (75 )2 = E(pr i e(n; 2, y, X1,Y1))
for every k, k' € K, and (2,y), (¢”,y’) € E. Let us now control ax g+ ¢(n), bx k' e(n), ¢cx x ¢(n) and
O i e(n):
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e The constant ag g/ ,(n). Consider
ar K e(n) = sup \gkc i o (i 2y, 2" ).
(I’,y),(w”,y’)EE

By (15), Cauchy-Schwarz’s inequality and Assumption 2.1.(1),

ar xe(n) < 4 sup (K (2", )0(y) L ieey) <mn) > K2, )Y ) Loy 1<m(n) )2 ]
(z',y),(=",y')EE

< am(? (s Gl ) ((sup 1K/l ) < dme oo
z/ R4 z/' R4

So,

1 4
ﬁﬂ}@}(gg(n))\Z < ﬁm;ggm(n)%\z.

e The constant bg i ¢(n). Consider

[’K,K’,l(”)z ‘=N sup E(Q}(,K/,e(mI/,y,X17Y1)2)-
(a',y)EE

By (15), Jensen’s inequality, Cauchy-Schwarz’s inequality and Assumption 2.1.(1),
beK/yg(n)z < 16n sup E(<K(l’/, .)g(y)l‘g(y)|<m(n)7KI(Xl, ~)€(Y1)1|€(Y1)\<m(n)>g)

(z',y)EE

< 16nm(n)? sup [[K (2, )[SE(K (X1, V1) L0 <mm lz) < 16mpcen’m(n)*Sge .
z'eR

So, for any 6 €]0,1],

1 3m\ Y2 9 9 \2 1
ﬁbK K e(n)A? < 2 (> - my Zm(n)A%/? x (> <1/2

K 0 /2 K, 3m W12 K
0 12m)\3m m(n)?
—3 n
3mn 0 ot

e The constant cx g ¢(n). Consider
ki 0(n)? = nE(gie g o (05 X1, Y1, X2, Y2)?).
By (15), Jensen’s inequality and Assumption 2.1.(3),
e e(n)? < 16 E((K (X1, )Y Lev) <mnys K (X2, J0(Y2) Lje(va) <m(n))3)
< 16n°m(n)’E((K (X1, .), K'(X2,.)0(Y2))3) < 16my n’m(n)*5k 0.

So,

1 0 12mA
e e (A < 5k +
n 3mn

e The constant 0k g/ ¢(n). Consider

on m)ng(’l’L)Q.

0k rre(n) == sup E Zai(XiaYi)bj(vaY})g}(,K’,Z(n§Xia}/iaX‘ Y;)

VERY] )
(a,b)eA i<j
where
n—1 n
A= (a,b): Y E((X, Y?) < 1and S OE(b(X;,Y5)?) < 1
i=1 j=2

By (15), Jensen’s inequality, Cauchy-Schwarz’s inequality and Assumption 2.1.(3),

n—=1 n
dkre(n) <4 sup B YN [ai(X5, Yo)by (X5, Y ) e ke (ns X, Vi, X5, Y5))
(ap)eA 1527 j=it1

< Anm(n)E((K (X1,.), K' (X, )0(Y2))3)"? < dm2nm(n)s)/’,.
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So,
1 _ 12m\?
ﬁDK,K/,g(’I’L)/\ < 3‘(‘(1781{,’6 + on m;ggm(n)
Then, since m > 1 and A > 0, with probability larger than 1 — 5.4e™?*,
UL w0 ,(n)] 6 40m?
% < =Sk + mcm(n)?(1+ N3
n n on

So, with probability larger than 1 — 5.4|KC,, 2™,

{lUIl(,K’,Z(n)| 0_ }<40m2

Sk.e(n,8):= sup

5 - —SK'¢
K,K'eK, n n

For every t € R, consider

1/3 2
t 40m
A 0,t) ;= -1+ —— ith 0) = 2,
K,e(n,0,t) + <m;c,e(n,9)> with mic ¢(n,0) o my em(n)
Then, for any T > 0,
E(S}C’g(’n,e)) <T —‘r/ P(S}C’g(n, 9) > (1 + )\)C’z(n797t))3m;c’g(n, 9))dt
T

< T+5.4|ICn|2/ exp(—Ax,e(n,0,t))dt
T

) oo t1/3 t1/3
=T+ 54K _ l——m—+——— | dt
54Kl /T eXp( szc,e(nﬂ)l/s) eXp( 2m,<,,3(n,9)1/3>

< 9 0 T1/3 ) B o 1-r1/3 2
S T + 54C1VCn| m)(jvl('n,, )exp —W with ¢ = o (& dr.

Moreover,
1 2 40 - 8%m?
m;cl(n,(‘)) < CQM with ¢y = 72mmlcyg.
on @
So, by taking
T = 24 21Og<n)57
on
and since |k, | < n,
log(n)® Ko |? log(n)°
4 n 4
E(Sk.e(n,0)) < 2%cy o + 5.4cimpe ¢(n, 0) 3 < (2% 4 5.4c1)co o

On the other hand, by Assumption 2.1.(1), Cauchy-Schwarz’s inequality and Markov’s inequality,
E ( sup g%(,K’,é(n;XhYleZvYQN) <4m(n) Y E(LYD)I L) s mm B (X1, ), K'(Xa,.))2])
K,K'€Kn KoK,

< Am(m)m K, PE(EY)) R > m() < o B

With 32
€3 = Em,w]E(g(Y1)2)1/2]E(exp(a|€(Y1)\))1/2~

Uz ., ,(n 1
IE( sup Uk xcr.0( )|><c3 og(n)

So,

K,K'eK,, n? n

and, symmetrically,

U3 o (0 1
E( sup Uk i 4 )|><C3 Og(n).

K,K'eK,, n? n
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By Assumption 2.1.(1), Cauchy-Schwarz’s inequality and Markov’s inequality,

]E< sup |g§(,xf,e(n;X17Y1,X27Y2)|) <4 D EB(YDY2) Lo eva)smm (K (X1, ), K'(Xa,)a])
K.K'ekn K,K'eKn

< dmeen|KCa PE(E(Y1)*)P([£(Y1)] > m(n)) < %

with
¢y = dmy JB(L(Y1)?)E(exp(all(Y1)])).
So,
E( sup |U;1(,K/2,e(”)|> < %.
K,K'€ky, n n
Therefore,

/ 0 1 5 1
E sup 7|UK7K 7Z(n)| — —SK'y < (24 + 5.4C1)C2 Og(n) + 2¢3 Og(n) + C74
K,K'€Kn n? n o on n nd

B.1.2. Proof of Lemma B.2. First, the two following results are used several times in the sequel:

el < B [ 1) [ Koo)'

(16) < E(U(Y1)*)mg en

and

E(Vik(n)) = E(||K(X1, )0(Y1) — sk.ell3)

(17) = E(| K (X1, )e(M)|3) + Isk.ell5 — Q/Rd sio(@)E(K (X1, 2)0(Y1))Aa(dx) = Sx0 — ||sk.ell5-

Consider m(n) := 2log(n)/a and
v e(n) = Vice(n) — E(Vice(n)) = vic o(n) + vic 4 (n),

where
n

. 1 ) ) .
U%{,z(n) = - Z( %{,e(n;XﬁYé) - E(Qﬁ(,e(”?Xin))) ;J=1,2

n-
i=1

with, for every (2/,y) € E,
gz’ y) = K@, )(y) — sk.ell311e0) <mn)
and
gio(nia’ y) = | K@, )(y) — skell31je() | >m(n)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e=*,

2\ A
vic o(n)| < ?UK,E(n) + ECK,Z(n)

where
195c.o(n; )
cxe(n) = % and vg ¢(n) = ]E(g}“(n;Xl,Ylf).
Moreover,
1
cre(n) = 3 Sup 1K (2, )0(y) = sk.ell31je) <mn)
(z',y)EE
2 2
< 3 (w0 sup KB + lswl) < 5 mn)? + BCY P e
z’ eR
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by Inequality (16), and

lgkc.e(n; Mo E(Vic,e(n))

2(m(n)* + E(C(Y1)*))mic,en(Gr.e = llsx.ell3)
by Inequality (16) and Equality (17). Then, for any 6 €]0, 1],

vxe(n) <
<

vkl < 2/A(m(n)? + BOL)mas(Grce — celB) + o (mln)? + E(UY)mc

< O3k + 22 (1+E(U(Y1)?))mpc em(n)?

with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,,|e™?,

Sks(n.6) == sup {'K’,jf‘)'zm} (14 E(U(Y)?) g, ()

For every t € Ry, consider

(1 E(Y))mpe m(n)?.

)\)C,z(ﬂqe,t) = 30n

———— with 0
mK7e(n,0) w1 m;c’g(n, )

Then, for any 7' > 0,
E(S}Cl(n, 9)) < T+ / IP(S]QE(TL, 9) > )\]Qg(n, 0, t)m;cyg(n, 9))dt
T

< T+2|1Cn\/ exp(—Ai¢(n,0,t))dt
T

i t t
T+ 2K, — e | dt
* |’C ‘/T eXp( 2mlc7g(n,9)>exp( QmK,g(n,G))

17

T oo
(18) < T+ 2C1‘Kn|mlc’g(n,0) exp <_W> with ¢ = /; eir/zdr = 2.
Moreover,
log(n)? . 20
m}C,Z(TL,g) < o ge(n) with Co = @(1 +E(€(Y1)2))m)cwe.
So, by taking
1 3
T — 2, og(n) ,
on
and since |[IC,| < n
lo n log(n)3
E(Sk.¢(n,0)) < ge(n) + dmpo(n, ). - | < ey gG(n) .
On the other hand, by Inequality (16) and Markov’s inequality,
Vi o(1)] 2
| s RO < 28 (s KO0, — silB oo )
Kek, n n Kek,
A 971/2
¢
< -E ‘E(Y1)2 sup [|K(X1,.)[5+ sup [lsxel3 1 P(le(v1)] > m(n)/? < =2
n Kek, Kek, n
with
¢z = 8myc [E(L(Y1)H)Y2E (exp(al(Y1)]) /2.
Therefore,

3
E( sup {UK’Z(n) - ZSK’Z)}) < 6c210g(n) + 3

Kek, n On n



18 HELENE HALCONRUY* AND NICOLAS MARIE'

and, by Equality (17), the definition of vk ¢(n) and Assumption 2.1.(2),

log(n)3 n €3+ Mg

0
E ( sup {|VK€( ) — Skl — 5K,Z}> < by
Kek,, n on n

Remark B.5. As mentioned in Remark 2.10, replacing the exponential moment condition by the weaker
q-th moment condition with ¢ = (12—4¢)/B, € €]0,1] and 0 < 8 < /2, allows to get a rate of convergence
of order 1/n'=¢. Indeed, by Inequality (18), with m(n) = n” and
2(1 . 5 2
T = m with ¢ = g(]— +]E(‘€(Y1) ))m}Cj,
and by letting oo = 1 + 23 — ¢, there exist n. o € N* and ¢, o > 0 not depending on n, such that for any
n = Ne, s

2C1 28—1

n _
E(Sk¢(n,0)) < G-z + 4 |C exp(—n2#)
2¢1 n?h 251(1 + 2c¢. a)
< 4 a— = ————"12,
Ont—c taac, One Onl—c
Furthermore, by Markov’s inequality,
E(16(Y;)|(12—4¢)/8

n12 4e

So, as previously, there exists a deterministic constant ¢o > 0 such that

c2IB(14(Y (12—4e)/B\1/4
]E( sup |WI2<K’é(n)|) < ol KCaPP(|6(Y1)] > m(n)) /4 < =2 (o) )

K, K'€Kn nl-e ’
and then
E ( sup {|Wgk kre(n)| —0|lsxre — s||3 }) 9% with ¢3 = 2¢1 (1 4 2¢. o) + CQE(\E(Y1)|(12 45)//3)1/4
K,K'€Kn

B.1.3. Proof of Lemma B.3. Consider m(n) = 12log(n)/«. For any K, K' € C,,,
Wi kr0(n) = Wll(,K’,Z(n) + WE{,K/,@(”)

where

Iy . .
WK K't - Z gK e Xa, Vi) = Elgge g (05 X3, Y3))) 5 5 = 1,2

n
with, for every (2',y) € E,
9%(,1«,13(”%33/73/) = (K (2", )0(y), 5K — 5>21|z(y)\gm(n)

and
9w o(ns 'y y) o= (K (2", )l(y), sk 0 — 8)211e(y)[>mn)-
On the one hand, by Bernstein’s inequality, for any A > 0, with probability larger than 1 — 2e=*,

2 A
(Wi ko o(n)] < ;UK,K',Z(”) + ECK,K',Z(H)

where )
gk, (5o
e aere(n) = =0 and v e e(n) = Blgk oo (75 X1, Y1)%),

Moreover,

1

¢rrre(n) = 5 sup (K (2", )(y), s, — 8)2]1ie(y)|<m(n)
(a"y)eE
1 1
< gm(m)lsxe = sllz sup K (2’ )]l < gmiin'*m(n)sxce = s
z/ €R4
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by Assumption 2.1.(1), and
vi,e(n) SE((K (X1, )J0(Y1), 5500 — 8)3L v <m(n)) < m(n)?mpellskr e — 8|3

by Assumption 2.1.(4). Then, since A > 0, for any 6 €]0, 1],

2\ A 1/2
(Wi ke o(n)] < \/nm(”)QmK,ZHSK’,é — )13 + Wm;c/,gm(”)HSK',e — 52

TRl i (n)2(1 + )2

20n
with probability larger than 1 — 2e~*. So, with probability larger than 1 — 2|KC,,[?e~*,

< Ollskre —sl3+

mg ¢
Sice(n,0) :=  sup {[Wi gor o(n)| = 0llsir e — s[5} < 7=m(n)?(1 4 A)%.
K,K'ek,, 20n

For every t € Ry, consider

1/2
t . my,e 2
A 0,t) :=—1 _ th ) = —= .
rc,e(n,0,t) + <m;<:,e(n, 9)> with mg ¢(n, 0) 20n m(n)
Then, for any T > 0,
]E(S/Q[(TL,Q)) <T +/ P(S]Qg(n,a) > (1 -+ )\}c,[(n,e,t))Qm]C’g(n,a))dt
T

N

T+20C P [ expl(-hen,0,1))ds
T

) oo t1/2 t1/2
T+ 2K, - l— —————— | dt
+ 2k /T o ( 2m;c,e(n,9)1/2) o ( 2m1<,e(m9)1/2)
T'/? e
2 . _ 1—r 2
< T+ 251|IC7L| m}C,[(n,e) exp (W) with ¢ = /0 € / dr.

Moreover,
log(n)? . 122
m;g,g(n, 0) < ng‘;in) with ¢ = ﬁm;g’g.
So, by taking
1 4
T = 23C2 Og(n) ,
on
and since |K,| < n,
log(n)* Knl? log(n)*
E(S}Q@(n,&)) < 23C2 ge(n) + 2c1m;c7g(n, 9)| 717;‘ < (23 + 2C1)C2 ge(n) .

On the other hand, by Assumption 2.1.(2,4), Cauchy-Schwarz’s inequality and Markov’s inequality,

E( Sup |WI2(,K’,Z(n)|) < 2E(EY) Ly sme) 2 D BUK(X0,), 5500 — 8)3)1?
K Kekn K,K'eK,

C
< 2mgllsre = slLE(E) Y AL PR(AYD)| > mn) V< 2

with
¢3 = 2m (L7 + [Is]l2)E(C(Y1)") V4B (exp(alé(Y)])) V4.

Therefore,

log(n)* e _  log(n)*

E / — ro—s|2Y) < (22 +2 3«
(sop, Wi s~ s —s18Y) < 22+ 2e)es B0 1 2 o, Bl

K,K'ek,

with ¢4 = (23 + 2C1)C2 + ¢3.
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B.2. Proof of Proposition 2.7. For any K € I,,,

UK}g(’n)

- Ve o(n
(19) ISicelns.) = sicell = =25 + w,0(n)

n

with Uk ¢(n) = Uk, ik ¢(n) and Vi ¢(n) = Vi i ¢(n). Then, by Lemmas B.1 and B.2,

0 1 5
E ( sup { — SK,Z}) < ca7 og(n)
Kerx, n

on
with €27 =CB.1+ (B2

SK.e

IS5c.e(5.) = sxell3 =

B.3. Proof of Theorem 2.8. On the one hand, for every K € K,,,
S s
[5x.e(n;.) = sli3 = (1+6) (||sm — |3+ f;f)

can be written

S
3= (14+6)="5 + 2Wio(n) — b5k — 513,
where Wi ¢(n) := Wk i ,¢(n) (see (14)). Then, by Proposition 2.7 and Lemma B.3,

. 5 log(n)®
B (s {I5icatm) =l = 140) (e = sl + ) ) < a5

Kek,

||§K,é(n; D)= SK,0

with ¢o.8 = ¢o.7 + ¢g.3. On the other hand, for any K € IC,,,
Isxe = sll5 = I5k.e(n; ) = sll5 = I5k.e(n; ) — sell5 — Wiee(n).

Then,

S R S
(1-0) <||8K,e — 5|2+ z£> —I8r.e(n;.) — 5|3 < [Wre(n)| — 0llsx.e — s||3 + Axe(n) — 9%’[

where
. s
Asce(n) = |[[Bre = sweallf = =)
By Equalities (19) and (17),
2
Arcs(n) = ’UK,I;(”) L vre(®) skl
n n n

with Uk ¢(n) = Uk k.e(n) (see (13)). By Lemmas B.2 and B.1, there exists a deterministic constant
¢; > 0, not depending n and 6, such that

E( sup {AK,e(n)— W}) <C1M.
Kek, n On

By Lemma B.3,

log(n)*

B sup (Wia()] = Olsics — l3}) < ena™y
KeK, n

Therefore,

SK.¢ 1 ~ 2 - log(n)5
E -3 = — ) — <Cog——t—
(;glgn {||8K,e sllz + == = 7= I5ke(ns) 8||2}> 2850 — o)

with ¢o 8 =cp.3+¢1.
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B.4. Proof of Theorem 3.2. The proof of Theorem 3.2 is dissected in three steps.

Step 1. This first step is devoted to provide a suitable decomposition of

57 o(n3 ) — 2.
First,

135.(n; ) = 5113 = 5.0 (n3 ) = B e (15 )3+ 1850,(n; ) = 5lI5 = 2(Sko,e(n; ) =55, (05), B e(ns ) — )2
From (8), it follows that for any K € IC,,,
135 4(n;) = s[5 < [[Bx,e(n;-) — 5[5 + peny(K) — peny(K) + |8y e(n; -) — sl3
—2(ske(n;-) = 5% ,(n+),8K0,0(n5+) — )2
(20) = 18x,e(n; ) = s[5+ ¥n (K) — ¢ (K)
where
Un(K) := 2(Sk s(n;-) — 8, SK,,0(n; ) — 8)2 — peny(K).

Let’s complete the decomposition of |57 ,(n;-) — s[|3 by writing

%(K) = 2(1/]1,71(]() + "/}2,n(K> + wS,n(K))7

where
U n
() = ),
n
1 (& - 1
Yon(K) = 3 <;€(E)<K0(Xi7~)751<,e>2 + ;E(YMK(&» -),8K0,4>2> + E(SKO,L”SK,M and

Y30 (K) = Wik ko e(n) + Wiy i0(n) + (Sk.0 — 8, SKo.0 — S)2-

Step 2. In this step, we give controls of the quantities

E(ti n(K)) and E(¢; ,(K)) 5 i = 1,2,3.
e By Lemma B.1, for any 6 €]0, 1],

0 log(n)®
B((1n(K)) < S+ epa )
and .
=~ 0 log(n
E(1,0(R)) < TE(g ) + epa o)
e On the one hand, for any K, K’ € K,,, consider
\IIZ n K K Z£ . SK’ g>

Then, by Assumption 3.1,
1/2
E ( sup  |Uo (K, K’)|) < E(0(Y1)H)YV2E ( sup (K (X1,.), us7¢>§>
K,K'€K,, K,K'eK,,

< =l

< MLIE(()?)2.
On the other hand, by Assumption 2.1.(2),

(8K, SKo.0)2] < My g

Then, there exists a deterministic constant ¢; > 0, not depending on n and K, such that
€1

E(|t2.0 (K)]) < = and B([o.0 (K)]) < =
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e By Lemma B.3,

on

0 1/2 9 1/2
+ (2> [sx,e — s[l2 % (0) lsK0,e — Sll2

S

(Ise = sl13 + lIskoe = sl13) +8cp.s

0 6 1 log(n)*
< Glosca = s+ (§ +5) Do = sl + 8ena E0
and
PN 0 0 1 log(n)*
Bl (R < GBI~ 18+ (G + 5 ) sk = sl + Sema 520

Step 3. By the previous step, there exists a deterministic constant ¢o > 0, not depending on n, 6, K

and K, such that
SK,¢ 0 2 IOg(n)5
B0 < 8 (e =1+ T2 ) (5 45 ) o = s + o By

and

A St (0,2 log(n)°
BB < 08 (s, — sl + 20 ) + (545 ) o = sl + o 0

Then, by Theorem 2.8,

o 9 2 ¢ | cas \ log(n)’
E K < E . 2 7 “ 2

and

N 0 N o 2 c cag ) log(n)®
E R < E(l5e (n:) — sli2 v, = AT 22, t28 ) BeUY
([n(K)) < 75 B8z ,(n:) = sll2) + (2 + 9) Is k0,0 = sll2 + (9 t1 g -

By decomposition (20), there exist two deterministic constants c3, ¢y > 0, not depending on n, 6, K and
Ky, such that

E([5% ,(n;-) = s113) < E(I8k.e(n; ) = sl13) + E(|von (K)]) + E(|¢n (K)])

0 " 0 ~
< (1 725 ) BllSwatns ) = l) + g BISg (o) = ol)

c log(n)®

] 2
+ 2 lskq.e — sllz + 00— 0) -

This concludes the proof.
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